

Visual Basic 6 Black Book
(Publisher: The Coriolis Group)
Author(s): Steven Holzner
ISBN: 1576102831
Publication Date: 08/01/98

Introduction

What's On the CD-ROM

About the Author

Chapter 1�Visual Basic Overview

Creating A Project In Visual Basic

The Parts Of A Visual Basic Project

Project Scope

Projects On Disk

Using The Visual Basic Application Wizard

Visual Basic Programming Conventions

Code Commenting Conventions

Best Coding Practices In Visual Basic

Getting Down To The Details

Chapter 2�The Visual Basic Development Environment

In Depth

Overview Of The Integrated Development Environment

Immediate Solutions

Selecting IDE Colors, Fonts, And Font Sizes

Aligning, Sizing, And Spacing Multiple Controls

Setting A Startup Form Or Procedure

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (1 of 35) [3/14/2001 1:24:08 AM]

Using Visual Basic Predefined Forms, Menus, And Projects

Setting A Project�s Version Information

Setting An EXE File�s Name And Icon

Displaying The Debug, Edit, And Form Editor Toolbars

Turning Bounds Checking On Or Off

Checking For Pentium Errors

Managing Add-Ins

Adding ActiveX Controls And Insertable Objects To Projects

Customizing Menus And Toolbars

Setting Forms� Initial Positions

Enabling Or Disabling Quick Info, Auto List Members, Data Tips, And Syntax
Checking

Displaying Or Hiding IDE Windows

Searching An Entire Project For Specific Text Or A Variable�s Definition

Optimizing For Fast Code, Small Code, Or A Particular Processor

Adding And Removing Forms, Modules, And Class Modules

Using Bookmarks

Using The Object Browser

Chapter 3�The Visual Basic Language

In Depth

How Does Visual Basic Code Look?

Immediate Solutions

Declaring Constants

Declaring Variables

Selecting Variable Types

Converting Between Data Types

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (2 of 35) [3/14/2001 1:24:08 AM]

Setting Variable Scope

Verifying Data Types

Declaring Arrays And Dynamic Arrays

Declaring Subroutines

Declaring Functions

Preserving Variables� Values Between Calls To Their Procedures

Handling Strings

Converting Strings To Numbers And Back Again

Handling Operators And Operator Precedence

Using If&Else Statements

Using Select Case

Making Selections With Switch() And Choose()

Looping

Using Collections

Sending Keystrokes To Other Programs

Handling Higher Math

Handling Dates And Times

Handling Financial Data

Ending A Program At Any Time

Chapter 4�Managing Forms In Visual Basic

In Depth

The Parts Of A Form

The Parts Of An MDI Form

Immediate Solutions

Setting Title Bar Text

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (3 of 35) [3/14/2001 1:24:08 AM]

Adding/Removing Min/Max Buttons And Setting A Window�s Border

Adding Toolbars To Forms

Adding Status Bars To Forms

Referring To The Current Form

Redrawing Form Contents

Setting Control Tab Order

Moving And Sizing Controls From Code

Showing And Hiding Controls In A Form

Measurements In Forms

Working With Multiple Forms

Loading, Showing, And Hiding Forms

Setting The Startup Form

Creating Forms In Code

Using The Multiple Document Interface

Arranging MDI Child Windows

Opening New MDI Child Windows

Arrays Of Forms

Coordinating Data Between MDI Child Forms (Document Views)

Creating Dialog Boxes

All About Message Boxes And Input Boxes

Passing Forms To Procedures

Minimizing/Maximizing And Enabling/Disabling Forms From Code

Chapter 5�Visual Basic Menus

In Depth

Menu Design Considerations

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (4 of 35) [3/14/2001 1:24:08 AM]

Immediate Solutions

Using The Visual Basic Application Wizard To Set Up Your Menus

What Item Goes In What Menu?

Adding A Menu To A Form

Modifying And Deleting Menu Items

Adding A Menu Separator

Adding Access Characters

Adding Shortcut Keys

Creating Submenus

Creating Immediate (�Bang�) Menus

Using The Visual Basic Predefined Menus

Adding A Checkmark To A Menu Item

Disabling (Graying Out) Menu Items

Handling MDI Form And MDI Child Menus

Adding A List Of Open Windows To An MDI Form�s Window Menu

Making Menus And Menu Items Visible Or Invisible

Creating And Displaying Pop-Up Menus

Adding And Deleting Menu Items At Runtime

Adding Bitmaps To Menus

Using The Registry To Store A Most Recently Used (MRU) Files List

Chapter 6�Text Boxes And Rich Text Boxes

In Depth

Use Of Text Boxes And RTF Boxes In Windows Programs

Immediate Solutions

Creating Multiline, Word-Wrap Text Boxes

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (5 of 35) [3/14/2001 1:24:08 AM]

Aligning Text In Text Boxes

Adding Scroll Bars To Text Boxes

Making A Text Box Read-Only

Accessing Text In A Text Box

Selecting And Replacing Text In A Text Box

Copying Or Getting Selected Text To Or From The Clipboard

Creating A Password Control

Controlling Input In A Text Box

Adding An RTF Box To A Form

Accessing Text In A Rich Text Box

Selecting Text In Rich Text Boxes

Using Bold, Italic, Underline, And Strikethru

Indenting Text In Rich Text Boxes

Setting Fonts And Font Sizes In Rich Text Boxes

Using Bullets In Rich Text Boxes

Aligning Text In A Rich Text Box

Setting Text Color In RTF Boxes

Moving The Insertion Point In RTF Boxes

Adding Superscripts And Subscripts In Rich Text Boxes

Setting The Mouse Pointer In Text Boxes And Rich Text Boxes

Searching For (And Replacing) Text In RTF Boxes

Saving RTF Files From Rich Text Boxes

Reading RTF Files Into A Rich Text Box

Printing From A Rich Text Box

Chapter 7�Command Buttons, Checkboxes, And Option Buttons

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (6 of 35) [3/14/2001 1:24:08 AM]

In Depth

How This Chapter Works

Immediate Solutions

Setting A Button�s Caption

Setting A Button�s Background Color

Setting Button Text Color

Setting Button Fonts

Reacting To Button Clicks

Creating Button Control Arrays

Resetting The Focus After A Button Click

Giving Buttons Access Characters

Setting Button Tab Order

Disabling Buttons

Showing And Hiding Buttons

Adding Tool Tips To Buttons

Resizing And Moving Buttons From Code

Adding A Picture To A Button

Adding A Down Picture To A Button

Adding Buttons At Runtime

Passing Buttons To Procedures

Handling Button Releases

Making A Command Button Into A Cancel Button

Getting A Checkbox�s State

Setting A Checkbox�s State

Grouping Option Buttons Together

Getting An Option Button�s State

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (7 of 35) [3/14/2001 1:24:08 AM]

Setting An Option Button�s State

Using Graphical Checkboxes And Radio Buttons

Using Checkboxes And Option Buttons Together

Chapter 8�List Boxes And Combo Boxes

In Depth

Immediate Solutions

Adding Items To A List Box

Referring To Items In A List Box By Index

Responding To List Box Events

Removing Items From A List Box

Sorting A List Box

Determining How Many Items Are In A List Box

Determining If A List Box Item Is Selected

Using Multiselect List Boxes

Making List Boxes Scroll Horizontally

Using Checkmarks In A List Box

Clearing A List Box

Creating Simple Combo Boxes, Drop-Down Combo Boxes, And Drop-Down List
Combo Boxes

Adding Items To A Combo Box

Responding To Combo Box Selections

Removing Items From A Combo Box

Getting The Current Selection In A Combo Box

Sorting A Combo Box

Clearing A Combo Box

Locking A Combo Box

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (8 of 35) [3/14/2001 1:24:08 AM]

Getting The Number Of Items In A Combo Box

Setting The Topmost Item In A List Box Or Combo Box

Adding Numeric Data To Items In A List Box Or Combo Box

Determining Where An Item Was Added In A Sorted List Box Or Combo Box

Using Images In Combo Boxes

Chapter 9�Scroll Bars And Sliders

In Depth

Adding Scroll Bars And Sliders To A Program

Immediate Solutions

Adding Horizontal Or Vertical Scroll Bars To A Form

Setting Scroll Bars� Minimum And Maximum Values

Setting Up Scroll Bar Clicks (Large Changes)

Setting Up Scroll Bar Arrow Clicks (Small Changes)

Getting A Scroll Bar�s Current Value

Handling Scroll Bar Events

Handling Continuous Scroll Bar Events

Showing And Hiding Scroll Bars

Coordinating Scroll Bar Pairs

Adding Scroll Bars To Text Boxes

Creating And Using Flat Scroll Bars

Customizing Flat Scroll Bar Arrows

Creating Slider Controls

Setting A Slider�s Orientation

Setting A Slider�s Range

Setting Up Slider Groove Clicks

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (9 of 35) [3/14/2001 1:24:08 AM]

Adding Ticks To A Slider

Setting A Slider�s Tick Style

Getting A Slider�s Current Value

Handling Slider Events

Handling Continuous Slider Events

Handling Slider Selections

Clearing A Selection In A Slider

Creating An Updown Control

Setting An Updown Control�s Minimum And Maximum

Handling Updown Events

Chapter 10�Picture Boxes And Image Controls

In Depth

Image Controls

Picture Boxes

Immediate Solutions

Adding A Picture Box To A Form

Setting Or Getting The Picture In A Picture Box

Adjusting Picture Box Size To Contents

Aligning A Picture Box In A Form

Handling Picture Box Events (And Creating Image Maps)

Picture Box Animation

Grouping Other Controls In A Picture Box

Using A Picture Box In An MDI Form

Drawing Lines And Circles In A Picture Box

Using Image Lists With Picture Boxes

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (10 of 35) [3/14/2001 1:24:08 AM]

Adding Text To A Picture Box

Formatting Text In A Picture Box

Clearing A Picture Box

Accessing Individual Pixels In A Picture Box

Copying Pictures To And Pasting Pictures From The Clipboard

Stretching And Flipping Images In A Picture Box

Printing A Picture

Using Picture Box Handles

Setting Measurement Scales In A Picture Box

Saving Pictures To Disk

Adding An Image Control To A Form

Stretching An Image In An Image Control

Chapter 11�Windows Common Dialogs

In Depth

The Common Dialog Control

Immediate Solutions

Creating And Displaying A Windows Common Dialog

Setting A Common Dialog�s Title

Did The User Click OK Or Cancel?

Using A Color Dialog Box

Setting Color Dialog Flags

Using The Open And Save As Dialogs

Setting Open And Save As Flags

Getting The File Name In Open, Save As Dialogs

Setting Maximum File Name Size In Open And Save As Dialog Boxes

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (11 of 35) [3/14/2001 1:24:08 AM]

Setting Default File Extensions

Set Or Get The Initial Directory

Setting File Types (Filters) In Open, Save As Dialogs

Using A Font Dialog Box

Setting Font Dialog Flags

Setting Max And Min Font Sizes

Using The Print Dialog Box

Setting Print Dialog Flags

Setting The Minimum And Maximum Pages To Print

Setting Page Orientation

Showing Windows Help From A Visual Basic Program

Chapter 12�The Chart And Grid Controls

In Depth

The Chart Control

Grid Controls

Immediate Solutions

Adding A Chart Control To A Program

Adding Data To A Chart Control

Working With A Multiple Data Series

Setting Chart And Axis Titles And Chart Colors

Creating Pie Charts

Creating 2D And 3D Line Charts

Creating 2D And 3D Area Charts

Creating 2D And 3D Bar Charts

Creating 2D And 3D Step Charts

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (12 of 35) [3/14/2001 1:24:09 AM]

Creating 2D And 3D Combination Charts

Adding A Flex Grid Control To A Program

Working With Data In A Flex Grid Control

Typing Data Into A Flex Grid

Setting Flex Grid Grid Lines And Border Styles

Labeling Rows And Columns In A Flex Grid

Formatting Flex Grid Cells

Sorting A Flex Grid Control

Dragging Columns In A Flex Grid Control

Connecting A Flex Grid To A Database

Chapter 13�The Timer And Serial Communications Controls

In Depth

The Timer Control

The Communications Control

The MonthView And DateTimePicker Controls

Immediate Solutions

Adding A Timer Control To A Program

Initializing A Timer Control

Handling Timer Events

Formatting Times And Dates

Creating A Clock Program

Creating A Stopwatch

Creating An Alarm Clock

Creating Animation Using The Timer Control

Adding A Communications Control To A Program

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (13 of 35) [3/14/2001 1:24:09 AM]

Setting Up The Receive And Transmit Buffers

Opening The Serial Port

Working With A Modem

Reading Data With The Communications Control

Sending Data With The Communications Control

Setting Up Communications Handshaking

Handling Communications Events

Closing The Serial Port

Adding A MonthView Control To Your Program

Getting Dates From A MonthView Control

Adding A DateTimePicker Control To Your Program

Using A DateTimePicker Control

Chapter 14�The Frame, Label, Shape, And Line Controls

In Depth

The Frame Control

The Label Control

The Shape Control

The Line Control

Form Drawing Methods

Immediate Solutions

Adding A Frame To A Program

Setting Frame Size And Location

Dragging And Dropping Controls

Grouping Controls In A Frame

Adding A Label To A Program

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (14 of 35) [3/14/2001 1:24:09 AM]

Using Labels Instead Of Text Boxes

Formatting Text In Labels

Aligning Text In Labels

Handling Label Control Events

Using Labels To Give Access Keys To Controls Without Captions

Adding A Shape Control To A Program

Drawing Rectangles

Drawing Squares

Drawing Ovals

Drawing Circles

Drawing Rounded Rectangles

Drawing Rounded Squares

Setting Shape Borders: Drawing Width, Dashes, And Dots

Filling Shapes

Drawing A Shape Without The IDE Grid

Moving Shapes At Runtime

Adding A Line Control To A Program

Drawing Thicker, Dotted, And Dashed Lines

Drawing A Line Without The IDE Grid

Changing A Line Control At Runtime

Using Form Methods To Draw Lines

Using Form Methods To Draw Circles

Chapter 15�Toolbars, Status Bars, Progress Bars, And Coolbars

In Depth

Toolbars

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (15 of 35) [3/14/2001 1:24:09 AM]

Status Bars

Progress Bars

Coolbars

Immediate Solutions

Adding A Toolbar To A Form

Aligning Toolbars In A Form

Adding Buttons To A Toolbar

Handling Toolbar Buttons Clicks

Connecting Toolbar Buttons To Menu Items

Adding Separators To A Toolbar

Adding Images To Toolbar Buttons

Adding Check (Toggle) Buttons To A Toolbar

Creating Button Groups In A Toolbar

Adding Combo Boxes And Other Controls To A Toolbar

Setting Toolbar Button Tool Tips

Letting The User Customize The Toolbar

Adding Toolbar Buttons At Runtime

Adding A Status Bar To A Program

Aligning Status Bars In A Form

Adding Panels To A Status Bar

Displaying Text In A Status Bar

Displaying Time, Dates, And Key States In A Status Bar

Customizing A Status Bar Panel�s Appearance

Displaying Images In A Status Bar

Handling Panel Clicks

Adding New Panels To A Status Bar At Runtime

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (16 of 35) [3/14/2001 1:24:09 AM]

Creating Simple Status Bars

Adding A Progress Bar To A Form

Using A Progress Bar

Adding A Coolbar To A Form

Aligning Coolbars In A Form

Adding Bands To A Coolbar

Adding Controls To Coolbar Bands

Handling Coolbar Control Events

Chapter 16�Image Lists, Tree Views, List Views, And Tab Strips

In Depth

Image Lists

Tree Views

List Views

Tab Strips

Immediate Solutions

Adding An Image List To A Form

Adding Images To Image Lists

Using The Images In Image Lists

Setting Image Keys In An Image List

Adding A Tree View To A Form

Selecting Tree View Styles

Adding Nodes To A Tree View

Adding Subnodes To A Tree View

Adding Images To A Tree View

Expanding And Collapsing Nodes (And Setting Node Images To Match)

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (17 of 35) [3/14/2001 1:24:09 AM]

Handling Tree View Node Clicks

Adding A List View To A Form

Adding Items To A List View

Adding Icons To List View Items

Adding Small Icons To List View Items

Selecting The View Type In List Views

Adding Column Headers To A List View

Adding Column Fields To A List View

Handling List View Item Clicks

Handling List View Column Header Clicks

Adding A Tab Strip To A Form

Inserting Tabs Into A Tab Strip Control

Setting Tab Captions

Setting Tab Images

Using A Tab Strip To Display Other Controls

Handling Tab Clicks

Chapter 17�File Handling And File Controls

In Depth

Sequential Access Files

Binary Files

The FileSystemObject

Immediate Solutions

Using The Common Dialogs File Open And File Save As

Creating A File

Getting A File�s Length

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (18 of 35) [3/14/2001 1:24:09 AM]

Opening A File

Writing To A Sequential File

Writing To A Random Access File

Writing To A Binary File

Reading From Sequential Files

Reading From Random Access Files

Reading From Binary Files

Accessing Any Record In A Random Access File

Closing A File

Saving Files From Rich Text Boxes

Opening Files In Rich Text Boxes

Saving Files From Picture Boxes

Opening Files In Picture Boxes

Using The Drive List Box Control

Using The Directory List Box Control

Using The File List Box Control

Creating And Deleting Directories

Changing Directories

Copying A File

Moving A File

Deleting A File

When Was A File Created? Last Modified? Last Accessed?

Creating A TextStream

Opening A TextStream

Writing To A TextStream

Reading From A TextStream

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (19 of 35) [3/14/2001 1:24:09 AM]

Closing A TextStream

Chapter 18�Working With Graphics

In Depth

Graphics Methods Vs. Graphics Controls

About Visual Basic Coordinates

Immediate Solutions

Redrawing Graphics In Windows: AutoRedraw And Paint

Clearing The Drawing Area

Setting Colors

Drawing Text

Working With Fonts

Drawing Lines

Drawing Boxes

Drawing Circles

Drawing Ellipses

Drawing Arcs

Drawing Freehand With The Mouse

Filling Figures With Color

Filling Figures With Patterns

Setting Figure Drawing Style And Drawing Width

Drawing Points

Setting The Drawing Mode

Setting Drawing Scales

Using The Screen Object

Resizing Graphics When The Window Is Resized

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (20 of 35) [3/14/2001 1:24:09 AM]

Copying Pictures To And Pasting Pictures From The Clipboard

Printing Graphics

Layering Graphics With The AutoRedraw And ClipControls Properties

Chapter 19�Working With Images

In Depth

Picture Boxes Vs. Image Controls

Image Effects: Working With Images Bit By Bit

Immediate Solutions

Adding Images To Controls

Adding Images To Forms

Using Image Controls

Using Picture Boxes

AutoSizing Picture Boxes

Loading Images In At Runtime

Clearing (Erasing) Images

Storing Images In Memory Using The Picture Object

Using Arrays Of Picture Objects

Adding Picture Clip Controls To A Program

Selecting Images In A Picture Clip Control Using Coordinates

Selecting Images In A Picture Clip Control Using Rows And Columns

Flipping Images

Stretching Images

Creating Image Animation

Handling Images Bit By Bit

Creating Grayscale Images

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (21 of 35) [3/14/2001 1:24:09 AM]

Lightening Images

Creating �Embossed� Images

Creating �Engraved� Images

Sweeping Images

Blurring Images

Freeing Memory Used By Graphics

Chapter 20�Creating ActiveX Controls And Documents

In Depth

All About ActiveX Components

In-Process Vs. Out-Of-Process Components

Which ActiveX Component Do I Want To Build?

Immediate Solutions

Creating An ActiveX Control

Designing An ActiveX Control From Scratch

Giving ActiveX Controls Persistent Graphics

Basing An ActiveX Control On An Existing Visual Basic Control

Handling Constituent Control Events In An ActiveX Control

Adding Controls To An ActiveX Control (A Calculator ActiveX Control)

Testing An ActiveX Control

Creating A Visual Basic Project Group To Test An ActiveX Control

Registering An ActiveX Control

Using A Custom ActiveX Control In A Visual Basic Program

Adding A Property To An ActiveX Control

Making ActiveX Control Properties Persistent (PropertyBag Object)

Adding A Method To An ActiveX Control

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (22 of 35) [3/14/2001 1:24:09 AM]

Adding An Event To An ActiveX Control

Adding Design Time Property Pages

Creating An ActiveX Document

ActiveX Document DLLs Vs. EXEs

Adding Controls To An ActiveX Document (A Tic-Tac-Toe Example)

Handling Constituent Control Events In An ActiveX Document

Testing An ActiveX Document

Creating ActiveX Documents That Run Outside Visual Basic

Distributed Computing: ActiveX Documents And Integrated Browsers

Making ActiveX Document Properties Persistent (PropertyBag Object)

Chapter 21�Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP,
And DHTML

In Depth

Creating A Web Browser

Creating A Dynamic HTML Page

Working With Email

Using FTP

Using HTTP

Immediate Solutions

Creating A Web Browser

Specifying URLs In A Web Browser

Adding Back And Forward Buttons To A Web Browser

Adding Refresh, Home, And Stop Buttons To A Web Browser

Creating DHTML Pages

Adding Text To DHTML Pages

Adding Images To DHTML Pages

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (23 of 35) [3/14/2001 1:24:09 AM]

Adding HTML Controls To DHTML Pages

Adding ActiveX Controls To DHTML Pages

Adding Tables To DHTML Pages

Adding Hyperlinks To DHTML Pages

Using MAPI Controls To Support Email

Sending Email From Visual Basic

Reading Email In Visual Basic

Using The Internet Transfer Control For FTP And HTTP Operations

Handling FTP Operations In Visual Basic

Handling HTTP Operations In Visual Basic

Chapter 22�Multimedia

In Depth

The Multimedia MCI Control

Using The Multimedia Control From Code

Immediate Solutions

Using The Animation Control

Adding A Multimedia Control To A Program

Setting The Device Type And Opening The Device

Setting File Information And Opening Files

Setting A Multimedia Control�s Time Format

Controlling The Multimedia Control From Code

Stopping And Pausing The Multimedia Control

Displaying The Multimedia Control�s Status

Closing The Multimedia Control

Playing CDs From Your CD-ROM Drive

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (24 of 35) [3/14/2001 1:24:09 AM]

Playing WAV Files

Playing MID Files

Playing AVI Files

Playing MPG Files

Keeping Track Of Multimedia Command Execution Using Notification

Handling Multimedia Errors

Stepping A Multimedia Control Forward Or Backward Frame By Frame

Starting From And To In A Multimedia Control

Making The Multimedia Control Wait

Multimedia Without Multimedia Controls

Chapter 23�Connecting To The Windows API And Visual C++

In Depth

Declaring And Using DLL Procedures In Visual Basic

Handling C/C++ And Windows Data Types

What�s Available In The Windows API?

Immediate Solutions

Getting Or Creating A Device Context (Including The Whole Screen)

Drawing Lines In A Device Context

Drawing Ellipses In A Device Context

Drawing Rectangles In A Device Context

Setting Drawing Colors And Styles (Using Pens)

Setting Drawing Modes (ROP2)

Handling The Mouse Outside Your Program�s Window

Copying Bitmaps Between Device Contexts Quickly

Capturing Images From The Screen

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (25 of 35) [3/14/2001 1:24:09 AM]

Getting A Window Handle For Any Window On The Screen

Getting A Window�s Text

Playing Sounds With API Functions

Allocating Memory And Storing Data

Reading Data From Memory And Deallocating Memory

Making A Window Topmost

Determining Free And Total Disk Space

Determining The Windows Directory

Connecting To Visual C++

Chapter 24�Databases: Using DAO, RDO, And ADO

In Depth

What Are Databases?

DAO

RDO

ADO

The Data-Bound Controls

Immediate Solutions

Creating And Managing Databases With The Visual Data Manager

Creating A Table With The Visual Data Manager

Creating A Field With The Visual Data Manager

Entering Data In A Database With The Visual Data Manager

Adding A Data Control To A Program

Opening A Database With The Data Control

Connecting A Data Control To A Bound Control

Registering An ODBC Source

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (26 of 35) [3/14/2001 1:24:09 AM]

Opening A Database With A Remote Data Control

Connecting A Remote Data Control To A Bound Control

Opening A Database With An ADO Data Control

Connecting An ADO Data Control To A Bound Control

The Data Form Wizard: Creating A Data Form

Using Database Control Methods: Adding, Deleting, And Modifying Records

Adding Records To Databases

Deleting Records In Databases

Refreshing A Data Control

Updating A Database With Changes

Moving To The Next Record

Moving To The Previous Record

Moving To The First Record

Moving To The Last Record

The Data-Bound Controls: From Text Boxes To Flex Grids

The ADO Data-Bound Controls

Chapter 25�Working With Database Objects In Code

In Depth

DAO

RDO

ADO

Immediate Solutions

A Full-Scale DAO Example

Using The Daocode Example To Create And Edit A Database

DAO: Creating A Database

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (27 of 35) [3/14/2001 1:24:09 AM]

DAO: Creating A Table With A TableDef Object

DAO: Adding Fields To A TableDef Object

DAO: Adding An Index To A TableDef Object

DAO: Creating A Record Set

DAO: Opening A Database

DAO: Adding A Record To A Record Set

DAO: Editing A Record In A Record Set

DAO: Updating A Record In A Record Set

DAO: Moving To The First Record In A Record Set

DAO: Moving To The Last Record In A Record Set

DAO: Moving To The Next Record In A Record Set

DAO: Moving To The Previous Record In A Record Set

DAO: Deleting A Record In A Record Set

DAO: Sorting A Record Set

DAO: Searching A Record Set

DAO: Executing SQL

A Full-Scale RDO Example

RDO: Opening A Connection

RDO: Creating A Result Set

RDO: Moving To The First Record In A Result Set

RDO: Moving To The Last Record In A Result Set

RDO: Moving To The Next Record In A Result Set

RDO: Moving To The Previous Record In A Result Set

RDO: Executing SQL

A Full-Scale ADO Example

ADO: Opening A Connection

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (28 of 35) [3/14/2001 1:24:09 AM]

ADO: Creating A Record Set From A Connection

ADO: Binding Controls To Record Sets

ADO: Adding A Record To A Record Set

ADO: Refreshing The Record Set

ADO: Updating A Record In A Record Set

ADO: Moving To The First Record In A Record Set

ADO: Moving To The Last Record In A Record Set

ADO: Moving To The Next Record In A Record Set

ADO: Moving To The Previous Record In A Record Set

ADO: Deleting A Record In A Record Set

ADO: Executing SQL In A Record Set

Chapter 26�OLE

In Depth

Linking Vs. Embedding

Immediate Solutions

Adding An OLE Control To A Form

Creating And Embedding An OLE Object At Design Time

Linking Or Embedding An Existing Document At Design Time

Autosizing An OLE Control

Determining How An Object Is Displayed In An OLE Container Control

Using The OLE Control�s Pop-Up Menus At Design Time

Inserting An OLE Object Into An OLE Control At Runtime

Deactivating OLE Objects

Using Paste Special To Insert A Selected Part Of A Document Into An OLE
Control

How To Activate The OLE Objects In Your Program

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (29 of 35) [3/14/2001 1:24:09 AM]

Activating OLE Objects With A Pop-Up Menu That Lists All OLE Verbs

Activating OLE Objects From Code

Is An Object Linked Or Embedded?

Handling Multiple OLE Objects

Using OLE Control Arrays To Handle Multiple OLE Objects

Loading New OLE Controls At Runtime

Dragging OLE Objects In A Form

Deleting OLE Objects

Copying And Pasting OLE Objects With The Clipboard

Zooming OLE Objects

Saving And Retrieving Embedded Object�s Data

Handling OLE Object Updated Events

Disabling In-Place Editing

Chapter 27�Creating Code Components (OLE Automation)

In Depth

Code Components: Classes And Objects

Code Components And Threads

Immediate Solutions

Using A Code Component From A Client Application

Creating An Object From A Class

Using A Code Component�s Properties And Methods

Creating A Code Component

Setting A Code Component�s Project Type: In-Process Or Out-Of-Process

Adding A Property To A Code Component

Adding A Get/Let Property To A Code Component

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (30 of 35) [3/14/2001 1:24:09 AM]

Adding A Method To A Code Component

Passing Arguments To A Code Component Method

Passing Optional Arguments To A Code Component Method

Testing A Code Component With A Second Instance Of Visual Basic

Creating And Registering An In-Process Code Component

Creating And Registering An Out-Of-Process Code Component

Using The Class Initialize Event

Using The Class Terminate Event

Global Objects: Using Code Components Without Creating An Object

Destroying A Code Component Object

Using Forms From Code Components

Creating Dialog Box Libraries In Code Components

Designing Multithreaded In-Process Components

Designing Multithreaded Out-Of-Process Components

Chapter 28�Advanced Form, Control, And Windows Registry Handling

In Depth

Drag And Drop And OLE Drag And Drop

The Windows Registry

Immediate Solutions

Passing Controls To Procedures

Passing Control Arrays To Procedures

Determining The Active Control

Determining Control Type At Runtime

Creating/Loading New Controls At Runtime

Changing Control Tab Order

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (31 of 35) [3/14/2001 1:24:09 AM]

Changing Control Stacking Position With Z-Order

Drag/Drop: Dragging Controls

Drag/Drop: Dropping Controls

Handling �Self-Drops� When Dragging And Dropping

Drag/Drop: Handling DragOver Events

OLE Drag/Drop: Dragging Data

OLE Drag/Drop: Dropping Data

OLE Drag/Drop: Reporting The Drag/Drop Outcome

Using The Lightweight Controls

Passing Forms To Procedures

Determining The Active Form

Using The Form Object�s Controls Collection

Using the Forms Collection

Setting A Form�s Startup Position

Keeping A Form�s Icon Out Of The Windows 95 Taskbar

Handling Keystrokes In A Form Before Controls Read Them

Making A Form Immovable

Showing Modal Forms

Saving Values In The Windows Registry

Getting Values From The Windows Registry

Getting All Registry Settings

Deleting A Registry Setting

Chapter 29�Error Handling And Debugging

In Depth

Testing Your Programs

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (32 of 35) [3/14/2001 1:24:09 AM]

Immediate Solutions

Writing Error Handlers

Using On Error GoTo Label

Using On Error GoTo line#

Using On Error Resume Next

Using On Error GoTo 0

Using Resume In Error Handlers

Using Resume Label In Error Handlers

Using Resume line# In Error Handlers

Using Resume Next In Error Handlers

Getting An Error�s Error Code

Getting An Error�s Description

Determining An Error�s Source Object

Handling Errors In DLLs: The LastDLLError Property

Creating An Intentional (User-Defined) Error

Nested Error Handling

Creating An Error Object Directly In Visual Basic

Trappable Cancel Errors In Common Dialogs

Debugging In Visual Basic

Setting Debugging Breakpoints

Single-Stepping While Debugging

Examining Variables And Expressions

Adding Debug Watch Windows

Using The Immediate Window While Debugging

Clearing All Debugging Breakpoints

Executing Code Up To The Cursor While Debugging

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (33 of 35) [3/14/2001 1:24:09 AM]

Skipping Over Statements While Debugging

Chapter 30�Deploying Your Program: Creating Setup Programs, Help Files, And
Online Registration

In Depth

Setup Programs

Help Files

Online Registration

The �Designed For Microsoft Windows� Logo

Immediate Solutions

Creating Your Application�s EXE File

Using The Package And Deployment Wizard

Step 1: Package Type

Step 2: Build Folder

Step 3: Files

Step 4: Distribution Type

Step 5: Installation Title

Step 6: Icons

Step 7: Install Locations

Step 8: Shared Files

Step 9: Finished!

Creating Help Files With The Microsoft Help Workshop

Creating A Help Project�s RTF File

Entering Text In A Help File

Creating A Help Hotspot

Creating A Help Hotspot Target

Titling A Help Page

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (34 of 35) [3/14/2001 1:24:09 AM]

Adding Help Topics To The Help Index

Creating Help Pop-Up Links

Creating Help �Tool Tips� Targets

Compiling Help Files With The Help Workshop

Displaying A Help File From Visual Basic

Building Online Help Into Your Application

Creating Online User Registration

Uploading Online Registration Information To An FTP Server

Concluding The FTP Transfer Of The Online Registration Information

Index

Visual Basic 6 Black Book:Table of Contents

http://24.19.55.56:8080/temp/ (35 of 35) [3/14/2001 1:24:09 AM]

Introduction
Welcome to your Visual Basic support package. That�s what this book has been
designed to be: your complete VB support package. Have we reached that goal yet? It
�s up to you to decide. If what you�re looking for is not in this edition, we�ll work hard
to make sure it�s in the next�I encourage your suggestions. Please feel free to write.
We�ll put in the time to make sure this book is the most complete one available on
Visual Basic, edition after edition. This is the book we want you to come back to
again and again.

I�ve used Visual Basic back before version 1 even came out publicly and have written
many books on the program. I put Visual Basic to work for a very wide range of uses
day after day; in fact, it�s is my favorite programming package of all, and it comes
close to being my favorite program period. But I�ve never written a book on Visual
Basic as complete as this one and never included as many features, documented or
undocumented, examples, and tips in one volume.

This book has been designed to give you the coverage you just won�t find in any other
book. Other books often omit not only the larger topics, like deploying your program
after you�ve created it and creating Help files, but also the smaller ones, like covering
in depth just about every control that comes with Visual Basic, including the ActiveX
controls�from the MS chart control to flat scroll bars, from the serial port comm
control to the Internet transfer control.

Reluctantly, I must admit that it�s impossible for one volume to be utterly
comprehensive on the subject of Visual Basic (impossible because it�s not physically
possible to bind a book that big yet), but we�re trying our best. It�s true that some
specialty books might have more coverage on a few topics, but if you want to see
more on a particular topic, write in and we�ll work seriously on adding more of that
topic to the next edition.

How This Book Works

The task-based format we use in this book is the one most programmers appreciate
because programming is a task-based business. Rather than reading about subjects in
the order the author thinks best, you can go directly to your topic of interest and find
the bite-sized nugget of information you need, such as opening an FTP connection,
adding a Web browser to your program, supporting online user registration from
Visual Basic, adding a method to an ActiveX control, creating an error handler,
flipping or stretching an image, opening an RDO database connection, playing CDs
from the computer�s CD-ROM drive, and literally hundreds of other topics.

And best of all, there�s a working example in code for almost every programming
topic in the book. The actual process of programming is not abstract; it�s very applied.

Visual Basic 6 Black Book:Introduction

http://24.19.55.56:8080/temp/Introduction.html (1 of 6) [3/14/2001 1:24:11 AM]

So instead of vague generalities, we get down to the specifics�all the specifics�that
give you everything you need to understand and use Visual Basic.

In the old days, programming books used to be very top-down, with chapters on
subjects like conditional branching, loop structures, variable declarations, and so
forth. But who sits down to program by saying, �I�m about to create a conditional
program flow branch�? Instead, programmers are more interested in performing useful
tasks, like adding buttons, menus, list boxes, or toolbars to a window; creating
graphics animation; creating dialog boxes; creating setup programs; working with
files; supporting online Help; and so on. And this book is written for programmers.

Because this book is written for programmers, each chapter is broken up into dozens
of practical programming tasks. After selecting the chapter you want, you can turn to
the table of contents, or to the first page in that chapter, to find the task you�re
interested in. Hundreds of tasks are covered in this book, chosen as those that
programmers most want to see. In addition, this book is filled with nearly 800
examples, covering just about every Visual Basic programming area there is. These
examples are bite-sized and to the point, so you don�t have to wade through a dozen
files trying to understand one simple topic. And they�re as comprehensive as we could
make them, covering every programming area in the book.

Besides programming tasks and examples, the book also has overviews designed to
bring all the pieces together into a coherent whole, giving you the entire picture. The
first chapter is designed specifically to give you an overview of Visual Basic itself,
along with some of the best programming practices to use, including those
recommended by Microsoft. Every subsequent chapter starts with an overview of the
subject it covers before digging into the specifics, making sure we never get lost in
details. We�ll also see discussions on best programming practices, program design,
program testing, what makes a professional Windows application professional, and
much more, as befits a book that wants to be your complete Visual Basic support
package. In addition, the CD that accompanies this book holds the code for all the
major projects we develop. To open and use a project, look for the Visual Basic
project file (for example, browser.vbp for the browser project) and open that project
file with Visual Basic.

Besides the code from the book, note that the CD has hundreds of megabytes of tools
and software, ready for you to use.

What�s In This Book

Just about everything we could write about Visual Basic is in this book, and that�s a
lot of ground to cover. From language reference to ADO database handling, from
creating Web browsers to dragging and dropping data across applications, from email
applications to multimedia players, from creating ActiveX controls and ActiveX
documents to setup programs, it�s all here.

Here�s some of what we�ll see how to create in this book:

" ActiveX controls

Visual Basic 6 Black Book:Introduction

http://24.19.55.56:8080/temp/Introduction.html (2 of 6) [3/14/2001 1:24:11 AM]

" ActiveX documents

" ADO, DAO, and RDO database applications

" Multimedia AVI, MPG, WAV, and MID players

" CD players that play CDs from the computer�s CD-ROM drive

" Bitmapped menu items

" Full Web browsers

" Pie charts, line charts, bar charts, and others

" Code clients that call methods in programs like Microsoft Excel

" Code components (OLE automation servers)

" Graphics animation

" Applications that use the Windows Common Dialogs

" Customized toolbars with embedded controls like combo boxes

" Data entry forms

" Database editing applications

" Direct connections to the Windows API

" Direct connections to code written in Visual C++

" Drag/drop operations

" Graphics applications that draw arcs, circles, rectangles, lines, and more

" Email applications

" Error handlers

" Applications that use the printer

" Word processor applications

" File handlers for text and binary data

" FTP applications

" Dialog boxes

" Windows Help files

" MDI applications

" Pop-up menus activated with right mouse clicks

Visual Basic 6 Black Book:Introduction

http://24.19.55.56:8080/temp/Introduction.html (3 of 6) [3/14/2001 1:24:11 AM]

" Application deployment

" HTTP applications

" Image handling: blur, emboss, engrave, flip, sweep, stretch images, and more

" OLE applications

" Applications that use the Windows Registry

" List views and tree views

" Applications that create controls at runtime

" Mouse capture

" OLE drags (dragging data between applications)

" Online user registration

" Picture clip applications

" Setup programs

" Screen capture

" Spreadsheets

" Status bars and toolbars

" Tab strips, progress bars, and others

That�s just some of what�s coming up. Visual Basic is a very large topic, and the
topics we�ll cover number in the hundreds. And if you have suggestions for more,
please send them in.

What You�ll Need

To use this book profitably, you should have some experience with Visual Basic�not
necessarily a lot, but enough to get through Chapter 1 without trouble. We assume you
have some familiarity with the essentials of Visual Basic in this book, although those
essentials are not very hard to pick up. If you do have trouble with Chapter 1, you
might take a look at an introductory book before proceeding.

As far as software goes, just about all you need to use this book is already in
Microsoft Visual Basic (we�ll use version 6 in this book). Visual Basic comes with an
enormous set of tools and resources, and we�ll have our hands full putting them to
work.

We try to be as self-contained in this book as possible�even creating the database files
we�ll use in examples with Visual Basic itself, not with a database application. The
graphics files we use in various examples are on the CD, and the multimedia files we
�ll play in our multimedia examples come with Windows. Some of our OLE and OLE

Visual Basic 6 Black Book:Introduction

http://24.19.55.56:8080/temp/Introduction.html (4 of 6) [3/14/2001 1:24:11 AM]

automation examples use Microsoft Excel, but Excel is not essential to those
examples�any OLE server and OLE automation server program will do. Note that to
use email from Visual Basic, you must have the Windows MAPI system installed (as
represented by the Inbox icon on the Windows desktop).

Where can you go for additional Visual Basic support? You can find Visual Basic
user groups all over, and more are appearing every day. You can also find Visual
Basic information (and advertising) at the Microsoft Visual Basic home page at
www.microsoft.com/vbasic/, free Visual Basic downloads at
http://www.microsoft.com/vbasic/download/, and technical documents (white papers)
at http://www.microsoft.com/vbasic/techmat/.

Although the content varies in accuracy, there are many Usenet groups dedicated to
Visual Basic as well, but be careful what you read there�there�s no guarantee it�s
accurate. About two dozen of those groups are hosted by Microsoft, including:

" microsoft.public.vb.bugs

" microsoft.public.vb.addins

" microsoft.public.vb.controls

" microsoft.public.vb.database

" microsoft.public.vb.installation

" microsoft.public.vb.ole

" microsoft.public.vb.ole.automation

" microsoft.public.vb.syntax

Other, non-Microsoft groups include some of these popular Usenet forums:

" comp.lang.basic.visual

" comp.lang.basic.visual.3rdparty

" comp.lang.basic.visual.announce

" comp.lang.basic.visual.database

" comp.lang.basic.visual.misc

And that all the introduction we need�it�s time to start digging into Visual Basic. As
we�ve said, we intend this book to be your complete support package for Visual Basic,
so, again, if you see something that should be covered and isn�t, let us know. In the
meantime, happy reading!

Visual Basic 6 Black Book:Introduction

http://24.19.55.56:8080/temp/Introduction.html (5 of 6) [3/14/2001 1:24:11 AM]

http://24.19.55.56:8080/temp/www.microsoft.com\vbasic\
http://www.microsoft.com/vbasic/download/
http://www.microsoft.com/vbasic/techmat/

Visual Basic 6 Black Book:Introduction

http://24.19.55.56:8080/temp/Introduction.html (6 of 6) [3/14/2001 1:24:11 AM]

What�s On The CD-ROM
The companion CD-ROM contains the source code and project files used in the Visual
Basic 6 Black Book.

Also included are demo copies of the following programs:

" CoffeeCup HTML Editor++ 98�An HTML editor with built in Java and animated
GIFs.

" CoffeeCup ImageMapper++�A fully functional image mapper.

" Site Sweeper�Program that provides an automatic, comprehensive analysis of your
Web site.

" QuickSite

" SQL-Station

" Setup Factory

" AutoPlay Menu Studio

" VBAdvantage

" Olectra Resizer

" Q-Diagnostic Software

Requirements

To run all the projects discussed in the book, you will need to have Visual Basic 6
installed.

Platform

486 or higher processor

Operating System

Windows 95, 95, or NT

RAM

16MB

Visual Basic 6 Black Book:What's On the CD-ROM

http://24.19.55.56:8080/temp/about.html (1 of 2) [3/14/2001 1:24:20 AM]

Visual Basic 6 Black Book:What's On the CD-ROM

http://24.19.55.56:8080/temp/about.html (2 of 2) [3/14/2001 1:24:20 AM]

About The Author
Steven Holzner wrote the book on Visual Basic&a number of times. He co-authored
with Peter Norton the bestseller Peter Norton�s Visual Basic for Windows and Peter
Norton�s Guide to Visual Basic 4 for Windows 95. He also wrote Advanced Visual
Basic 4.0 Programming, a 650-pager that came out in three editions, and Internet
Programming With Visual Basic 5, as well as several other Visual Basic books. All in
all, this former contributing editor for PC Magazine has authored 43 books ranging in
subjects from assembly language to Visual C++, but Visual Basic is his favorite topic.
Steven�s books have sold over a million copies and have been translated into 15
languages around the world.

Steven was on the faculty of Cornell University for 10 years, where he earned his
Ph.D. He�s also been on the faculty at his undergraduate school, Massachusetts
Institute of Technology. Steven loves to travel, and has been to over 30 countries,
from Afghanistan to India, from Borneo to Iran, from Sweden to Thailand, with more
to come. He and Nancy live in a small, picturesque town on the New England coast
and spend summers in their house in the Austrian Alps.

Acknowledgments

The book you are holding is the result of many people�s dedication. I would especially
like to thank Stephanie Wall, Acquisitions Editor, for her hard work; Jeff Kellum, the
Project Editor who did such a great job of bringing this project together and
shepherding it along, as well as Wendy Littley, the Production Coordinator who kept
things on track; Joanne Slike, the copyeditor who waded through everything and got it
into such good shape; and April Nielsen, who did the interior design. Special thanks to
Harry Henderson for the terrific tech edit. Thanks to all: great job!

Dedication

To my Sweetie, Nancy, the best editor in the world,
with more kisses than there are pages in this book
(and every one of those kisses is well deserved).

Visual Basic 6 Black Book:About the Author

http://24.19.55.56:8080/temp/about_author.html [3/14/2001 1:24:21 AM]

Chapter 1
Visual Basic Overview
Welcome to our big book on Visual Basic. It�s no secret that Visual Basic is the
favorite programming environment of many programmers. (In fact, you�re reading a
book written by one of those programmers right now.) When Visual Basic first
appeared, it created a revolution in Windows programming, and that revolution
continues to this day. Never before had Windows programming been so easy�just
build the program you want, right before your eyes, and then run it. Visual Basic
introduced unheard-of ease to Windows programming and changed programming
from a chore to something very fun.

In time, Visual Basic has gotten more complex, as well as more powerful. In this
book, we�re going to see how to use Visual Basic in a task-oriented way, which is
the best way to write about programming. Instead of superimposing some abstract
structure on the material in this book, we�ll organize it the way programmers want it
�task by task.

This book assumes you have some familiarity with Visual Basic; when you use this
book, you�ll usually have some task in mind�setting a program�s startup form, for
example, or optimizing for a specific processor�and this book will provide the
answer. We�ll try to be as complete as possible (unlike the frustrating recordings of
frequently asked questions�which never seem to address your particular problem
�you can access while on hold for tech support). This book is designed to be the one
you come back to time and time again. It�s not just to learn new techniques, but it is
also to reacquaint yourself with the forgotten details of familiar methods.

We�ll start with an overview of Visual Basic, taking a look at topics common to the
material in the rest of the text. In this chapter, we�ll create the foundation we�ll rely
on later as we take a look at the basics of Visual Basic, including how to create
Visual Basic projects and seeing what�s in such projects. We�ll also get an overview
of essential Visual Basic concepts like forms, controls, events, properties, methods,
and so on. And we�ll examine the structure of a Visual Basic program, taking a look
at variables, variable scope, and modules. In other words, we�re going to lay bare
the anatomy of a Visual Basic program here.

We�ll also take a look at programming practices common to all Visual Basic
programs. This overview chapter is the place to take a look at those practices
because they involve the rest of the book.

Most Visual Basic programmers do not have formal programming training and have
to learn a lot of this material the hard way. As programming has matured,
programmers have learned more and more about what are called �best practices��the

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\001-005.html (1 of 4) [3/14/2001 1:24:34 AM]

programming techniques that make robust, easily debugged programs. We�ll take a
look at those practices in this chapter, because they are becoming more and more
essential for programmers in commercial environments these days, especially those
programmers that work in teams. And we�ll look at those practices from the
viewpoint of programmers who program for a living; frequently there�s a gap
between the way best practices are taught by academics and how they are actually
needed by programmers facing the prospect of writing a 20,000-line program as part
of a team of programmers.

We�ll start our overview chapter by creating and dissecting a Visual Basic project,
jumping right into the code.

Creating A Project In Visual Basic

There are three different editions of Visual Basic:

" The Learning Edition, which is the most basic edition. This edition allows you to
write many different types of programs, but lacks a number of tools that the other
editions have.

" The Professional Edition, designed for professionals. This edition contains all
that the Learning Edition contains and more, such as the capability to write ActiveX
controls and documents.

" The Enterprise Edition, which is the most complete Visual Basic edition. This
edition is targeted towards professional programmers who may work in a team and
includes additional tools such as Visual SourceSafe, a version-control system that
coordinates team programming.

We�ll use the Enterprise Edition in this book, so if you have either of the other two
editions, we might occasionally use something not supported in your Visual Basic
edition. We�ll try to keep such occurrences to a minimum.

Start Visual Basic now, bringing up the New Project dialog box, as shown in Figure
1.1.

Figure 1.1 Creating a new Visual Basic project.

In Figure 1.1 you see some of the project types that Visual Basic supports:

" Standard Windows EXE programs

" ActiveX EXE files

" ActiveX DLLs

" ActiveX controls

" Programs written by the Visual Basic Application Wizard

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\001-005.html (2 of 4) [3/14/2001 1:24:34 AM]

javascript:displayWindow('images/01-01.jpg',443,423%20)
javascript:displayWindow('images/01-01.jpg',443,423)

" Data projects

" IIS (the Microsoft Internet Information Server) applications

" Visual Basic add-ins

" ActiveX document DLLs

" ActiveX document EXE files

" DHTML applications

" VB Enterprise Edition controls

This list of project types indicates some of the ways Visual Basic has grown over
the years. As you can see, there�s a whole galaxy of power here (and we�ll cover that
galaxy in this book). In this case, we just want to take a look at the basics of a
standard Visual Basic project, so double-click the Standard EXE item in the New
Project dialog box, opening Visual Basic itself. Figure 1.2 shows the Visual Basic
Integrated Development Environment (IDE). (We�re going to cover all parts of the
Visual Basic Integrated Development Environment in the next chapter�here, we�ll
just use it to create our first project.)

Figure 1.2 A new Visual Basic project.

For our first example, we might create a small tic-tac-toe program using nine
buttons in a form, as shown in Figure 1.3.

Figure 1.3 Designing our first project.

When the user clicks a button, we can display an �x� in the button�s caption, as
shown in Figure 1.4.

Figure 1.4 Clicking a button in the tic-tac-toe program to display an �x�.

If the user clicks another button, we can display an �o�, and so forth.

This example will create a program that lets us take a look at Visual Basic projects,
controls, control arrays, events, properties, coding, variables, and variable scope.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\001-005.html (3 of 4) [3/14/2001 1:24:34 AM]

javascript:displayWindow('images/01-02.jpg',706,516%20)
javascript:displayWindow('images/01-02.jpg',706,516)
javascript:displayWindow('images/01-03.jpg',522,523%20)
javascript:displayWindow('images/01-03.jpg',522,523)
javascript:displayWindow('images/01-04.jpg',522,522%20)
javascript:displayWindow('images/01-04.jpg',522,522)

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\001-005.html (4 of 4) [3/14/2001 1:24:34 AM]

To access the contents, click the chapter and section titles.

Visual Basic 6 Black Book
(Publisher: The Coriolis Group)
Author(s): Steven Holzner
ISBN: 1576102831
Publication Date: 08/01/98

Bookmark It

Search this book:

PreviousTable of ContentsNext

Designing The Tic-Tac-Toe Program

Using the Command Button tool in the Visual Basic toolbox, add a new command
button to the main form in our program now, as shown earlier in Figure 1.2. Next,
in the Properties window, change the Name property of this button from
Command1 to Command in preparation for setting up a control array, and clear its
Caption property so the button appears blank.

Next, add a second button to the form, and set its Name property to Command as
well. When you do, Visual Basic opens a dialog box that states: �You already have a
control named �Command�. Do you want to set up a control array?� Click Yes to
create a control array, which means we will be able to refer to our controls using an
index instead of simply by name.

Add a total of nine buttons to the main form in our program, arranged in a 3×3 grid
similar to a standard tic-tac-toe game, give each of the buttons the name Command,
and clear their captions. That completes the preliminary design�now we�re ready to
write some code.

Coding The Tic-Tac-Toe Program

In this program, we�ll toggle button captions between �x� and �o�. To start coding,
double-click any button, opening the code window, as shown in Figure 1.5.

Figure 1.5 Using the Visual Basic code window.

Double-clicking a button creates an event handler subroutine named

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\005-010.html (1 of 4) [3/14/2001 1:24:49 AM]

javascript:bookMarkit();
http://24.19.55.56:8080/temp/001-005.html
http://24.19.55.56:8080/temp/..\ewtoc.html
http://24.19.55.56:8080/temp/010-014.html
javascript:displayWindow('images/01-05.jpg',706,516%20)
javascript:displayWindow('images/01-05.jpg',706,516)

Command_Click() and opens that subroutine in the code window:

Private Sub Command_Click(Index As Integer)

End Sub

Visual Basic programs like this one are centered around events, and most events
occur when the user triggers them. In this case, a Click event is triggered when the
user clicks a button, and we�re passed the button�s index in the control array of
buttons as the Index parameter in Command_Click(), as with this line of code
from the earlier snippet:

Private Sub Command_Click(Index As Integer)

When the user clicks a button, we need to know which character to display, and we
�ll keep track of that in a form-wide variable named xNow; if xNow is True, we
should display an x, if False, an o.

To add that form-wide variable, click the (General) entry in the left drop-down list
box in the code window, and add this code to the general section of our form:

Dim xNow

You can indicate the type of a variable when declaring it with Dim�to indicate that
xNow is a Boolean variable, we could declare it this way:

Dim xNow As Boolean

(Declaring it without a type makes it a variant, which means it can operate as any
type of variable.) The possible variable types and their ranges appear in Table 1.1.

Table 1.1
Variable
types.
Variable
Type

Bytes
Of
Storage

Range
Boolean 2 True or False

Byte 1 0 to 255
Currency 8 -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Date 8 1 January 100 to 31 December 9999 and times from 0:00:00
to 23:59:59

Decimal 12 -79,228,162,514,264,337,593,543,950,335 to
79,228,162,514,264,337,593,543,950,335

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\005-010.html (2 of 4) [3/14/2001 1:24:49 AM]

Double 8 -1.79769313486232E308 to 4.94065645841247E-324 for
negative values and from 4.94065645841247E-324 to

1.79769313486232E308 for positive values
Integer 2 -32,768 to 32,767
Long 4 -2,147,483,648 to 2,147,483,647

Object 4 N/A
Single 4 -3.402823E38 to -1.401298E-45 for negative values and from

1.401298E-45 to 3.402823E38 for positive values
String N/A A variable-length string can contain up to approximately 2

billion characters; a fixed-length string can contain 1 to
approximately 64K characters

User-defined
data type

N/A N/A

Variant N/A N/A

We need to initialize that form-wide variable, xNow, and we do that when the form
first loads in the Form_Load() procedure, which is run when the form is first
loaded. Open that procedure now by selecting the Form item in the code window�s
left drop-down list box, or by double-clicking the form itself; here, we just initialize
xNow to True:

Private Sub Form_Load()

 xNow = True

End Sub

Now we will toggle the clicked button�s caption depending on the current setting of
xNow. To reach the clicked button in Command_Click(), we use the control array
index passed to us this way:

Private Sub Command_Click(Index As Integer)

 If xNow Then

 Command(Index).Caption = "x"

 Else

 Command(Index).Caption = "o"

 End If

...

End Sub

Finally, we toggle xNow (from True to False or False to True) this way:

Private Sub Command_Click(Index As Integer)

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\005-010.html (3 of 4) [3/14/2001 1:24:49 AM]

 If xNow Then

 Command(Index).Caption = "x"

 Else

 Command(Index).Caption = "o"

 End If

 xNow = Not xNow

End Sub

And that�s all we need�the tic-tac-toe program is complete. Run it now, as shown in
Figure 1.6, and click a few buttons. The captions toggle between x and o as they
should.

Figure 1.6 Running the tic-tac-toe program.

It�s not a very exciting program as it stands, of course, because it was just designed
to give us a look into how Visual Basic projects work. Now we�ll take a closer look
at the parts of a project, starting with the one we�ve just created.

The Parts Of A Visual Basic Project

Projects can become quite advanced in Visual Basic, even containing subprojects of
different types. From a programming point of view, however, standard Visual Basic
projects usually contain just three types of items: global items, forms, and modules,
as outlined in Figure 1.7.

Figure 1.7 The parts of a Visual Basic project.

Forms

Forms are familiar to all Visual Basic programmers, of course�they�re the templates
you base windows on. Besides standard forms, Visual Basic also supports Multiple
Document Interface (MDI) forms, as well as a whole number of predefined forms
that we�ll see in the next chapter.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\005-010.html (4 of 4) [3/14/2001 1:24:49 AM]

javascript:displayWindow('images/01-06.jpg',316,236%20)
javascript:displayWindow('images/01-06.jpg',316,236)
javascript:displayWindow('images/01-07.jpg',522,353%20)
javascript:displayWindow('images/01-07.jpg',522,353)

Modules

Modules are collections of code and data that function something like objects in
object-oriented programming (OOP), but without defining OOP characteristics like
inheritance, polymorphism, and so on. The point behind modules is to enclose
procedures and data in a way that hides them from the rest of the program. We�ll
discuss the importance of doing this later in this chapter when we cover Visual
Basic programming techniques and style; breaking a large program into smaller,
self-contained modules can be invaluable for creating and maintaining code.

You can think of well-designed modules conceptually as programming objects; for
example, you might have a module that handles screen display that includes a dozen
internal (unseen by the rest of the program) procedures and one or two procedures
accessible to the rest of the program. In this way, the rest of the program only has to
deal with one or two procedures, not a dozen.

Besides modules, Visual Basic also supports class modules, which we�ll see later in
this book when we discuss how to create ActiveX components in Chapter 20.
Programming with class modules will bring us much closer to true OOP
programming.

Global Items

Global items are accessible to all modules and forms in a project, and you declare
them with the Public keyword. However, Microsoft recommends that you keep the
number of global items to an absolute minimum and, in fact, suggests their use only
when you need to communicate between forms. One reason to avoid global
variables is their accessibility from anywhere in the program; while you�re working
with a global variable in one part of a program, another part of the program might
be busy changing that variable, giving you unpredictable results.

Now that we�ve gotten an overview of the major parts of a project, we�ll take a look
at how the parts of a project interact, which brings up the idea of scope, or visibility
in a project.

Project Scope

An object�s scope indicates how much visibility it has throughout the project�in the
procedure where it�s declared, throughout a form or module, or global scope (which
means it�s accessible everywhere). There are two types of scope in Visual Basic
projects: variable scope (including object variables) and procedure scope. We�ll take
a look at both of them here as we continue our overview of Visual Basic projects
and how the parts of those projects interact.

Variable Scope

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\010-014.html (1 of 4) [3/14/2001 1:25:12 AM]

You declare variables in a number of ways. Most often, you use the Dim statement
to declare a variable. If you do not specify the variable type when you use Dim, it
creates a variant, which can operate as any variable type. You can specify the
variable type using the As keyword like this:

Dim IntegerValue As Integer

Besides Dim, you can also use ReDim to redimension space for dynamic arrays,
Private to restrict it to a module or form, Public to make it global�that is, accessible
to all modules or forms�or Static to make sure its value doesn�t change between
procedure calls. These ways of declaring variables are summarized in Table 1.2.

Table 1.2
Visual
Basic
declaring
statements.
Keyword

Does This

Dim Using Dim alone creates variants. Use the As keyword to specify
variable type.

Private Makes variable available only in the current form/module.
Public Makes variable global�variable is available to the rest of program.
ReDim Reallocates storage space for dynamic array variables.
Static Variable preserves its value between procedure calls.
Type Declares a user type.

There are three levels of variable scope in Visual Basic: at the procedure level, at
the form or module level, and at the global level. Schematically, Figure 1.8 shows
how project scope works.

Figure 1.8 Schematic of Visual Basic project scope.

When you�re designing your program, Microsoft suggests you limit your variables
to the minimum possible scope in order to make things simpler and to avoid
conflicts. Next, we�ll take a look at the other type of scope: procedure scope.

Procedure Scope

As with variables, you can restrict the scope of procedures, and you do that with the
Private, Public, Friend, and Static keywords. The Private and Public keywords
are the main keywords here; using them, you can specify if a subroutine or function
is private to the module or form in which it is declared or public (that is, global) to
all forms and modules. You use these keywords before the Sub or Function

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\010-014.html (2 of 4) [3/14/2001 1:25:12 AM]

javascript:displayWindow('images/01-08.jpg',473,968%20)
javascript:displayWindow('images/01-08.jpg',473,968)

keywords like this:

Private Function Returns7()

 Dim Retval

 Retval = 7

 Returns7 = Retval

End Function

You can also declare procedures as friend procedures with the Friend keyword.
Friend procedures are usually used in class modules (they are not available in
standard modules, although you can declare them in forms) to declare that the
procedure is available outside the class, but not outside the current project. This
restricts those functions from being called if the current project serves as an OLE
automation server, for example.

Besides the earlier declarations, you can also declare procedures as Static, which
means that the variables in the procedure do not change between procedure calls,
and that can be very useful in cases like this, where we support a counter variable
that is incremented each time a function is called:

Static Function Counter()

 Dim CounterValue as Integer

 CounterValue = CounterValue + 1

 Counter = CounterValue

End Sub

That completes our overview of projects in memory now�we�ve seen how such
projects are organized, what parts they have, and what scope their parts have. We�ll
take a look at storing projects on disk next.

Projects On Disk

Now that we�ve created our first project�the tic-tac-toe project�we�ll save it to disk.
Turn to Visual Basic now and select the Save Project As item in the Visual Basic
File menu to save our new project to disk.

Visual Basic first saves the files associated with the project, and places a Save File
As dialog box on the screen to save the program�s form, which Visual Basic gives
the default name of Form1.frm. Change that name to tictactoe.frm now, and save it
to disk (in this book, we�ll save projects in the C:\vbbb directory, so this project will
go into the C:\vbbb\tictactoe directory).

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\010-014.html (3 of 4) [3/14/2001 1:25:12 AM]

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\010-014.html (4 of 4) [3/14/2001 1:25:12 AM]

This completes our overview of the standard parts of a standard Visual Basic project. We�ve seen how
simple projects work in Visual Basic now. Besides this simple kind of project, you can design quite
advanced projects using a tool like the Visual Basic Application Wizard, and we�ll take a look at that now.

Using The Visual Basic Application Wizard

The Visual Basic Application Wizard is a Visual Basic add-in that lets you use some advanced project
features when you first create a project. The Application Wizard is usually used by beginning
programmers, but we�ll take a look at it here to get an idea of what more involved projects can look like.

You start the Application Wizard from the New Project box, opened either from the New item in the File
menu or when Visual Basic first starts. The Application Wizard appears in Figure 1.10.

Figure 1.10 The Visual Basic Application Wizard.

TIP: In Figure 1.10, the Application Wizard is asking for a profile. You can save Application Wizard
profiles (something like project templates) in the last step of the Application Wizard, which lets you save
all the options you�ve specified. Loading them in later can save you some time if you just want to alter a
few settings.

Click the Next button in the Application Wizard now, opening the next screen, shown in Figure 1.11. The
Multiple Document Interface (MDI) option is already selected, and we�ll leave it selected. Click the Next
button to move to the next screen.

Figure 1.11 Selecting MDI support in the Visual Basic Application Wizard.

The next screen lets you select menu options, the next screen toolbar options, and the one after that
resource options. Keep clicking Next to accept all the defaults. The Internet Connectivity screen, which
opens next, lets you add a Web browser window to your project if you like. This can be very useful, so
click Yes as shown in Figure 1.12, then click Next again to move on.

Figure 1.12 Adding a Web browser with the Visual Basic Application Wizard.

The next step in the Application Wizard, as shown in Figure 1.13, lets you add a splash screen. A splash
screen comes up while the program is loading and can give the impression that something is really
happening while the program is loaded. We add a splash screen to our program by selecting the Splash
Screen At Application Start Up option.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\022-026.html (1 of 3) [3/14/2001 1:25:37 AM]

javascript:displayWindow('images/01-10.jpg',483,353%20)
javascript:displayWindow('images/01-10.jpg',483,353)
javascript:displayWindow('images/01-11.jpg',483,353%20)
javascript:displayWindow('images/01-11.jpg',483,353)
javascript:displayWindow('images/01-12.jpg',483,353%20)
javascript:displayWindow('images/01-12.jpg',483,353)

Figure 1.13 Adding a splash screen with the Visual Basic Application Wizard.

TIP: Originally, splash screens were very popular�in fact, virtually every piece of Microsoft software has
one these days�but users are catching on that they are just razzle-dazzle.

The next screen asks about database connectivity; click Next to open the last Application Wizard screen,
shown in Figure 1.14.

Figure 1.14 Finishing a Visual Basic Application Wizard project.

Click Finish in the last Application Wizard screen now to create the project, and run that project, as
shown in Figure 1.15.

Figure 1.15 Running our Visual Basic Application Wizard program.

This new program has a great deal of programming power. As you can see in Figure 1.15, this program is
an MDI program, capable of opening multiple documents and even displaying a Web browser in a
window. In fact, you can even use the File menu�s Open, Save, and Save As items to open and display
files.

There�s a lot of power here, and we�ll see how to do all these things ourselves in this book. It�s instructive
to take a look at the project file for this project, where we see that this project makes use of these ActiveX
controls:

" Common dialogs (COMDLG32.OCX)

" Common windows controls (COMCTL32.OCX)

" Rich text control (RICHTX32.OCX)

" Web browser DLL (SHDOCVW.DLL)

Here is the code snippet:

Type=Exe

Reference=*\G{00020430-0000-0000-C000-_

 000000000046}#2.0#0#..\..\WINDOWS\SYSTEM\STDOLE2.TLB#OLE Automation

Module=Module1; Module1.bas

Form=frmMain.frm

Object={F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0; COMDLG32.OCX

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\022-026.html (2 of 3) [3/14/2001 1:25:37 AM]

javascript:displayWindow('images/01-13.jpg',483,353%20)
javascript:displayWindow('images/01-13.jpg',483,353)
javascript:displayWindow('images/01-14.jpg',483,353%20)
javascript:displayWindow('images/01-14.jpg',483,353)
javascript:displayWindow('images/01-15.jpg',339,290%20)
javascript:displayWindow('images/01-15.jpg',339,290)

Object={6B7E6392-850A-101B-AFC0-4210102A8DA7}#1.3#0; COMCTL32.OCX

Form=frmSplash.frm

Object={3B7C8863-D78F-101B-B9B5-04021C009402}#1.1#0; RICHTX32.OCX

Form=frmDocument.frm

Object={EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B}#1.1#0; SHDOCVW.DLL

Form=frmBrowser.frm

Startup="Sub Main"

...

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\022-026.html (3 of 3) [3/14/2001 1:25:37 AM]

Note the last of the statements, Startup=�Sub Main�. This indicates that this program starts with a Main()
procedure, not a startup form (we�ll see more about this in the next chapter). In the Main() procedure, the
program first loads the splash screen, then the MDI frame window. The MDI frame window in turn loads its
first child window, based on the frmDocument form. Taking a look at frmDocument.frm, which appears in
Listing 1.3, indicates that this child window displays a rich text control (as you can see by the inclusion of the
rich text control), which in fact handles all the text. As you can see, taking apart projects file by file this way
removes all the mystery, and it�s a good skill for the Visual Basic programmer to have.

Listing 1.3 frmDocument.frm

VERSION 6.00

Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.1#0"; "RICHTX32.OCX"

Begin VB.Form frmDocument

 Caption = "frmDocument"

 ClientHeight = 3195

 ClientLeft = 60

 ClientTop = 345

 ClientWidth = 4680

 LinkTopic = "Form1"

 MDIChild = -1 'True

 ScaleHeight = 3195

 ScaleWidth = 4680

 Begin RichTextLib.RichTextBox rtfText

 Height = 2000

 Left = 100

 TabIndex = 0

 Top = 100

 Width = 3000

 _ExtentX = 5292

 _ExtentY = 3519

 _Version = 393216

 Enabled = -1 'True

 ScrollBars = 3

 RightMargin = 8e6

 TextRTF = $"frmDocument.frx":0000

 End

End

Attribute VB_Name = "frmDocument"

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\026-029.html (1 of 4) [3/14/2001 1:25:43 AM]

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = False

Attribute VB_PredeclaredId = True

Attribute VB_Exposed = False

Private Sub rtfText_SelChange()

 fMainForm.tbToolBar.Buttons("Bold").Value = IIf(rtfText.SelBold, _

 tbrPressed, tbrUnpressed)

 fMainForm.tbToolBar.Buttons("Italic").Value = IIf(rtfText.SelItalic, _

 tbrPressed, tbrUnpressed)

 fMainForm.tbToolBar.Buttons("Underline").Value = _

 IIf(rtfText.SelUnderline, tbrPressed, tbrUnpressed)

 fMainForm.tbToolBar.Buttons("Align Left").Value = _

 IIf(rtfText.SelAlignment = rtfLeft, tbrPressed, tbrUnpressed)

 fMainForm.tbToolBar.Buttons("Align Right").Value = _

 IIf(rtfText.SelAlignment = rtfRight, tbrPressed, tbrUnpressed)

 fMainForm.tbToolBar.Buttons("Center").Value = _

 IIf(rtfText.SelAlignment = rtfCenter, tbrPressed, tbrUnpressed)

End Sub

Private Sub Form_Load()

 Form_Resize

End Sub

Private Sub Form_Resize()

 On Error Resume Next

 rtfText.Move 100, 100, Me.ScaleWidth - 200, Me.ScaleHeight - 200

 rtfText.RightMargin = rtfText.Width - 400

End Sub

That completes our overview of Visual Basic projects for now, although there will be more about projects
throughout the book. We�ll turn to an overview of another kind now: discussing topics that impact every
chapter in the book. In this overview, we�re going to cover general Visual Basic programming issues,
including Visual Basic conventions, best coding practices, and code optimization. This discussion touches
practically every aspect of our book, so it�s best to consider it first.

Visual Basic Programming Conventions

Microsoft has set up a number of conventions for programming Visual Basic, including naming conventions.
These conventions are not necessary if you program alone, but they can still be helpful. If you program as part
of a team, these conventions can be very valuable, because they provide clues to a variable�s scope and type to
someone reading your code. Because many Visual Basic programmers work in teams these days, we�ll cover
the Microsoft programming conventions here, beginning with variable scope prefixes.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\026-029.html (2 of 4) [3/14/2001 1:25:43 AM]

Variable Scope Prefixes

You use a variable prefix in front of its name to indicate something about that variable. For example, if you
have a global variable named ErrorCount, you can use the g prefix to indicate that that variable is global this
way: gErrorCount. Microsoft has established scope prefixes for variables as shown in Table 1.3.

Table 1.3 Variable
scope prefix
conventions. Scope

Prefix

Global g
Module-level or

form-level
m

Local to procedure None

The scope prefixes come before all other prefixes�and there are many other types, such as variable prefixes,
control prefixes, and so on. We�ll continue with variable prefixes.

Variable Prefixes

Ideally, variable names should be prefixed to indicate their data type. Table 1.4 lists the prefixes that
Microsoft recommends for all the Visual Basic data types.

Table 1.4 Variable
prefixes. Data
Type

Prefix

Boolean bln
Byte byt

Collection object col
Currency cur

Date (Time) dtm
Double dbl
Error err

Integer int
Long lng

Object obj
Single sng
String str

User-defined type udt
Variant vnt

Here are some prefixed variable names using the recommended variable prefixes:

blnTrueFalse 'Boolean

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\026-029.html (3 of 4) [3/14/2001 1:25:43 AM]

intCounter 'Integer

sngDividend 'Single

Using variable prefixes this way provides some clue as to the variable�s type, and that can be extraordinarily
helpful if someone else will be reading your code. Note that it�s also a good idea to prefix function names
using the above prefixes to indicate the return type of the function.

Besides variable prefixes, Microsoft also has a set of prefixes for the standard control types.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\026-029.html (4 of 4) [3/14/2001 1:25:43 AM]

Control Prefixes

The suggested Microsoft control prefixes appear in Table 1.5. As you can see, there�s
a suggested prefix for every standard type of control.

Table 1.5 Control
prefixes. Control
Type

Prefix

3D panel pnl
ADO data ado

Animated button ani
Checkbox chk

Combo box,
drop-down list box

cbo

Command button cmd
Common dialog dlg
Communications com

Control (used within
procedures when the

specific type is
unknown)

ctr

Data dat
Data-bound combo

box
dbcbo

Data-bound grid dbgrd
Data-bound list box dblst

Data combo dbc
Data grid dgd
Data list dbl

Data repeater drp
Date picker dtp

Directory list box dir
Drive list box drv
File list box fil

Flat scroll bar fsb
Form frm
Frame fra
Gauge gau
Graph gra
Grid grd

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\029-034.html (1 of 5) [3/14/2001 1:25:48 AM]

Header hdr
Hierarchical flex grid flex
Horizontal scroll bar hsb

Image img
Image combo imgcbo

Image list ils
Label lbl

Lightweight checkbox lwchk
Lightweight combo

box
lwcbo

Lightweight
command button

lwcmd

Lightweight frame lwfra
Lightweight

horizontal scroll bar
lwhsb

Lightweight list box lwlst
Lightweight option

button
lwopt

Lightweight text box lwtxt
Lightweight vertical

scroll bar
lwvsb

Line lin
List box lst
List view lvw

MAPI message mpm
MAPI session mps

MCI mci
Menu mnu

Month view mvw
MS chart ch

MS flex grid msg
MS tab mst

OLE container ole
Option button opt

Picture box pic
Picture clip clp
Progress bar prg
Remote data rd
Rich text box rtf

Shape shp
Slider sld
Spin spn

Status bar sta

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\029-034.html (2 of 5) [3/14/2001 1:25:48 AM]

System info sys
Tab strip tab
Text box txt

Timer tmr
Toolbar tlb

Tree view tre
Up-down upd

Vertical scroll bar vsb

If you work with databases, take a look at Table 1.6, which holds the prefixes for Data
Access Objects (DAO).

Table 1.6 Data
Access Object
prefixes.
Database
Object

Prefix

Container con
Database db

DBEngine dbe
Document doc

Field fld
Group grp
Index ix

Parameter prm
QueryDef qry
Recordset rec
Relation rel
TableDef tbd

User usr
Workspace wsp

Besides the prefixes in Table 1.6, Microsoft recommends prefixes for menus and
constants as well, and we�ll take a look at these now to round off our discussion on
this topic.

Menu And Constant Prefixes

Microsoft recommends that you prefix menu controls with mnu and then the menu
name followed by the menu item name. For example, the File menu�s Open item
would be named mnuFileOpen, and the Edit menu�s Cut item would be named
mnuEditCut. Microsoft also recommends that constant names (you declare constants

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\029-034.html (3 of 5) [3/14/2001 1:25:48 AM]

with the Const statement) should be mixed case with capitals starting each word, for
example:

Const DiskDriveNumber = 1 'Constant

Const MaximumFileCount = 1024 'Constant

TIP: Although standard Visual Basic constants do not include data type and scope
information, prefixes like i, s, g, and m can be useful in understanding the value or
scope of a constant.

That completes the prefix and naming conventions. As you can see, there are prefixes
for just about every type of programming construct available. You�re not constrained
to use them, but if you work in a team, they can be extremely helpful.

Microsoft also has a set of suggestions on commenting your code, and we�ll take a
look at those suggestions now.

Code Commenting Conventions

In general, you should add a new comment when you declare a new and important
variable, or wish to make clear some implementation method. Ideally, procedures
should only have one purpose and be named clearly enough so that excessive
comments are not required. In addition, procedures should begin with a comment
describing what the procedure does, and that comment should be broken up into
various sections. The Microsoft recommendations for those sections appear in Table
1.7; note that not all sections may be applicable for all procedures.

Table 1.7
Procedures
for starting
comment
block
sections.
Section
Heading

Comment Description

Purpose What the procedure does
Assumptions List of each external variable, control, open file, or other element that is

not obvious
Effects List of each affected external variable, control, or file and the effect it

has (only if this is not obvious)
Inputs Each argument that may not be obvious; arguments are on a separate

line with inline comments
Returns Explanation of the values returned by functions

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\029-034.html (4 of 5) [3/14/2001 1:25:48 AM]

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\029-034.html (5 of 5) [3/14/2001 1:25:48 AM]

Here�s an example showing how to set up a comment preceding a function named dblSquare():

'***

' dblSquare()

' Purpose: Squares a number

' Inputs: sngSquareMe, the value to be squared

' Returns: The input value squared

'***

Function dblSquare() (sngSquareMe As Integer) As Double

 dblSquare = sngSquareMe * sngSquareMe 'Use *, not ^2, for speed

End Function

TIP: You might notice that dblSquare() takes a Single parameter and returns a Double value; that�s
because squaring a Single can create a larger number, which might not fit into a Single value, or it can
add more decimal places. Note also that we multiply the parameter sngSquareMe by itself to square it
instead of using the exponentiation operator, because doing so saves a lot of processor time.

Note that it�s particularly important to list all the global variables a procedure uses or affects in this
initial comment block, because they are not listed in the parameter list.

That completes our overview of the Visual Basic programming conventions. We�ll finish the chapter
with a look at what we might call best coding practices, as targeted at Visual Basic. Through the years,
some definite programming practices have proven themselves better than others, and we�ll take a look at
some of them now before digging into the rest of the book.

Best Coding Practices In Visual Basic

The full construction of a commercial program is usually a project that involves many clear and definite
steps. There have been whole volumes written on this topic, which are usually only interesting if you are
a software project manager (or write computer books and have to know the details so you can write
about them!). Such books get pretty involved, encompassing ideas like module coupling and cohesion,
bottom-up composition, incremental integration, and much more.

On the whole, however, one can break the software design process into steps like these (note that the
explanation of each step is very flexible; there is no one-size-fits-all here):

" Requirements analysis�Identify the problem for the software to tackle.

" Creating specifications�Determine what exactly the software should do.

" Overall design�Break the overall project into parts, modules, and so on.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\034-036.html (1 of 3) [3/14/2001 1:25:50 AM]

" Detailed design�Design the actual data structures, procedures, and so on .

" Coding�Go from PDL to code.

" Debugging�Solve design-time, compilation, and obvious errors.

" Testing�Try to break the software.

" Maintenance�React to user feedback and keep testing.

Each of these steps may have many subparts, of course. (For example, the maintenance part may take up
as much time as the rest of the project taken together.)

As the design process continues, a model of what the program does evolves. You use this model to get a
conceptual handle on the software (while keeping in mind that models are usually flawed at some level).
Keeping the model in mind, then, many programmers use a program design language to start the actual
coding process.

Program Design Language

Everyone seems to think that programmers use flowcharts, but the reality is usually different (flowcharts
are nice to show to nonprogrammers, though). One tool that commercial programmers do find useful is
program design language (PDL). Although there are formal specifications for PDL, many programmers
simply regard this step as writing out what a program does in English as a sort of pseudo-code.

For example, if we want to create a new function named dblSqrt() that returns a number�s square root,
we might write its PDL this way in English, where we break what the function does into steps:

Function dblSqrt()

 Check if the input parameter is negative

 If the input parameter is negative, return -1

 If the input parameter is positive, return its square root

End Function

When you actually write the code, the PDL can often become the comments in that code; for example,
here�s the completed function:

'***

' dblSqrt()

' Purpose: Returns the passed parameter's square root

' Inputs: dblParameter, the parameter whose square root we need

' Returns: The input value's square root

'***

Function dblSqrt(dblParameter As Double) As Double

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\034-036.html (2 of 3) [3/14/2001 1:25:50 AM]

 'Check if the input parameter is negative

 If dblParameter < 0 Then

 'If the input parameter is negative, return -1

 dblSqrt = -1

 Else

 'If the input parameter is positive, return its square root

 dblSqrt = Sqr(dblParameter)

 End If

End Function

In this way, developing your program using PDL, where every line of PDL has one (and only one)
specific task, can be very useful. So much for overview�let�s turn to particulars that affect us as Visual
Basic programmers.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\034-036.html (3 of 3) [3/14/2001 1:25:50 AM]

Coding To Get The Most From Visual Basic

In this section, we�ll discuss some best practices coding for Visual Basic. All of these
practices come from professional programmers, but of course whether you implement
them or not is up to you. Here we go:

" Avoid �magic numbers� when you can. A magic number is a number (excluding 0 or
1) that�s hardwired right into your code like this:

 Function blnCheckSize(dblParameter As Double) As Boolean

 If dblParameter > 1024 Then

 blnCheckSize = True

 Else

 blnCheckSize = False

 End If

 End Function

Here, 1024 is a magic number. It�s better to declare such numbers as constants,
especially if you have a number of them. When it�s time to change your code, you just
have to change the constant declaration in one place, not try to find all the magic
numbers scattered around your code.

" Be modular. Putting code and data together into modules hides it from the rest of the
program, makes it easier to debug, makes it easier to work with conceptually, and even
makes load-time of procedures in the same module quicker. Being modular�also called
information-hiding (and encapsulation in true OOP)�is the backbone of working with
larger programs. Divide and conquer is the idea here.

" Program defensively. An example of programming defensively would be to check
data passed to you in a procedure before using it. This can save a bug from propagating
throughout your program and help pinpoint its source. Make no assumptions.

" Visual Basic procedures should have only one purpose, ideally. This is also an aid in
larger programs when things start to get complex. Certainly if a procedure has two
distinct tasks, consider breaking it up.

" Avoid deep nesting of conditionals or loops. Debugging deeply nested conditionals
visually is very, very inefficient. If you need to, place some of the inner loops or
conditionals in new procedures and call them. Three levels of nesting should be about

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\036-040.html (1 of 4) [3/14/2001 1:25:52 AM]

the maximum.

" Use access procedures to protect sensitive data. (This is part of programming
defensively.) Access procedures are also called Get/Set procedures, and they are called
by the rest of the program when you want to work with sensitive data. If the rest of the
program must call a Set() procedure to set that data, you can test to make sure that the
new value is acceptable, providing a screen between that data and the rest of the
program.

" Ideally, variables should always be defined with the smallest scope possible. Global
variables can create enormously complex conditions. (In fact, Microsoft recommends
that global variables should be used only when there is no other convenient way to
share data between forms.)

" Do not pass global variables to procedures. If you pass global variables to
procedures, the procedure you pass that variable to might give it one name (as a passed
parameter) and also reference it as a global variable. This can lead to some serious bugs,
because now the procedure has two different names for the variable.

" Use the & operator when linking strings and the + operator when working with
numerical values. This is per Microsoft�s recommendations.

" When you create a long string, use the underscore line-continuation character to
create multiple lines of code. This is so you can read or debug the string easily. For
example:

 Dim Msg As String

 Msg = "Well, there is a problem "_

 &"with your program. I am not sure " _

 &"what the problem is, but there is " _

 &"definitely something wrong."

" Avoid using variants if you can. Although convenient, they waste not only memory
but time. You may be surprised by this. Remember, however, that Visual Basic has to
convert the data in a variant to the proper type when it learns what is required, and that
conversion actually takes a great deal of time.

" Indent your code with four spaces per Microsoft�s recommendations. Believe it or
not, there have been serious studies undertaken here, and 2 to 4 spaces were found to be
best. Be consistent.

" Finally, watch out for one big Visual Basic pitfall: misspelled variables. Because you
don�t have to declare a variable in Visual Basic to use it, you might end up surprised
when Visual Basic creates a new variable after you�ve misspelled a variable�s name. For
example, here�s some perfectly legal code modified from our tic-tac-toe project that
compiles and runs, but because of a misspelling�xNoww for xNow�it doesn�t work at all:

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\036-040.html (2 of 4) [3/14/2001 1:25:52 AM]

 Private Sub Command_Click(Index As Integer)

 If xNow Then

 Command(Index).Caption = "x"

 Else

 Command(Index).Caption = "o"

 End If

 xNoww = Not xNow

 End Sub

Because Visual Basic treats xNoww as a legal variable, this kind of bug is very hard to
find when debugging.

TIP: Because Visual Basic auto-declares variables, it�s usually better to use variable
names that say something (like intCurrentIndex) instead of ones that don�t (like
intDD35A) to avoid declaring a variable through misspelling its name. A better idea is
to use Option Explicit to make sure all variables must be explicitly declared.

If you work in teams, use version control. There are several well-known utilities that
help programmers work in teams, such as Microsoft�s Visual SourceSafe. This utility,
which is designed to work with programming environments like Visual Basic, restricts
access to code so that two programmers don�t end up modifying independent copies of
the same file.

That�s it for our best practices tips for now. We�ll see more throughout the book.

Getting Down To The Details

That completes our overview of topics common to the rest of the book. In this chapter,
we�ve seen an overview of a Visual Basic project, including what goes into a project,
how it�s stored on disk, and how the idea of scope works in a project. We�ve also seen a
number of Visual Basic programming considerations, from naming conventions to best
programming practices, including a list of Visual Basic-specific topics.

We�re ready for the rest of the book, and we�ll turn to the first natural topic now�the
Visual Basic IDE.

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\036-040.html (3 of 4) [3/14/2001 1:25:52 AM]

Visual Basic 6 Black Book:Visual Basic Overview

http://24.19.55.56:8080/temp/ch01\036-040.html (4 of 4) [3/14/2001 1:25:52 AM]

Chapter 2
The Visual Basic Development
Environment
If you need an immediate solution to:

Selecting IDE Colors, Fonts, And Font Sizes

Aligning, Sizing, And Spacing Multiple Controls

Setting A Startup Form Or Procedure

Using Visual Basic Predefined Forms, Menus, And Projects

Setting A Project�s Version Information

Setting An EXE File�s Name And Icon

Displaying The Debug, Edit, And Form Editor Toolbars

Turning Bounds Checking On Or Off

Checking For Pentium Errors

Managing Add-Ins

Adding ActiveX Controls And Insertable Objects To Projects

Customizing Menus And Toolbars

Setting Forms� Initial Positions

Enabling Or Disabling Quick Info, Auto List Members, Data Tips, And Syntax
Checking

Displaying Or Hiding IDE Windows

Searching An Entire Project For Specific Text Or A Variable�s Definition

Optimizing For Fast Code, Small Code, Or A Particular Processor

Adding And Removing Forms, Modules, And Class Modules

Using Bookmarks

Using The Object Browser

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\041-045.html (1 of 4) [3/14/2001 1:25:56 AM]

In Depth

In this chapter, we�re going to get started with Visual Basic at the logical place to
start: the Visual Basic Integrated Development Environment (IDE). The IDE is
where you do your programming work in Visual Basic�just as the name says, you
develop your projects in the Integrated Development Environment.

Over the years, the IDE has become more powerful, and with that power has come
complexity. The IDE used to be more or less invisible to the programmer, but now
that there are all kinds of project options, ActiveX controls to add, version resource
data to set, and so much more, the IDE has become a worthy object of study. In this
chapter, we�ll cover IDE tasks so you don�t have to dig out that information when
you have more important things to do. We�ll start with an overview of the IDE, and
then go directly to the Practical Guide for the IDE, showing how to get things done.

Overview Of The Integrated Development Environment

The Visual Basic IDE appears in Figure 2.1, and as a Visual Basic programmer, this
is where you�ll spend most of your programming time. If you�re not already familiar
with the parts of the IDE, you will be in time.

Figure 2.1 The Visual Basic Integrated Development Environment.

The Visual Basic IDE has three distinct states: Design, Run, and Debug. The
current state appears in Visual Basic�s title bar. This chapter concentrates on the
Design state. We�ll cover the Debug state later in the book. (In the Run state, Visual
Basic is in the background while your program runs.) It�s the Design state that�s
become complex over the years, and we�ll lay it bare in this chapter.

The IDE is composed of these parts:

" The menu bar

" The toolbar

" The Project Explorer

" The Properties window

" The Form Layout window

" The toolbox

" Form designers

" Code windows

We�ll take a look at all of these parts in this overview.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\041-045.html (2 of 4) [3/14/2001 1:25:56 AM]

javascript:displayWindow('images/02-01.jpg',824,513%20)
javascript:displayWindow('images/02-01.jpg',824,513)

The Menu Bar

The menu bar presents the Visual Basic menus. Here�s a list of those menus and
what they do:

" File�File handling and printing; also used to make EXE files

" Edit�Standard editing functions, undo, searches

" View�Displays or hides windows and toolbars

" Project�Sets project properties, adds/removes forms and modules, and
adds/removes references and components

" Format�Aligns or sizes controls

" Debug�Starts/stops debugging and stepping through programs

" Run�Starts a program, or compiles and starts it

" Tools�Adds procedures, starts the Menu Editor, sets IDE options

" Add-Ins�Add-in manager, lists add-ins like Application Wizard and API Viewer

" Window�Arranges or selects open windows

" Help�Handles Help and the About box

TIP: Note that one important job of the File menu is to create EXE files for your
program. When you run a program from the Run menu, no EXE file is created; if
you want to run the program outside of Visual Basic, you must create that EXE file,
and you do that with the File menu�s Make ProjectName.exe item (where
ProjectName is the name you�ve set for the project).

We�ll see a great deal more about these menus and the items they contain in the
Immediate Solutions section of this chapter.

The Toolbar

The main Visual Basic toolbar appears in Figure 2.2. This toolbar contains buttons
matching popular menu items, as you can see in Figure 2.2; clicking the button is
the same as selecting a menu item and can save you some time.

Figure 2.2 The main Visual Basic toolbar.

Besides the main toolbar, you can also display other dockable toolbars in Visual
Basic: the Debug, Edit, and Form Editor toolbars. To display one of these toolbars,
just select it using the Toolbars item in the View menu; the toolbar appears

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\041-045.html (3 of 4) [3/14/2001 1:25:56 AM]

javascript:displayWindow('images/02-02.jpg',788,499%20)
javascript:displayWindow('images/02-02.jpg',788,499)

free-floating at first, but you can dock it as you like in the IDE.

TIP: If you�re unsure what a particular tool in the toolbar does, just rest the mouse
over it. A tool tip (a small yellow window displaying text) will display the tool�s
purpose.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\041-045.html (4 of 4) [3/14/2001 1:25:56 AM]

Form Designers And Code Windows

The last parts of the IDE that we�ll take a look at in our overview are form designers
and code windows, which appear in the center of Figure 2.8. (The form designer
displays the current form under design, complete with command button, and the
code window displays the code for the Command1_Click() procedure.)

Figure 2.8 A form designer and code window.

Form designers are really just windows in which a particular form appears. You can
place controls into a form simply by drawing them after clicking the corresponding
control�s tool in the toolbox.

Code windows are similarly easy to understand: you just place the code you want to
attach to an object in the code window (to open an object�s code in the code
window, just double-click that object). There are two drop-down list boxes at the
top of the code window: the left list lets you select the object to add code to, and the
right list lets you select the procedure to add (all the methods the object supports
appear in this list).

That completes our overview of the IDE. Let�s get into the actual meat of the
chapter now, task by task.

Immediate Solutions

Selecting IDE Colors, Fonts, And Font Sizes

The Visual Basic IDE comes with all kinds of preset colors�blue for keywords,
green for comments, black for other code, and so on. But as when you move into a
new house, you might want to do your own decorating. Visual Basic allows you to
do that. Just open the Options box by clicking the Options item in the Visual Basic
Tools menu, and click the Editor Format tab, as shown in Figure 2.9.

Figure 2.9 Selecting IDE colors.

Here are the text items whose colors you can select:

" Normal Text

" Selection Text

" Syntax Error Text

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\048-054.html (1 of 4) [3/14/2001 1:26:13 AM]

javascript:displayWindow('images/02-08.jpg',761,453%20)
javascript:displayWindow('images/02-08.jpg',761,453)
javascript:displayWindow('images/02-09.jpg',415,351%20)
javascript:displayWindow('images/02-09.jpg',415,351)

" Execution Point Text

" Breakpoint Text

" Comment Text

" Keyword Text

" Identifier Text

" Bookmark Text

" Call Return Text

To set a particular type of text�s color and background color, just select the
appropriate color from the drop-down list boxes labeled Foreground and
Background, and click on OK. You can also set text font and font sizes in the same
way�just specify the new setting and click on the OK button to customize the text
the way you want it.

Aligning, Sizing, And Spacing Multiple Controls

Visual Basic is very...well...visual, and that includes the layout of controls in your
programs. If you�ve got a number of controls that should be aligned in a straight
line, it can be murder to have to squint at the screen, aligning those controls in a line
down to the very last pixel. Fortunately, there�s an easier way to do it:

1. Hold down the Ctrl key and click all the controls you want to align.

2. Make sure you have one control in the correct position, and click that one last.

Sizing handles, the eight small boxes that you can grasp with the mouse to resize a
control, appear around all the clicked controls. The sizing handles appear hollow
around all but the last control you clicked, as shown in Figure 2.10; the last control
you clicked has solid sizing handles, and it will act as the key control. The other
controls will be aligned using this key control�s position.

To align all the selected controls to the same left, right, or center position of the key
control, you continue with these steps:

3. Select the Align item in the Format menu, opening the Align submenu, as shown
in Figure 2.10.

Figure 2.10 Aligning new controls.

4. Select the type of alignment you want in the Align submenu: align the left, the
center, the right, the top, the middle, or the bottom edges of the controls with the
key control.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\048-054.html (2 of 4) [3/14/2001 1:26:13 AM]

javascript:displayWindow('images/02-10.jpg',762,453%20)
javascript:displayWindow('images/02-10.jpg',762,453)

5. While the controls are still collectively selected, you can move them, if you like,
as a group to any new location now that they are aligned as you want them.

To size all selected controls the same as the key control, follow Steps 1 and 2, and
then continue this way:

3. Select the Make Same Size item in the Format menu, opening that submenu, as
shown in Figure 2.11.

Figure 2.11 Sizing new controls.

4. Choose the appropriate item in the Make Same Size submenu to size the controls
as you want them: matching the key control�s width, height, or both.

To space multiple controls vertically or horizontally, follow Steps 1 and 2 and then
continue:

3. Select the Horizontal Spacing or Vertical Spacing item in the Format menu,
opening that submenu, as shown in Figure 2.12.

Figure 2.12 Spacing controls.

4. To space the controls horizontally or vertically, select one of the items in the
corresponding submenu:

" Make Equal�Sets the spacing to the average of the current spacing

" Increase�Increases by one grid line

" Decrease�Decreases by one grid line

" Remove�Removes spacing

The Design Time Grid

Spacing depends on grid lines. The grid is made up of the array of dots you see on a
form at design time. This grid is to help you place controls on a form, and by
default, controls are aligned to the grid (which means they are sized to fit along
vertical and horizontal lines of dots). You can change the grid units (in twips) in the
Options box when you click the General tab, as shown in Figure 2.13. (To open the
Options box, select the Options item in the Tools menu.)

Figure 2.13 Modifying the grid settings.

Besides setting the units of the grid, you can also specify whether or not controls

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\048-054.html (3 of 4) [3/14/2001 1:26:13 AM]

javascript:displayWindow('images/02-11.jpg',762,453%20)
javascript:displayWindow('images/02-11.jpg',762,453)
javascript:displayWindow('images/02-12.jpg',762,453%20)
javascript:displayWindow('images/02-12.jpg',762,453)
javascript:displayWindow('images/02-13.jpg',415,351%20)
javascript:displayWindow('images/02-13.jpg',415,351)

must be aligned to the grid by checking the Align Controls To Grid checkbox.

Setting A Startup Form Or Procedure

Visual Basic programs mean windows, right? Not necessarily. Visual Basic
programs do not need to have any windows at all, in fact. That case is a little
extreme, but there are times when you don�t want to start your program with code in
a form. For example, you might want to display a flash screen when your program
first starts, without waiting for the first (possibly complex) form to load, and then
switch to the form when it does load.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\048-054.html (4 of 4) [3/14/2001 1:26:13 AM]

Creating A Form-Free Startup Procedure

To start a program from code not in any form, you add a subroutine named Main()
to your program. Follow these steps:

1. Select the Properties item in the Project menu to open the Project Properties box,
as shown in Figure 2.14.

Figure 2.14 The Project Properties box.

2. Click the General tab in the Project Properties box (if it�s not already selected),
select Sub Main in the Startup Object drop-down list, and click on OK.

3. Select Add Module in the Project menu, and double-click the Module icon in the
Add Module box that opens.

4. Add this code to the new module�s (General) section in the code window:

 Sub Main()

 End Sub

5. Place the code you want in the Main() subroutine.

Selecting The Startup Form

On the other hand, you might have a number of forms in a project�how do you
specify which one is displayed first? You do that with the General tab of the Project
Properties box, just as we�ve added a Main() subroutine to our program.

To specify the startup form for a project, just open the Project Properties box as we
�ve done in the previous section and select the appropriate form in the Startup
Object box, as shown in Figure 2.15. Now when your program starts, that form will
act as the startup form.

Figure 2.15 Setting a project�s startup form.

Using Visual Basic Predefined Forms, Menus, And Projects

You�re designing a new program, and you want a form with a complete File menu
on it. You don�t want to use the Application Wizard, because that add-in would
redesign your whole project for you. Rather than designing a complete standard File
menu from scratch, there�s an easier way: you can use one of the predefined menus

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\054-059.html (1 of 4) [3/14/2001 1:26:49 AM]

javascript:displayWindow('images/02-14.jpg',415,374%20)
javascript:displayWindow('images/02-14.jpg',415,374)
javascript:displayWindow('images/02-15.jpg',415,374%20)
javascript:displayWindow('images/02-15.jpg',415,374)

that come with Visual Basic.

To add one of the predefined Visual Basic menus, follow these steps:

1. Select the form you want to add the menu to by clicking it with the mouse.

2. Open the Visual Component Manager from the Tools menu. If the Visual
Component Manager is not already loaded into Visual Basic, open the Add-In
Manager in the Add-Ins menu, click the box labeled Visual Component Manager,
and close the Add-In Manager. If your version of Visual Basic does not come with
the Visual Component Manager, refer to the discussion after these steps.

3. Open the Visual Basic folder in the Visual Component Manager.

4. Open the Templates folder in the Visual Basic folder.

5. Open the Menus folder in the Templates folder, as shown in Figure 2.16.

Figure 2.16 Opening the Menus folder in the Visual Component Manager.

6. Select the type of menu you want and double-click it. These are the available
menus:

" Edit menu

" File menu

" Help menu

" View menu

" Window menu

7. The new menu will be added to the form you selected, as shown in Figure 2.17.

Figure 2.17 Adding a predefined Visual Basic menu to a form.

Besides menus, you can add a whole selection of predefined forms to your projects
by finding the Forms folder in the Templates folder in the Visual Component
Manager. Here are the available forms, ready to be added to your project with a
click of the mouse:

" Blank forms

" About dialog boxes (two types)

" Addin forms

" Browser forms

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\054-059.html (2 of 4) [3/14/2001 1:26:49 AM]

javascript:displayWindow('images/02-16.jpg',430,338%20)
javascript:displayWindow('images/02-16.jpg',430,338)
javascript:displayWindow('images/02-17.jpg',762,453%20)
javascript:displayWindow('images/02-17.jpg',762,453)

" Data grid forms

" Dialog forms

" Tip forms

" Log-in forms

" ODBC log-in forms

" Options forms

" Query forms

As you�ll see in the Visual Component Manager�s Templates folder, you can add the
following pre-defined elements to a Visual Basis Project:

" Classes

" Code procedures

" Control sets

" Forms

" MDI forms

" Menus

" Modules

" Project templates

" Property pages

" User controls

" User documents

After you�ve created components like these in Visual Basic, you can add them to
other projects using the Visual Component Manager�in fact, reusing components
like this is one of the things professional programmers and programming teams do
best.

If You Don�t Have The Visual Component Manager

If your version of Visual Basic does not come with the Visual Component Manager,
you can still add many predefined components to a project, including forms, MDI
forms, modules, class modules, user controls, and property pages. For example, to
add a predefined form to your project, just select Add Form from the Project menu,
opening the Add Form dialog box, as shown in Figure 2.18.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\054-059.html (3 of 4) [3/14/2001 1:26:49 AM]

Figure 2.18 The Add Form dialog box.

As you can see, the predefined forms are here, so you can add them to your project
with a simple click of the mouse.

Adding menus is a little different here, because you actually add a whole new form
with that menu, instead of adding that menu to an already-existing form. For
example, to add a new form with a File menu already in place, click the Existing tab
in the Add Form dialog box, click the Menus folder, and double-click the
Filemenu.frm entry. This adds a new form to your project, complete with File menu.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\054-059.html (4 of 4) [3/14/2001 1:26:49 AM]

javascript:displayWindow('images/02-18.jpg',443,359%20)
javascript:displayWindow('images/02-18.jpg',443,359)

Setting A Project�s Version Information

Five years from now, a user stumbles across your EXE file, which you�ve
conveniently named CDU2000.exe. This makes perfect sense to you�what else
would you name the EXE file for a utility named Crop Dusting Utility 2000?
However, the user is a little puzzled. How can he get more information directly
from the EXE file to know just what CDU2000.exe does? He can do that by
interrogating the file�s version information.

A program�s version information includes more than just the version number of the
program; it also can include the name of the company that makes the software,
general comments to the user, legal copyrights, legal trademarks, the product name,
and the product description. All these items are available to the user, and if you�re
releasing your software commercially, you should fill these items in. Here�s how
you do it:

1. Open the Project Properties box in Visual Basic now by selecting the Properties
item in the Project menu.

2. Select the Make tab, as shown in Figure 2.19.

Figure 2.19 Setting a project�s version information.

3. Fill in the information you want, including the program�s version number,
product name, and so on.

4. Create the EXE file, which in our case is CDU2000.exe, using the Make
CDU2000.exe item in the File menu.

5. To look at the version information in CDU2000.exe, find that file in the
Windows Explorer and right-click the file, selecting Properties from the pop-up
menu that opens. As you can see in Figure 2.20, our version information�including
the name of the product�appears in the Properties box.

Figure 2.20 Reading a program�s version information.

Sometimes, version information is all that users have to go on when they encounter
your program, so be sure to include it before releasing that product.

Setting An EXE File�s Name And Icon

You�re about to release your software commercially, but you suddenly realize that

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\059-063.html (1 of 4) [3/14/2001 1:27:16 AM]

javascript:displayWindow('images/02-19.jpg',415,374%20)
javascript:displayWindow('images/02-19.jpg',415,374)
javascript:displayWindow('images/02-20.jpg',364,416%20)
javascript:displayWindow('images/02-20.jpg',364,416)

Project1.exe might not be the best name for your product�s executable file. The
stockholders� meeting is in five minutes�how can you change your EXE file�s name?

To set the EXE file�s name, you just set the project�s name. Here�s how you do it:

1. Select the Properties item in the Project menu to open the Project Properties box,
as shown in Figure 2.21.

Figure 2.21 Setting a project�s name.

2. Select the General tab in the Project Properties box (if it�s not already selected).

3. Enter the name of the project you want to use, such as CDU2000 in Figure 2.21.

4. The project�s name will become the name of the EXE file when you create it
with the Make CDU2000.exe item in the File menu.

Now you�ve named your EXE file, but how do you set the program�s icon that will
appear in Windows? The program�s icon is just the icon of the startup form, and you
can set that by setting that form�s Icon property in the Properties window. If you
have a new icon in ICO file format, you can load that icon right into that form by
setting the form�s Icon property to the ICO file name.

Displaying The Debug, Edit, And Form Editor Toolbars

By default, Visual Basic displays one toolbar, the standard toolbar. However, there
are other toolbars available�the Debug, Edit, and Form Editor toolbars. If you want
them, you add those toolbars with the Toolbars submenu of the Visual Basic View
menu�just click the new toolbar you want to add. You can also remove one or all
toolbars the same way.

The Debug toolbar has the following buttons:

" Start

" Break

" End

" Toggle Breakpoint

" Step Into

" Step Over

" Step Out

" Locals Window

" Immediate Window

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\059-063.html (2 of 4) [3/14/2001 1:27:16 AM]

javascript:displayWindow('images/02-21.jpg',415,374%20)
javascript:displayWindow('images/02-21.jpg',415,374)

" Watch Window

" Quick Watch

" Call Stack

The Edit toolbar includes these buttons:

" List Properties/Methods

" List Constants

" Quick Info

" Parameter Info

" Complete Word

" Indent

" Outdent

" Toggle Breakpoint

" Comment Block

" Uncomment Block

" Toggle Bookmark

" Next Bookmark

" Previous Bookmark

" Clear All Bookmarks

The Form Editor toolbar includes these buttons:

" Bring To Front

" Send To Back

" Align

" Center

" Width

" Lock Controls

The Debug, Edit, and Form Editor toolbars appear from left to right in the top
toolbar in Figure 2.22.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\059-063.html (3 of 4) [3/14/2001 1:27:16 AM]

javascript:displayWindow('images/02-22.jpg',762,453%20)

Figure 2.22 Visual Basic with the Debug, Edit, and Form toolbars.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\059-063.html (4 of 4) [3/14/2001 1:27:16 AM]

javascript:displayWindow('images/02-22.jpg',762,453)

Turning Bounds Checking On Or Off

When you use arrays, Visual Basic checks to make sure that you don�t inadvertently
try to access memory past the end or before the beginning of the array when the
program runs, which is an error that could corrupt memory. In the early days of
programming, however, you could use array index values that were past the end of
an array without causing a compiler error, and some programmers used to rely on
that to create some programming tricks involving accessing memory far beyond
what they were supposed to stick with (especially in C, where the name of an array
is really a pointer). That practice is heavily discouraged today, but some
programmers must still have a soft spot for it, because Visual Basic allows you to
turn off array bounds checking. (In fairness, there are one or two other reasons you
might want to turn off bounds checking, such as not having the program halt for
bounds violations while you�re trying to track down a bug or, conceivably, for
performance reasons.)

What does a bounds violation look like? Here�s an example in code where we set up
an array and then try to access a location past the end of it:

Private Sub Command1_Click()

 Dim Addresses(1 To 10) As Integer

 Addresses(1) = 1 'Fine

 Addresses(11) = 11 'Problem!

End Sub

If you were to run this code, you�d get the error box shown in Figure 2.23�unless
you turn off bounds checking.

Figure 2.23 An out-of-bounds error.

You can turn off bounds checking by following these steps:

1. Select the Properties item in the Project menu to open the Project Properties box.

2. Select the Compile tab in the Project Properties window.

3. Click the Advanced Optimizations button in the Project Properties window to
open the Advanced Optimizations box, as shown in Figure 2.24.

Figure 2.24 Turning off bounds checking.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\063-067.html (1 of 4) [3/14/2001 1:27:34 AM]

javascript:displayWindow('images/02-23.jpg',368,198%20)
javascript:displayWindow('images/02-23.jpg',368,198)
javascript:displayWindow('images/02-24.jpg',351,347%20)
javascript:displayWindow('images/02-24.jpg',351,347)

4. Select the Remove Array Bounds Checks checkbox to turn off array bounds
checking.

That�s it�now you�ve turned off array bounds checking.

WARNING! Before turning off array bounds checking, however, make sure you
have a really good reason for doing so; you may find your program crashing
Windows as it makes illegal use of memory.

Checking For Pentium Errors

Some time ago, one version of the Intel Pentium suffered from a well-publicized
hardware bug in the floating point instruction named FDIV. Intel responded quickly
and offered to replace the defective chips, but it�s reasonable to expect some are still
out there.

For that reason, Visual Basic has a check to make sure the Pentium your program
runs on is safe. That check is enabled by default, but if for some reason you want to
turn it off (although it is hard to see why you would), you can turn off the Pentium
FDIV check with these steps:

1. Select the Properties item in the Project menu to open the Project Properties box.

2. Select the Compile tab in the Project Properties window.

3. Click the Advanced Optimizations button in the Project Properties window to
open the Advanced Optimizations box (as shown earlier in Figure 2.24).

4. Select the Remove Safe Pentium FDIV Checks checkbox.

That�s it�you�ve disabled the FDIV Pentium check. Although you might want to do
this yourself if you know what you�re doing, it�s not recommended that you do this
in any software you release commercially.

Managing Add-Ins

The deadline for your project is fast approaching, and the pressure is on. Suddenly it
occurs to you that you�ve already written a lot of the components you need to use
�the day is saved! But how can you access those components? One easy way is to
use the Visual Component Manager. But when you check the Visual Basic Add-Ins
menu, you don�t see the Visual Component Manager there. How do you add it?

You use the Visual Basic Add-In Manager to add this�and any other�add-in. Here�s
how to use the Add-In Manager:

1. Select the Add-In Manager item in the Visual Basic Add-In menu.

2. The Add-In Manager opens, as shown in Figure 2.25.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\063-067.html (2 of 4) [3/14/2001 1:27:34 AM]

Figure 2.25 The Visual Basic Add-In Manager.

3. Select the add-ins you want, as also shown in Figure 2.25, and close the Add-In
Manager.

That�s it�now you�ve added the add-in you want. To remove it, simply deselect the
add-in�s box in the Add-In Manager. (Some add-ins have an annoying habit of
starting when Visual Basic starts, grinding on for a long time while it loads and
taking up a lot of memory, which can be annoying if you don�t need the add-in any
more.)

Adding ActiveX Controls And Insertable Objects To Projects

Been away from Visual Basic for a while and need to get back into the swing of
things? You�ve been designing your project but suddenly realize you need a
Microsoft Grid control. That�s an ActiveX control�how do you add those again? Use
the Add File To Project menu item? Double-click the toolbox and hope an Insert
dialog box comes up? Add a reference to the actual Grid control�s OCX file,
asctrls.ocx, to the project?

None of those�here�s how you do it:

1. Select the Project menu�s Components item.

2. The Visual Basic Components box opens, as shown in Figure 2.26; click the
Controls tab in the Components dialog box.

Figure 2.26 The Visual Basic Components dialog box.

3. Select the ActiveX control you want to add in the Components box, then close
the Components box. The new control will appear in the toolbox.

TIP: If the ActiveX control you want to add to a Visual Basic project doesn�t
appear in the Components dialog box, it may not have been registered with
Windows properly. Try using the regsvr32.exe tool in the Windows\system
directory to register it again.

You can also add insertable objects like Microsoft Word or Microsoft Excel objects
to a Visual Basic project by using the Components dialog box. Instead of the
Controls tab in the Components box, however, you use the Insertable Objects tab
and select the object you want; that object will appear in the toolbox, and you can
use it in your project from then on. For example, we�ve inserted an Excel worksheet
into the Visual Basic project in Figure 2.27.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\063-067.html (3 of 4) [3/14/2001 1:27:34 AM]

javascript:displayWindow('images/02-25.jpg',381,282%20)
javascript:displayWindow('images/02-25.jpg',381,282)
javascript:displayWindow('images/02-26.jpg',452,401%20)
javascript:displayWindow('images/02-26.jpg',452,401)

Figure 2.27 A Microsoft Excel worksheet in a Visual Basic project.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\063-067.html (4 of 4) [3/14/2001 1:27:34 AM]

javascript:displayWindow('images/02-27.jpg',762,453%20)
javascript:displayWindow('images/02-27.jpg',762,453)

Customizing Menus And Toolbars

Visual Basic might be nice, but it�s just not set up as you�d like it. You might think,
for example, that the Start menu item�to run programs�surely should be in the Edit
menu. Well, if you�d like to place it there, it�s possible (just don�t expect anyone else
to be able to use Visual Basic after you�ve customized it that way...).

Here�s how you move items between menus or toolbars:

1. Right-click the menu bar to open the Customize box.

2. Next, find the menu item you want to add to another menu or to a toolbar; here,
we�ll move the Start menu item to the Edit menu.

3. Using the mouse, drag the menu item from the Customize dialog�s Command
box to the new location in a menu or a toolbar, as shown in Figure 2.28, where we
drag the Start item to the Edit menu.

Figure 2.28 Add the Start menu item to the Visual Basic Edit menu.

4. Releasing the mouse adds the menu item to its new location. Finally, click Close
in the Customize box to close that dialog.

Besides moving menu items to new locations in menus and toolbars, you can also
move whole menus. For example, to move the Edit menu in the menu bar, just open
the Customize box and find the Built-in Menus item in the Categories box of the
Commands tab. Next, drag the menu you want to move�such as the Edit menu�from
the Commands box to its new location in the menu bar. You can move menus to
either the menu bar or other toolbars this way.

TIP: If you use one particular menu item a lot, you might consider moving it
directly into the menu bar (where it will appear among all the menu names). You
can do that the same way you�d drag that item to a new menu�just drag it into the
menu bar instead.

The toolbars in Visual Basic are dockable, of course, so that means you can move
them around as you�d like�even above the menu bar. Just grasp the double upright
bars at left in the toolbar (Visual Basic uses Explorer-style toolbars) and move the
toolbar to its new location.

Setting Forms� Initial Positions

You�ve completed the project�on schedule and under budget even. But you�re not

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\067-072.html (1 of 3) [3/14/2001 1:27:49 AM]

javascript:displayWindow('images/02-28.jpg',679,487%20)
javascript:displayWindow('images/02-28.jpg',679,487)

crazy about where Visual Basic displays the startup form on the screen when the
program starts. You can set the form�s Left and Top properties if you like, but there
�s an easier and more interactive way using the Form Layout window.

The Form Layout window is part of the IDE, and its default position is at the lower
right in the IDE. This window appears in Figure 2.29.

Figure 2.29 Setting a form�s initial position.

Setting a form�s initial position couldn�t be easier�just drag the form into the new
location using the mouse. If you want to know the form�s exact new position, watch
the first set of numbers in the toolbar�those numbers record the location of the upper
left of the form (in twips).

TIP: Using the Form Layout window, you can even place forms off screen, beyond
the edges of the display. That means, of course, that if you want to see the form
when the program runs, you�ll have to move it, either by setting its Left and Top
properties or with the Move method.

Enabling Or Disabling Quick Info, Auto List Members, Data Tips, And
Syntax Checking

Depending on your personal tastes, Visual Basic has a great/terrible set of
features/bugs that assist/hobble you while working on your code. These features are
as follows:

" Quick Info

" Auto List Members

" Data Tips

" Syntax Checking

The Quick Info feature lets you know what parameters a procedure takes as you�re
actually typing the procedure�s name, as in Figure 2.30. This is a useful feature that
can save you time looking up parameter order or type.

Figure 2.30 The Visual Basic Quick Info feature.

The Auto List Members feature lists the members of an object as you�re typing the
object�s name (actually when you type the dot [.] after the object�s name, as in
Figure 2.31). This is useful if you can�t remember exactly what property you want
to work with (for example, do I want the Text property, or was it the Caption

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\067-072.html (2 of 3) [3/14/2001 1:27:49 AM]

javascript:displayWindow('images/02-29.jpg',261,274%20)
javascript:displayWindow('images/02-29.jpg',261,274)
javascript:displayWindow('images/02-30.jpg',680,453%20)
javascript:displayWindow('images/02-30.jpg',680,453)

property?).

Figure 2.31 The Visual Basic Auto List Members feature.

Visual Basic Data Tips are tip tools that appear while you�re debugging a program,
and they�re a truly useful innovation. When Visual Basic is in the Debug state, you
can let the mouse rest over a variable name in your code, and Visual Basic will
display that variable�s current value in a Data Tip, as shown in Figure 2.32.

Figure 2.32 The Visual Basic Data Tips feature.

TIP: Note that Data Tips can only display the values of simple variables, not
complex ones like objects or arrays. For those objects, you must use either the
Immediate window or the Watch window.

Syntax Checking speaks for itself�when you move the text insertion point away
from a line of Visual Basic code while writing that code, Visual Basic will check
the line�s syntax and display an error box if there is an error. That can get annoying
if you�re the type of programmer who likes to move around in a file while writing
code (�What was the name of that variable again?�).

You can turn all of these features on and off following these steps:

1. Select the Options item in the Tools menu.

2. Select the Editor tab in the Options box, as shown in Figure 2.33.

Figure 2.33 Selecting Auto List Members, Data Tips, and more.

3. Select the options you want from the checkboxes: Auto Syntax Check, Auto List
Members, Auto Quick Info, and Auto Data Tips. That�s all it takes.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\067-072.html (3 of 3) [3/14/2001 1:27:49 AM]

javascript:displayWindow('images/02-31.jpg',680,453%20)
javascript:displayWindow('images/02-31.jpg',680,453)
javascript:displayWindow('images/02-32.jpg',680,453%20)
javascript:displayWindow('images/02-32.jpg',680,453)
javascript:displayWindow('images/02-33.jpg',415,351%20)
javascript:displayWindow('images/02-33.jpg',415,351)

Displaying Or Hiding IDE Windows

You�re feeling cramped�is it your chair? Your office? No, this time, it�s your screen.
With the proliferation of windows in the Visual Basic IDE, there seems to always
be more and more of them clamoring for your attention. Want to clear some IDE
windows out to make room for the important ones? Just close the windows by
clicking their close buttons (the button marked �x� in the top right of the window).

Whoops�now you need the Form Layout window back. But how do you get it back?
Or how would you get the toolbox back if it disappeared? Or the Properties
window? The solution is easy: All you have to do is to select the window you want
to show again in the View menu, and it�ll reappear. Open the View menu as shown
in Figure 2.34, and click the name of the window you want to make visible again�it
�s that simple.

Figure 2.34 Specifying visible IDE windows in the View menu.

This is a simple task indeed, but it�s worth including here; more than one
programmer has panicked after closing the toolbox by mistake and wondering if
Visual Basic must be reinstalled to get it back!

Searching An Entire Project For Specific Text Or A Variable�s
Definition

Forms, modules, class modules, MDI forms�how are you supposed to keep them all
straight? These days, there are more files than ever in a Visual Basic project, and
anything that can give you an overview can help. The Project Explorer is one such
tool. This window gives you an overview of your entire project, organized into
folders.

However, there are times when that�s not good enough�times when you need more
details. One such occasion is when you want to find all the occurrences of specific
text throughout an entire project�for example, you might want to find all the places a
particularly troublesome variable is used. To do that, you can now just use the Edit
menu�s Find item. Selecting that item opens the Find box, as shown in Figure 2.35.
Now you can search all the code in an entire project if the code window is open�just
click the Current Project option button before searching, as shown in Figure 2.35.

Figure 2.35 Searching for text throughout a whole project.

Even if you�re familiar with searching for text throughout an entire project, there�s

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\073-078.html (1 of 4) [3/14/2001 1:28:19 AM]

javascript:displayWindow('images/02-34.jpg',680,453%20)
javascript:displayWindow('images/02-34.jpg',680,453)
javascript:displayWindow('images/02-35.jpg',375,157%20)
javascript:displayWindow('images/02-35.jpg',375,157)

one more capability that you might not know about�jumping to a variable�s or
procedure�s definition just by clicking it. To jump to a variable�s or procedure�s
definition, just right-click that variable or procedure any place it�s used in the code.
Doing so opens a pop-up menu, as shown in Figure 2.36.

Figure 2.36 Finding a variable�s definition.

To jump to the variable�s or procedure�s definition, just select the Definition item in
the pop-up menu. This is very useful when, for example, you�ve set up a new
procedure somewhere but can�t quite remember what parameters you pass to that
procedure, and in what order.

TIP: Besides jumping to a variable or procedure�s definition in code, you can also
jump to its previous use in code�just select the pop-up menu�s Last Position item.

Optimizing For Fast Code, Small Code, Or A Particular Processor

Your project works the way you want it, but now the users are complaining about
the size of the EXE file. Isn�t there any way to make it less than 500MB? Well, that
might be a bit of an exaggeration, but Visual Basic does let you optimize your
project in several different ways, and one of them is to optimize the code for size.

To optimize your program for code size or speed, follow these steps:

1. Select the Properties item in the Visual Basic Project menu.

2. The Project Properties box opens, as shown in Figure 2.37. Select the Compile
tab in that box.

Figure 2.37 Optimizing a project for speed or code size.

3. Select the kind of code optimization you want in the

" Properties box:

" Optimize For Fast Code

" Optimize For Small Code

" No Optimization

Besides optimizing for code size and speed, you can optimize the code for the
Pentium Pro processor in the Project Properties box as well�just click the Favor
Pentium Pro checkbox. The Pentium Pro is currently the only processor Visual
Basic lets you optimize for, but it does have one automatic check: the FDIV check

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\073-078.html (2 of 4) [3/14/2001 1:28:19 AM]

javascript:displayWindow('images/02-36.jpg',771,545%20)
javascript:displayWindow('images/02-36.jpg',771,545)
javascript:displayWindow('images/02-37.jpg',415,374%20)
javascript:displayWindow('images/02-37.jpg',415,374)

to check for bad Pentiums (see �Checking For Pentium Errors� earlier in this
chapter).

Adding And Removing Forms, Modules, And Class Modules

Your project is nearly finished. Now it�s time to add an About dialog box. So how
do you add new forms to a project? You do that in one of a couple of ways: First,
you can use the View menu, as shown in Figure 2.38.

Figure 2.38 Adding forms and modules with the Visual Basic Project menu.

The Visual Basic Project menu allows you to add these items to a project:

" Form

" MDI form

" Module

" Class module

" User control

" Property page

You can also add these items to a project by right-clicking any item in the Project
Explorer window and selecting the Add item in the resulting pop-up menu. The Add
submenu opens, and it holds the same items.

Adding ActiveX Designers

Besides ready-made objects like forms and modules, you can add ActiveX designers
to the Visual Basic Project menu. These designers let you design new objects that
are part of your project. For example, to add the Visual Basic Add-In Designer, you
follow these steps:

1. Select the Components item in the Project menu, opening the Components box
as shown in Figure 2.39.

Figure 2.39 Adding the Add-In Designer.

2. Select the Designers tab in the Components box.

3. Select the designer you want to add, such as the Add-In Designer, and close the
Components box.

4. You can reach the new object designer to design the addition to your project with
the Add ActiveX Designer item in the Project menu. That item opens a submenu

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\073-078.html (3 of 4) [3/14/2001 1:28:19 AM]

javascript:displayWindow('images/02-38.jpg',687,501%20)
javascript:displayWindow('images/02-38.jpg',687,501)
javascript:displayWindow('images/02-39.jpg',452,401%20)
javascript:displayWindow('images/02-39.jpg',452,401)

showing the available designers, including the one we�ve just added, the Visual
Basic Add-In Designer.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\073-078.html (4 of 4) [3/14/2001 1:28:19 AM]

Using Bookmarks

It�s been a long night and it�s nearly dawn, but you�re still programming because the
deadline�s in a few hours. Now you�ve lost your place in the dozen separate code
files that make up the project. There are 10 separate windows open in the IDE and
you�re switching back and forth between them. Isn�t there a better way to mark a
location and jump back to it when you need to?

There certainly is�you can use a bookmark. You mark a line of code by toggling a
bookmark on or off at that location, and when you�re ready you can jump back to
that bookmark.

Setting Bookmarks

You set a bookmark at a particular line of code by clicking that line of code and
selecting the Toggle Bookmark item in the Bookmarks submenu of the Edit menu,
as shown in Figure 2.40. Selecting this same item again would remove the
bookmark.

Figure 2.40 Using bookmarks in the Visual Basic IDE.

Jumping To A Bookmark

Now that you�ve set a bookmark and moved away from it while editing your code,
how do you get back to it? You jump back to a bookmark with the two items in the
Bookmarks submenu marked Next Bookmark and Previous Bookmark. (It would be
convenient if Visual Basic allowed you to name bookmarks and select from a list of
them where to jump to; perhaps that will appear in some future version of Visual
Basic.)

Using The Object Browser

One of the best ways of getting an overview of your project is to use the Object
Browser. The Object Browser is very useful to get overviews, especially in larger
projects. If your version of Visual Basic includes the Visual Basic Object Browser,
you open it by selecting the Object Browser item in the View menu or by clicking
its icon in the toolbar. The Object Browser opens, as shown in Figure 2.41.

Figure 2.41 The Visual Basic Object Browser provides an overview of the objects
in a project.

You can scan through all the objects in the project by moving up and down in the

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\078-080.html (1 of 2) [3/14/2001 1:28:27 AM]

javascript:displayWindow('images/02-40.jpg',680,550%20)
javascript:displayWindow('images/02-40.jpg',680,550)
javascript:displayWindow('images/02-41.jpg',391,397%20)
javascript:displayWindow('images/02-41.jpg',391,397)

Classes list. When you find the type of object you want to examine, select it; its
properties and methods appear in the Members pane, as also shown in Figure 2.41.

If you want to learn more about a property or method, just select it with the mouse;
you�ll see an explanation of the property or method and the list of parameters for
methods.

Visual Basic 6 Black Book:The Visual Basic Development Environment

http://24.19.55.56:8080/temp/ch02\078-080.html (2 of 2) [3/14/2001 1:28:27 AM]

Chapter 3
The Visual Basic Language
If you need an immediate solution to:

Declaring Constants

Declaring Variables

Selecting Variable Types

Converting Between Data Types

Setting Variable Scope

Verifying Data Types

Declaring Arrays And Dynamic Arrays

Declaring Subroutines

Declaring Functions

Preserving Variables� Values Between Calls To Their Procedures

Handling Strings

Converting Strings To Numbers And Back Again

Handling Operators And Operator Precedence

Using If&Else Statements

Using Select Case

Making Selections With Switch() And Choose()

Looping

Using Collections

Sending Keystrokes To Other Programs

Handling Higher Math

Handling Dates And Times

Handling Financial Data

Ending A Program At Any Time

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\081-085.html (1 of 4) [3/14/2001 1:28:31 AM]

In Depth

This chapter is all about what makes the various parts of a Visual Basic program work: the Visual Basic
language itself. In this chapter, we�ll see the components of the Visual Basic language and how to use them.
After designing and creating the interface for your application using the Visual Basic IDE, and filling your
program with forms and controls, you�ll need to write the code that makes those controls and forms do
something.

The Visual Basic language supports a large number of programming constructs and elements, and that
language is the foundation on which we�ll build in this book. A good start here is essential for the work we�ll
do throughout the book.

If you�ve programmed in other languages, much of the material in this chapter will probably be familiar to
you�and once you understand the basics, you will be able to create powerful applications using Visual Basic.

How Does Visual Basic Code Look?

We�re going to take a look at the elements of the Visual Basic language that will let us make Visual Basic
code work. What will that code look like? Some of our code will be short, such as when we check for
multimedia device errors like this in Chapter 22:

Private Sub MMControl1_Done(NotifyCode As Integer)

 If MMControl1.Error <> 0 Then

 MsgBox MMControl1.ErrorMessage

 End If

End Sub

Some of our code will be a little longer, such as this code, where we display the status of a CD-ROM drive
that�s playing a music CD:

Private Sub MMControl1_StatusUpdate()

 Dim strMode As String

 strMode = ""

 Select Case MMControl1.Mode

 Case mciModeReady

 strMode = "Ready."

 Case mciModeStop

 strMode = "Stopped."

 Case mciModeSeek

 strMode = "Seeking."

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\081-085.html (2 of 4) [3/14/2001 1:28:31 AM]

 Case mciModePlay

 strMode = "Playing."

 Case mciModeRecord

 strMode = "Recording."

 Case mciModePause

 strMode = "Paused."

 End Select

 Label1.Caption = strMode

End Sub

That�s what the Visual Basic language looks like at work. As you can imagine, knowing how to write the
code is necessary to get anywhere in Visual Basic.

In the topics coming up, then, we�ll see how to declare variables, functions, and subroutines�and what those
elements mean. We�ll see how to use text strings, conditionals, operators, loops, and math techniques. We�ll
even see how to handle special Visual Basic formats like dates and financial data. And we�ll see some items
that programmers like but don�t often encounter in programming books, such as how to use Switch() and
Choose().

We�ll cover tasks that involve some complexity and whose syntax is hard to remember. In this way, this
chapter also acts as a reference for easy lookup of those hard-to-remember items�and can save you from
reinventing the wheel.

We�ll see a lot of syntax in this chapter, and there�s one convention you should be aware of before starting:
we�ll use brackets for optional elements and keywords like this for the Dim statement:

Dim [WithEvents] varname [([subscripts])] [As [New] type] [, [WithEvents]

varname[([subscripts])] [As [New] type]]

Here, all the elements in square brackets are optional, and the variable names in italics are placeholders�you
fill them in with the names of your variables as appropriate for your program

It�s time to turn to the Immediate Solutions now�no further introduction is needed.

Immediate Solutions

Declaring Constants

You�ve filled your code with numeric values�and now it�s time to change them all as you start work on the

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\081-085.html (3 of 4) [3/14/2001 1:28:31 AM]

new version of the software. What a pain to have to track down and change all the numeric values (called
magic numbers) throughout all the code. Isn�t there a better way?

There is: Use constants and declare them all in one place, then refer to the constants by name throughout the
code instead of hardwiring numeric values in the code. When it�s time to change those values, you just
change the constants, all in one well-defined part of the code.

How do you use constants? You declare constants in Visual Basic with the Const statement:

[Public | Private] Const constname [As type] = expression

The Public keyword is used at the module level to make a constant global. This keyword is not allowed in
procedures. The Private keyword is used at the module or form level to declare constants that are private,
which means only available within the module or form where the declaration is made. Like the Public
keyword, Private is not allowed in procedures (constants in procedures are always private anyway). The
constname identifier is the actual name of the constant. The type identifier is the data type of the constant,
which may be Byte, Boolean, Integer, Long, Currency, Single, Double, Date, String, or Variant. The
expression identifier holds the value you want for this constant. It may be a literal, other constant, or any
combination that includes all arithmetic or logical operators (except the Is operator).

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\081-085.html (4 of 4) [3/14/2001 1:28:31 AM]

You can use a constant anywhere you can use any Visual Basic expression, and you usually use them for
numeric or string values that you want to use many places in a program. That way, when you want to
modify the value of the constant, you only have to change it in its declaration, not in many places around
the program. Also, constants don�t change their values, which can make them more useful than variables in
certain circumstances.

TIP: You can�t use variables, user-defined functions, or intrinsic Visual Basic functions in expressions
assigned to constants.

Here�s an example showing how to declare and use a constant:

Private Sub Command1_Click()

 Const Pi = 3.14159

 Dim Radius, Area

 Radius = 1#

 Area = Pi * Radius * Radius

 MsgBox ("Area = " & Str(Area))

End Sub

Declaring Variables

Before using variables, you have to set aside memory space for them�after all, that�s what they are,
locations in memory. Usually, you use the Dim statement to declare variables, although you can also use
the Private (declare a private variable), Public (declare a global variable), Static (declare a variable that
holds its value between procedure calls), ReDim (redimension a dynamic array), or Type (declare a
user-defined type) keywords to declare variables, as we�ll see in the tasks covered in this chapter.

The Dim Statement

Here�s how you use the Dim statement:

Dim [WithEvents] varname[([subscripts])] [As [New] type] [, [WithEvents]

varname [([subscripts])] [As [New] type]] . . .

The WithEvents keyword is valid only in class modules. This keyword specifies that varname is an object
variable used to respond to events triggered by an ActiveX object. The varname identifier is the name of
the variable you are declaring. You use subscripts if you�re declaring an array.

You set up the subscripts argument this way:

[lower To] upper [, [lower To] upper]

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\085-088.html (1 of 3) [3/14/2001 1:28:34 AM]

TIP: In Visual Basic, you may declare up to 60 dimensions for an array.

The New keyword enables creation of an object. If you use New when declaring the object variable, a new
instance of the object is created on first reference to it. This means you don�t have to use the Set statement
to assign the object reference. Here�s an example:

Dim DataSheet As New Worksheet

The type argument specifies the data type of the variable, which may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Date, String (for variable-length strings), String * length (for fixed-length
strings), Object, Variant, a user-defined type, or an object type. If you don�t specify a type, the default is
Variant, which means the variable can act as any type.

TIP: By default in Visual Basic, numeric variables are initialized to 0, variable-length strings are
initialized to a zero-length string (��), and fixed-length strings are filled with zeros. Variant variables are
initialized to Empty.

Here�s an example of declaring variables using Dim:

Dim EmployeeID As Integer

Dim EmployeeName As String

Dim EmployeeAddress As String

Implicit Declarations And Option Explicit

Following the traditions of earlier versions of Basic, you don�t actually need to declare a variable at all to
use it�just using it in code declares it as a variant if it�s not been declared. It�s better to require all variables
to be explicitly declared, however, because misspelling a variable name can declare a new variable and
cause problems, as we saw in this code from Chapter 1, where we think we�re toggling a Boolean variable
named xNow but are placing the result in a new and misspelled variable named xNoww:

Private Sub Command_Click(Index As Integer)

 If xNow Then

 Command(Index).Caption = "x"

 Else

 Command(Index).Caption = "o"

 End If

 xNoww = Not xNow

End Sub

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\085-088.html (2 of 3) [3/14/2001 1:28:34 AM]

To force variable declarations to be explicit (that is, to insist that each variable be declared), add the
Option Explicit statement at the module or form level to the (General) declarations object.

Selecting Variable Types

It�s time to create a new variable�but what type should you use? For that matter, exactly what type of
variable types are there and what do they do? Even if you remember what types there are, you probably
won�t remember the range of possible values that variable type allows.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\085-088.html (3 of 3) [3/14/2001 1:28:34 AM]

There�s a wide range of data types, so we�ll use a table here. The Visual Basic
variable types appear in Table 3.1 for reference, making selecting the right type a
little easier (note that although Visual Basic lists a Decimal variable type, that type
is not yet actually supported). We also include the literal suffix symbols for numeric
values in Table 3.1�those are the suffixes you can add to the end of values or
variables to tell Visual Basic their type, like strUserFormatString$.

Table 3.1
Variable types.
Variable
Type

Bytes Of
Storage

Literal
Suffix

Range
Boolean 2 N/A True, False

Byte 1 N/A 0 to 255
Currency 8 @ -922,337,203,685,477.5808 to

922,337,203,685,477.5807
Date 8 #&# 1 January 100 to 31 December 9999 and times

from 0:00:00 to 23:59:59
Decimal 12 N/A -79,228,162,514,264,337,593,543,950,335 to

79,228,162,514,264,337,593,543,950,335
Double 8 # -1.79769313486232E308 to

-4.94065645841247E-324 for negative values
and from 4.94065645841247E-324 to

1.79769313486232E308 for positive values
Integer 2 % -32,768 to 32,767
Long 4 & -2,147,483,648 to 2,147,483,647

Object 4 N/A N/A
Single 4 ! -3.402823E38 to -1.401298E-45 for negative

values and from 1.401298E-45 to 3.402823E38
for positive values

String N/A $ A variable-length string can contain up to
approximately 2 billion characters; a fixed-length

string can contain 1 to approximately 64K
characters

User-defined
data type

N/A N/A N/A

Variant N/A N/A N/A

As you can see in Table 3.1, Visual Basic has a large number of data formats. The
Variant type deserves special mention, because it�s the default variable type. If you
don�t declare a type for a variable, it is made a variant:

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\088-091.html (1 of 4) [3/14/2001 1:28:36 AM]

Private Sub Command1_Click()

 Dim NumberTrains

...

End Sub

In this case, the variable NumberTrains is a variant, which means it can take any
type of data. For example, here we place an integer value into NumberTrains (note
that we specify that 5 is an integer by using the percent sign [%] suffix as specified
in Table 3.1):

Private Sub Command1_Click()

 Dim NumberTrains

 NumberTrains = 5%

End Sub

We could have used other data types as well; here, for example, we place a string
into NumberTrains:

Private Sub Command1_Click()

 Dim NumberTrains

 NumberTrains = "Five"

End Sub

And here we use a floating point value (! is the suffix for single values):

Private Sub Command1_Click()

 Dim NumberTrains

 NumberTrains = 5.00!

End Sub

Be careful of variants, however�they waste time because Visual Basic has to
translate them into other data types before using them, and they also take up more
space than other data types.

Converting Between Data Types

Visual Basic supports a number of ways of converting from one type of variable to
another�in fact, that�s one of the strengths of the language. The possible conversion
statements and procedures appear in Table 3.2.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\088-091.html (2 of 4) [3/14/2001 1:28:36 AM]

Table 3.2
Visual Basic
data
conversion
functions.
To Do This

Use This

ANSI value
to string

Chr

String to
lowercase or

uppercase
Format, LCase, UCase

Date to
serial

number
DateSerial, DateValue

Decimal
number to
other bases

Hex, Oct

Number to
string

Format, Str

One data
type to
another

CBool, CByte, CCur, CDate, CDbl, CDec, CInt, CLng, CSng,
CStr, CVar, CVErr, Fix, Int

Date to day,
month,

weekday, or
year

Day, Month, Weekday, Year

Time to
hour,

minute, or
second

Hour, Minute, Second

String to
ASCII value

Asc

String to
number

Val

Time to
serial

number
TimeSerial, TimeValue

TIP: Note that you can cast variables from one type to another in Visual Basic
using the functions CBool(), CByte(), and so on.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\088-091.html (3 of 4) [3/14/2001 1:28:36 AM]

Setting Variable Scope

You�ve just finished creating a new dialog box in your greeting card program, and it
�s a beauty. However, you realize there�s a problem: the user enters the new number
of balloons to display the greeting card in TextBox1 of the dialog box, but how do
you read that value in the rest of the program when the user closes the dialog box?

It�s tempting to set up a global variable, intNumberBalloons, which you fill in the
dialog box when the user clicks on the OK button. That way, you�ll be able to use
that variable in the rest of the program when the dialog box is closed. But in this
case, you should resist the temptation to create a global variable�it�s much better to
refer to the text in the text box this way (assuming the name of the dialog form you
�ve created is Dialog):

intNumberBalloons = Dialog.TextBox1.Text

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\088-091.html (4 of 4) [3/14/2001 1:28:36 AM]

This avoids setting up a global variable needlessly. In fact, one of the most important aspects of Visual Basic
programming is variable scope. In general, you should restrict variables to the smallest scope possible.

There are three levels of variable scope in Visual Basic, as follows:

" Variables declared in procedures are private to the procedure.

" Variables declared at the form or module level in the form or module�s (General) section using Dim,
ReDim, Private, Static, or Type are form- or module-level variables. These variables are available
throughout the module.

" Variables declared at the module level in the module�s (General) section using Public are global and are
available throughout the project, in all forms and modules. Note that you cannot use Public in procedures.

You can get an overview of the scope of variables in a Visual Basic project in Figure 3.1.

Figure 3.1 Visual Basic�s variable scope schematic.

For more information, see the discussion of variable scope in Chapter 1.

TIP: If you use the Option Private Module statement in a module or form, all variables in the module or
form become private to the module, no matter how they are declared.

Verifying Data Types

You can change a variable�s type with ReDim in Visual Basic, assign objects to variables using Set, and
even convert standard variables into arrays. For these and other reasons, Visual Basic has a number of data
verification functions, which appear in Table 3.3, and you can use these functions to interrogate objects and
determine their types.

Table 3.3 Data
verification
functions.
Function

Does This

IsArray() Returns True if passed an array
IsDate() Returns True if passed a date

IsEmpty() Returns True if passed variable is uninitialized
IsError() Returns True if passed an error value

IsMissing() Returns True if value was not passed for specified parameter in procedure call
IsNull() Returns True if passed NULL

IsNumeric() Returns True if passed a numeric value
IsObject() Returns True if passed an object

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\091-095.html (1 of 3) [3/14/2001 1:28:40 AM]

javascript:displayWindow('images/03-01.jpg',474,969%20)
javascript:displayWindow('images/03-01.jpg',474,969)

Note in particular the IsMissing() function, which many programmers don�t know about; this function tells
you if the call to the current procedure included a value for a particular variant. For example, here�s how we
check if the call to a subroutine CountFiles() included a value in the optional parameter intMaxFiles:

Sub CountFiles(Optional intMaxFile As Variant)

 If IsMissing(intMaxFile) Then

 'intMaxFiles was not passed

...

 Else

...

 End If

End Sub

Declaring Arrays And Dynamic Arrays

It�s time to start coding that database program. But wait a moment�how are you going to handle the data? It�s
just a simple program, so you don�t want to start tangling with the full Visual Basic database techniques. An
array would be perfect; how do you set them up again?

You can use Dim (standard arrays), ReDim (dynamic arrays), Static (arrays that don�t change when between
calls to the procedure they�re in), Private (arrays private to the form or module they�re declared in), Public
(arrays global to the whole program), or Type (for arrays of user-defined types) to dimension arrays.

We�ll start with standard arrays now.

Standard Arrays

You usually use the Dim statement to declare a standard array (note that in Visual Basic, arrays can have up
to 60 dimensions):

Dim [WithEvents] varname [([subscripts])] [As [New] type] [, [WithEvents]

varname [([subscripts])] [As [New] type]] ...

The WithEvents keyword is valid only in class modules. This keyword specifies that varname is an object
variable used to respond to events triggered by an ActiveX object. The varname identifier is the name of the
variable you are declaring.

You use subscripts to declare the array. You set up the subscripts argument this way:

[lower To] upper [, [lower To] upper]

The New keyword enables creation of an object. If you use New when declaring the object variable, a new
instance of the object is created on first reference to it.

The type argument specifies the data type of the variable, which may be Byte, Boolean, Integer, Long,

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\091-095.html (2 of 3) [3/14/2001 1:28:40 AM]

Currency, Single, Double, Date, String (for variable-length strings), String * length (for fixed-length
strings), Object, Variant, a user-defined type, or an object type. If you don�t specify a type, the default is
Variant, which means the variable can act as any type.

Here are a few examples of standard array declarations:

Private Sub Command1_Click()

 Dim Data(30)

 Dim Strings(10) As String

 Dim TwoDArray(20, 40) As Integer

 Dim Bounds(5 To 10, 20 To 100)

 Strings(3) = "Here's a string!"

End Sub

TIP: You use the Option Base statement at the form- or module-level to set the lower bound for all arrays.
The default value is 0, but you can use either of these two statements: Option Base 0 or Option Base 1.

Dynamic Arrays

You can use the Dim statement to declare an array with empty parentheses to declare a dynamic array.
Dynamic arrays can be dimensioned or redimensioned as you need them with the ReDim statement (which
you must also do the first time you want use a dynamic array). Here�s how you use ReDim:

ReDim [Preserve] varname (subscripts) [As type] [, varname(subscripts)

[As type]] ...

You use the Preserve keyword to preserve the data in an existing array when you change the size of the last
dimension. The varname argument holds the name of the array to (re)dimension.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\091-095.html (3 of 3) [3/14/2001 1:28:40 AM]

The subscripts term specifies the dimensions of the array using this syntax:

[lower To] upper [,[lower To] upper]

The type argument specifies the type of the array. The type may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Date, String (for variable-length strings), String * length (for fixed-length
strings), Object, Variant, a user-defined type, or an object type.

This is one of those topics that is made easier with an example, so here�s an example using dynamic arrays,
where we declare an array, dimension it, and then redimension it, like this:

Private Sub Command1_Click()

 Dim DynaStrings() As String

 ReDim DynaStrings(10)

 DynaStrings(1) = "The first string"

 'Need more data space!

 ReDim DynaStrings(100)

 DynaStrings(50) = "The fiftieth string"

End Sub

The Array() Function

You can also use the Array() function to create a new variant holding an array. Here�s how you use
Array():

Array(arglist)

The arglist argument is a list of values that are assigned to the elements of the array contained within the
variant. Here�s an example that creates an array with the values 0, 1, and 2:

Dim A As Variant

A = Array(0,1,2)

TIP: If you don�t specify any arguments, the Array() function returns an array of zero length.

We�ll finish this topic with a summary of array-handling techniques.

Array-Handling Techniques Summary

Visual Basic has a number of statements and functions for working with arrays, and they appear in
overview in Table 3.4 for easy reference.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\095-096.html (1 of 4) [3/14/2001 1:28:42 AM]

Table 3.4
Array-handling
techniques. To Do
This

Use This

Verify an array IsArray
Create an array Array

Change default lower
limit

Option Base

Declare and initialize
an array

Dim, Private, Public, ReDim, Static

Find the limits of an
array

LBound, UBound

Reinitialize an array Erase, ReDim

Declaring Subroutines

Everyone knows about subroutines: they�re the handy blocks of code that can organize your code into
single-purposed sections to make programming easier. Unlike functions, subroutines do not return values;
but like functions, you can pass values to subroutines in an argument list.

For reference�s sake, here�s how you declare a subroutine:

[Private | Public | Friend] [Static] Sub name [(arglist)]

...

[statements]

...

[Exit Sub]

...

[statements]

...

End Sub

The Public keyword makes a procedure accessible to all other procedures in all modules and forms. The
Private keyword makes a procedure accessible only to other procedures in the module or form in which it
is declared. The Friend keyword is used only in class modules and specifies that the procedure is visible
throughout the project, but not visible to a controller of an instance of an object. The Static keyword
specifies that the procedure�s local variables should be preserved between calls. The name identifier is the
name of the procedure. The arglist identifier is a list of variables representing arguments that are passed to
the procedure when it is called. You separate multiple variables with commas. The statements identifier is
the group of statements to be executed within the procedure.

The arglist identifier has the following syntax:

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\095-096.html (2 of 4) [3/14/2001 1:28:42 AM]

[Optional] [ByVal | ByRef] [ParamArray] varname [()] [As type]

[= defaultvalue]

In arglist, Optional means that an argument is not required; ByVal means that the argument is passed by
value; ByRef means that the argument is passed by reference (ByRef is the default in Visual Basic);
ParamArray is used as the last argument in arglist to indicate that the final argument is an array of Variant
elements; varname is the name of the variable passed as an argument; type is the data type of the argument;
and defaultvalue is any constant or constant expression, which is used as the argument�s default value if
you�ve used the Optional keyword.

TIP: When you use ByVal, you pass a copy of a variable to a procedure; when you use ByRef, you pass a
reference to the variable, and if you make changes to that reference, the original variable is changed.

The Exit Sub keywords cause an immediate exit from a Sub procedure. Finally, End Sub ends the
procedure definition.

You call a Sub procedure using the procedure name followed by the argument list. Here�s an example of a
subroutine:

Sub CountFiles(Optional intMaxFile As Variant)

 If IsMissing(intMaxFile) Then

 'intMaxFiles was not passed

 MsgBox ("Did you forget something?")

 Else

...

 End If

End Sub

TIP: For an overview of how to comment procedures, see the discussion in Chapter 1.

Declaring Functions

There are two types of procedures in Visual Basic: subroutines and functions. Subroutines can take
arguments passed in parentheses but do not return a value; functions do the same but do return values
(which can be discarded). A function is a block of code that you call and pass arguments to, and using
functions helps break your code up into manageable parts.

For reference�s sake, here�s how you declare a function:

[Private | Public | Friend] [Static] Function name [(arglist)] [As type]

...

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\095-096.html (3 of 4) [3/14/2001 1:28:42 AM]

[statements]

...

[name = expression]

...

[Exit Function]

...

[statements]

...

End Function

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\095-096.html (4 of 4) [3/14/2001 1:28:42 AM]

The Public keyword makes a procedure accessible to all other procedures in all modules and
forms. The Private keyword makes a procedure accessible only to other procedures in the
module or form in which it is declared. The Friend keyword is used only in class modules
and specifies that the procedure is visible throughout the project, but not visible to a
controller of an instance of an object. The Static keyword specifies that the procedure�s
local variables should be preserved between calls. The name identifier is the name of the
procedure. The arglist identifier is a list of variables representing arguments that are passed
to the procedure when it is called. You separate multiple variables with commas. The
statements identifier is the group of statements to be executed within the procedure.

The arglist identifier has this following syntax:

[Optional] [ByVal | ByRef] [ParamArray] varname [()] [As type]

[= defaultvalue]

In arglist, Optional means that an argument is not required; ByVal means that the argument
is passed by value; ByRef means that the argument is passed by reference (ByRef is the
default in Visual Basic); ParamArray is used as the last argument in arglist to indicate that
the final argument is an array of Variant elements; varname is the name of the variable
passed as an argument; type is the data type of the argument; and defaultvalue is any
constant or constant expression, which is used as the argument�s default value if you�ve used
the Optional keyword. The type identifier is the data type returned by the function. The Exit
Function keywords cause an immediate exit from a Function procedure.

You call a Function procedure using the function name, followed by the argument list in
parentheses. You return a value from a function by assigning the value you want to return to
the function�s name like this: name = expression. Finally, End Function ends the procedure
definition.

Here�s an example showing how to use a function:

Private Sub Command1_Click()

 Dim intResult As Integer

 intResult = Add1(5)

 MsgBox ("Result = " & Str$(intResult))

End Sub

Function Add1(intAdd1ToMe As Integer) As Integer

 Add1 = intAdd1ToMe + 1

End Function

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\096-101.html (1 of 4) [3/14/2001 1:28:45 AM]

Preserving Variables� Values Between Calls To Their Procedures

You�ve written a function named Counter() to keep track of the number of times the user
clicks a particular button. Each time the user clicks the button, you call the Counter()
function to increment the count of button clicks, and then display the result in a message
box. But the counter never seems to be incremented; instead it always returns 1. Why?

Let�s look at the code:

Private Sub Command1_Click()

 Dim intResult As Integer

 intResult = Counter()

 MsgBox ("Result = " & Str$(intResult))

End Sub

Function Counter() As Integer

 Dim intCountValue As Integer

 intCountValue = intCountValue + 1

 Counter = intCountValue

End Function

The problem here is that the counter variable, intCountValue, in the Counter() function is
reinitialized each time the Counter() function is called (because a new copy of all the
variables local to procedures is allocated each time you call that procedure).

The solution is to declare intCountValue as static. This means it will retain its value
between calls to the Counter() function. Here�s the working code:

Private Sub Command1_Click()

 Dim intResult As Integer

 intResult = Counter()

 MsgBox ("Result = " & Str$(intResult))

End Sub

Function Counter() As Integer

 Static intCountValue As Integer

 intCountValue = intCountValue + 1

 Counter = intCountValue

End Function

In fact, you could declare the whole function static, which means that all the variables in it

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\096-101.html (2 of 4) [3/14/2001 1:28:45 AM]

will be static. That looks like this:

Private Sub Command1_Click()

 Dim intResult As Integer

 intResult = Counter()

 MsgBox ("Result = " & Str$(intResult))

End Sub

Static Function Counter() As Integer

 Dim intCountValue As Integer

 intCountValue = intCountValue + 1

 Counter = intCountValue

End Function

Besides declaring variables with Static, you can also use it as a keyword when declaring
functions or subroutines.

Handling Strings

You�ve decided to lead the way into the future by letting your users type in English
sentences as commands to your program. Unfortunately, this means that you have to parse
(that is, break down to individual words) what they type. So what was that string function
that lets you break a string into smaller strings again? We�ll get an overview of string
handling in this topic.

Two Kinds Of Strings

There are two kinds of strings: variable-length and fixed-length strings. You declare a
variable-length string this way:

Dim strVariableString As String

A variable-length string can contain up to approximately 2 billion characters, and it can
grow or shrink to match the data you place in it.

You declare a fixed-length string this way, with an asterisk character (*) followed by the
string�s length:

Dim strFixedString As String * 20

Here, we give our fixed-length string 20 characters. A fixed-length string can contain 1 to
approximately 64K characters.

The String-Handling Functions

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\096-101.html (3 of 4) [3/14/2001 1:28:45 AM]

There are quite a number of string-handling functions in Visual Basic. For example, you use
Left(), Mid(), and Right() to divide a string into substrings, you find the length of a string
with Len(), and so on.

For reference, the Visual Basic string-handling functions appear in Table 3.5.

Table 3.5
String-handling
functions. To Do
This

Use This

Compare two strings StrComp
Convert strings StrConv

Convert to lowercase
or uppercase

Format, LCase, UCase

Create string of
repeating character

Space, String

Find length of a
string

Len

Format a string Format
Justify a string LSet, RSet

Manipulate strings InStr, Left, LTrim, Mid, Right, RTrim, Trim
Set string comparison

rules
Option Compare

Work with ASCII
and ANSI values

Asc, Chr

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\096-101.html (4 of 4) [3/14/2001 1:28:45 AM]

Converting Strings To Numbers And Back Again

You�re all set to write your SuperDeluxe calculator program in Visual Basic�but suddenly you
realize that the user will be entering numbers in text form, not in numeric form. How can you
translate text into numbers, and then numbers into text to display your results?

It�s common in Visual Basic to have to convert values from numbers to strings or from strings to
numbers, and it�s easy to do. You can use the Str() to return a string representation of a number, and
you use Val() to convert a string to a number. That�s all there is to it, but it�s easy to forget those
two functions, so we include them here for reference.

Besides Str() and Val(), you can also use Format(), which lets you format an expression into a
string this way:

Format (expression [, format[, firstdayofweek[, firstweekofyear]]])

Here, expression is the expression to format into the string, format is a valid named or user-defined
format expression, firstdayofweek is a constant that specifies the first day of the week, and
firstweekofyear is a constant that specifies the first week of the year.

For more information about how to use this function and format strings, see �Handling Dates And
Time Using Dates� later in this chapter.

Handling Operators And Operator Precedence

You�ve done well in your computer class�so well that the instructor has asked you to calculate the
average grade on the final. Nothing could be easier, you think, so you put together the following
program:

Private Sub Command1_Click()

 Dim intGrade1, intGrade2, intGrade3, NumberStudents As Integer

 intGrade1 = 60

 intGrade2 = 70

 intGrade3 = 80

 NumberStudents = 3

 MsgBox ("Average grade = " &_

 Str(intGrade1 + intGrade2 + intGrade3 / NumberStudents))

End Sub

When you run the program, however, it calmly informs you that the average score is 156.66666667.
That doesn�t look so good�what�s wrong?

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\102-105.html (1 of 4) [3/14/2001 1:28:48 AM]

The problem lies in this line:

Str(intGrade1 + intGrade2 + intGrade3 / NumberStudents))

Visual Basic evaluates the expression in parentheses from left to right, using pairs of operands and
their associated operator, so it adds the first two grades together first. Instead of adding the final
grade, however, it first divides that grade by NumberStudents, because the division operation has
higher precedence than addition. So the result is 60 + 70 + (80/3) = 156.66666667.

The solution here is to group the values to add together this way using parentheses:

Private Sub Command1_Click()

 Dim intGrade1, intGrade2, intGrade3, NumberStudents As Integer

 intGrade1 = 60

 intGrade2 = 70

 intGrade3 = 80

 NumberStudents = 3

 MsgBox ("Average grade = " &_

 Str((intGrade1 + intGrade2 + intGrade3)/ NumberStudents))

End Sub

Running this new code gives us an average of 70, as it should be.

This example points out the need to understand how Visual Basic evaluates expressions involving
operators. In general, such expressions are evaluated left to right, and when it comes to a contest
between two operators (such as + and / in the last term of our original program), the operator with
the higher precedence is used first.

Visual Basic�s operator precedence, arranged by category, appears in Table 3.6.

Table 3.6
Operators and
operator
precedence.
Arithmetic

ComparisonLogical

Exponentiation
(^)

Equality (=) Not

Negation (-)
Inequality

(<>)
And

Multiplication
and division

(*, /)

Less than
(<)

Or

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\102-105.html (2 of 4) [3/14/2001 1:28:48 AM]

Integer
division (\)

Greater than
(>)

Xor

Modulus
arithmetic

(Mod)

Less than or
equal to (<=)

Eqv

Addition and
subtraction (+,

-)

Greater than
or equal to

(>=)
Imp

String
concatenation

(&)

Like
Is

When expressions contain operators from more than one category in Table 3.6, arithmetic operators
are evaluated first, comparison operators are evaluated next, and logical operators are evaluated last.
Also, comparison operators actually all have equal precedence, which means they are evaluated in
the left-to-right order in which they appear.

If in doubt, use parentheses�operations within parentheses are always performed before those
outside. Within parentheses, however, operator precedence is maintained.

Using If&Else Statements

The If statement is the bread and butter of Visual Basic conditionals, but you can forget the syntax
every now and then (that is, is it ElseIf or Else If?), so here�s the If statement:

If condition Then

[statements]

[ElseIf condition-n Then

[elseifstatements]]...

[Else

[elsestatements]]

End If

And here�s an example showing how to use the various parts of this popular statement:

Dim intInput

intInput = -1

While intInput < 0

 intInput = InputBox("Enter a positive number")

Wend

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\102-105.html (3 of 4) [3/14/2001 1:28:48 AM]

If intInput = 1 Then

 MsgBox ("Thank you.")

ElseIf intInput = 2 Then

 MsgBox ("That's fine.")

ElseIf intInput >= 3 Then

 MsgBox ("Too big.")

End If

Using Select Case

You have to get a value from the user and respond in several different ways, but you don�t look
forward to a long and tangled series of If&Then&Else statements. What can you do?

If your program can handle multiple values of a particular variable and you don�t want to stack up a
lot of If&Else statements to handle them, you should consider Select Case. You use Select Case to
test an expression, seeing which of several cases it matches, and execute the corresponding code.
Here�s the syntax:

Select Case testexpression

[Case expressionlist-n

[statements-n]] ...

[Case Else

[elsestatements]]

End Select

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\102-105.html (4 of 4) [3/14/2001 1:28:48 AM]

Here�s an example using Select Case. In this example, we read a positive value from the user and test it,
responding according to its value. Note that we also use the Select Case Is keyword (not the same as the Is
operator) to check if the value we read in is greater than a certain value, and Case Else to handle values we
don�t explicitly provide code for. Here�s the example:

Dim intInput

intInput = -1

While intInput < 0

 intInput = InputBox("Enter a positive number")

Wend

Const intMax = 100

Select Case intInput

 Case 1:

 MsgBox ("Thank you.")

 Case 2:

 MsgBox ("That's fine.")

 Case 3:

 MsgBox ("Your input is getting pretty big now...")

 Case 4 To 10:

 MsgBox ("You are approaching the maximum!")

 Case Is > intMax:

 MsgBox ("Too big, sorry.")

 Case Else:

 MsgBox ("Please try again.")

End Select

Making Selections With Switch() And Choose()

For some reason, few books on Visual Basic cover the Switch() and Choose() functions. They certainly have
their uses, however, and we�ll take a look at them here.

The Switch() Function

The Switch() function evaluates a list of expressions and returns a Variant value or an expression associated
with the first expression in the list that is true. Here�s the syntax:

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\105-109.html (1 of 5) [3/14/2001 1:28:51 AM]

Switch (expr-1, value-1[, expr-2, value-2 ... [, expr-n, value-n]])

In this case, expr-1 is the first expression to evaluate; if true, Switch() returns value-1. If expr-1 is not True
but expr-2 is, Switch() returns value-2 and so on.

Here�s an example showing how to use Switch(). In this case, we ask the user to enter a number and use
Switch() to calculate the absolute value of that value (having temporarily forgotten how to use the built-in
Visual Basic absolute value function, Abs()):

Dim intValue

intValue = InputBox("Enter a number")

intAbsValue = Switch(intValue < 0, -1 * intValue, intValue >= 0, intValue)

MsgBox "Absolute value = " & Str(intAbsValue)

The Choose() Function

You use the Choose() function to return one of a number of choices based on an index. Here�s the syntax:

Choose (index, choice-1 [, choice-2, ... [, choice-n]])

If the index value is 1, the first choice is returned, if index equals 2, the second choice is returned, and so on.

Here�s an example using Choose(). In this case, we have three employees�Bob, Denise, and Ted�with
employee IDs 1, 2, and 3. This code snippet accepts an ID value from the user and uses Choose() to display
the corresponding employee name:

Dim intID

intID = -1

While intID < 1 Or intID > 3

 intID = InputBox("Enter employee's ID")

Wend

MsgBox "Employee name = " & Choose(intID, "Bob", "Denise", "Ted")

Looping

Many programmers have a love/hate relationship with looping, based primarily on syntax. Programmers often
have to switch back and forth these days between languages, and can find themselves writing, for example, a
C++ loop in the middle of a Visual Basic program and being taken by surprise when the compiler objects.

To make it easier, we�ll include examples here of all the Visual Basic loops, starting with the Do loop.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\105-109.html (2 of 5) [3/14/2001 1:28:51 AM]

The Do Loop

The Do loop has two versions; you can either evaluate a condition at the beginning

Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

or at the end:

Do

[statements]

[Exit Do]

[statements]

Loop [{While | Until} condition]

Here�s an example where we read from a file, looping until we reach the end of the file, which we check with
the end-of-file function, EOF():

Do Until EOF(1)

 Line Input #1, Data$

 Form1.TextBox1.Text = Form1.TextBox1.Text + Data$

Loop

TIP: Note that the second form of the Do loop ensures that the body of the loop is executed at least once. On
the other hand, you sometimes want to make sure the loop doesn�t run even once if the condition is not met.
For example, when reading from a file, you shouldn�t read from a file before checking for the end of file in
case the file is empty.

The For Loop

The Do loop doesn�t need a loop index, but the For loop does. Here�s the syntax for the For loop:

For index = start To end [Step step]

[statements]

[Exit For]

[statements]

Next [index]

Here�s how to put it to work:

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\105-109.html (3 of 5) [3/14/2001 1:28:51 AM]

Dim intLoopIndex, Total

Total = 0

For intLoopIndex = 1 To 10

 Total = Total + 1

Next intLoopIndex

TIP: Although it�s been common practice to use a loop index after a loop completes (to see how many loop
iterations were executed), that practice is now discouraged by people who make it their business to write about
good and bad programming practices.

The For Each Loop

You use the For Each loop to loop over elements in an array or collection. Here�s its syntax:

For Each element In group

[statements]

[Exit For][statements]

Next [element]

You can get a look at this loop in action with an example like this one, where we display all the elements of an
array in message boxes:

Dim IDArray(1 To 3)

IDArray(1) = 1

IDArray(2) = 2

IDArray(3) = 3

For Each ArrayItem In IDArray

 MsgBox (Str(ArrayItem))

Next ArrayItem

The While Loop

You use a While loop if you if you want to stop looping when a condition is no longer true. Here�s the While
loop�s syntax:

While condition

[statements]

Wend

And here�s an example putting While to work:

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\105-109.html (4 of 5) [3/14/2001 1:28:51 AM]

Dim intInput

intInput = -1

While intInput < 0

 intInput = InputBox("Enter a positive number")

Wend

TIP: Many Visual Basic functions, like EOF(), are explicitly constructed to return values of True or False so
that you can use them to control loops such as Do and While loops.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\105-109.html (5 of 5) [3/14/2001 1:28:51 AM]

The With Statement

Properly speaking, the With statement is not a loop, but it can be as useful as a loop
�and in fact, many programmers actually think of it as a loop. You use the With
statement to execute statements using a particular object. Here�s the syntax:

With object

[statements]

End With

Here�s an example showing how to put With to work. Here, we use a text box,
Text1, and set several of its properties in the With statement:

With Text1

 .Height = 1000

 .Width = 3000

 .Text = "Welcome to Visual Basic"

End With

Using Collections

Using collections, you can group related items together. Collections can be
heterogeneous�that is, members of a collection don�t have to share the same data
type, and that can be very useful, because life doesn�t always present you with
collections made up of items of the same type.

You create a collection as you would any other object:

Dim GarageSaleItems As New Collection

You can add members to the collection with the Add method and remove them with
the Remove method.

You can also reach specific members in the collection using the Item method. Most
importantly, from a programming point of view, you can loop over the entire
collection using the For Each&Next statement (see the previous section, �Looping
�).

Collections are very useful and are one of the high points of Visual Basic. However,
because of the heterogeneous nature of their contents, they don�t necessarily lend
themselves to tight and uniform coding practices (which makes some C and C++
programmers look down their noses at Visual Basic).

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\109-114.html (1 of 4) [3/14/2001 1:28:55 AM]

Sending Keystrokes To Other Programs

It�s time to print out the 349 screen spreadsheets you�ve created in your new
spreadsheet program to show the boss. Regrettably, there just doesn�t seem to be
any way to print them out except one at a time, using the File menu�s Print item.
Can Visual Basic help here?

Yes. You can use the SendKeys() function to send keys to the program that
currently has the Windows focus, just as if you typed in those keys yourself. Using
the Alt key, you can reach the menu items in your spreadsheet�s File menu. The day
is saved, because now you can automate your printing job, even waiting until the
spreadsheet program processes the current keystroke before continuing. Here�s how
you use SendKeys():

SendKeys string [, wait]

The string expression is the string you want to send to the other program. The wait
argument is a Boolean value indicating the wait mode. If False (which is the
default), control returns right after the keys are sent. If True, the keystrokes must be
processed by the other program before control returns.

If the keys you want to send are not simple text, just embed the codes you see in
Table 3.7 in the text you send to SendKeys().

Table 3.7
SendKeys()
key codes.
Key

Code

Backspace {BACKSPACE}, {BS}, or {BKSP}
Break {BREAK}

Caps Lock {CAPSLOCK}
Del or Delete {DELETE} or {DEL}
Down arrow {DOWN}

End {END}
Enter or
Return

{ENTER} or ~

Esc {ESC}
Help {HELP}
Home {HOME}

Ins or Insert {INSERT} or {INS}
Left arrow {LEFT}
Num Lock {NUMLOCK}
Page Down {PGDN}

Page Up {PGUP}

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\109-114.html (2 of 4) [3/14/2001 1:28:55 AM]

Print Screen {PRTSC}
Right arrow {RIGHT}
Scroll Lock {SCROLLLOCK}

Tab {TAB}
Up arrow {UP}

F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}
F16 {F16}
Shift +
Ctrl ^
Alt %

Here�s an example showing how to use SendKeys(). Here, we give the Windows
WordPad program the focus with the Visual Basic AppActivate() function, passing
it the title of that program (which appears in its title bar), and send the string �Hello
from Visual Basic!� to that program as follows:

AppActivate ("Document - WordPad")

SendKeys ("Hello from Visual Basic!")

The result appears in Figure 3.2�now we�re able to send keystrokes to another
program.

Figure 3.2 Sending keystrokes to Windows WordPad.

Handling Higher Math

Well, it may have been a mistake taking on that programming job from the

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\109-114.html (3 of 4) [3/14/2001 1:28:55 AM]

javascript:displayWindow('images/03-02.jpg',632,305%20)
javascript:displayWindow('images/03-02.jpg',632,305)

astrophysics department. How do you calculate a hyperbolic cosecant anyway? Can
Visual Basic do it?

Yes, although not directly. The built-in Visual Basic math functions appear in Table
3.8.

Table 3.8
Visual
Basic math
functions.
Function

Calculates This

Abs Absolute value
Atn Arc tangent
Cos Cosine
Exp Exponentiation
Fix Fix places
Int Integer value
Log Log
Rnd Random number
Sgn Sign
Sin Sine
Sqr Square root
Tan Tangent

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\109-114.html (4 of 4) [3/14/2001 1:28:55 AM]

If what you want, like hyperbolic cosecant, is not in Table 3.8, use Table 3.9, which
shows you how to calculate other results using the built-in Visual Basic functions.
There�s enough math power in Table 3.9 to keep most astrophysicists happy.

Table 3.9
Calculated
math
functions.
Function

Calculate This Way

Secant Sec(X) = 1 / Cos(X)
Cosecant Cosec(X) = 1 / Sin(X)
Cotangent Cotan(X) = 1 / Tan(X)

Inverse sine Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse
cosine

Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)

Inverse
secant

Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))

Inverse
cosecant

Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))

Inverse
cotangent

Arccotan(X) = Atn(X) + 2 * Atn(1)

Hyperbolic
sine

HSin(X) = (Exp(X) - Exp(-X)) / 2

Hyperbolic
cosine

HCos(X) = (Exp(X) + Exp(-X)) / 2

Hyperbolic
tangent

HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))

Hyperbolic
secant

HSec(X) = 2 / (Exp(X) + Exp(-X))

Hyperbolic
cosecant

HCosec(X) = 2 / (Exp(X) - Exp(-X))

Hyperbolic
cotangent

HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))

Inverse
hyperbolic

sine
HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse
hyperbolic

cosine
HArccos(X) = Log(X + Sqr(X * X - 1))

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\114-115.html (1 of 4) [3/14/2001 1:28:58 AM]

Inverse
hyperbolic

tangent
HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse
hyperbolic

secant
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse
hyperbolic
cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)

Inverse
hyperbolic
cotangent

HArccotan(X) = Log((X + 1) / (X - 1)) / 2

Logarithm to
base N

LogN(X) = Log(X) / Log(N)

Handling Dates And Times

One of the biggest headaches a programmer can have is working with dates.
Handling hours, minutes, and seconds can be as bad as working with pounds,
shillings, and pence. Fortunately, Visual Basic has a number of date- and
time-handling functions, which appear in Table 3.10�you can even add or subtract
dates using those functions.

Table 3.10
Visual Basic
date
keywords.
To Do This

Use This

Get the
current date

or time
Date, Now, Time

Perform date
calculations

DateAdd, DateDiff, DatePart

Return a date DateSerial, DateValue
Return a time TimeSerial, TimeValue
Set the date

or time
Date, Time

Time a
process

Timer

There�s something else you should know�the Format$() function makes it easy to
format dates into strings, including times. For easy reference, see Table 3.11, which

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\114-115.html (2 of 4) [3/14/2001 1:28:58 AM]

shows how to display the date and time in a string�note how many ways there are to
do this.

Table 3.11 Using
Format$() to
display dates and
times. Format
Expression

Yields This on January 1, 2000 at 1:00 A.M.

Format$(Now, �m
- d - yy�) �1-1-00�

Format$(Now, �m
/ d / yy�) �1 / 1 / 00�

Format$(Now,
�mm - dd - yy�) �01-01-00�

Format$(Now,
�ddd, mmmm d,

yyy�)
�Friday, January 1, 2000�

Format$(Now, �d
mmm, yyy�) �1 Jan, 2000�

Format$(Now,
�hh:mm:ss
mm/dd/yy�)

�01:00:00 01/01/00�

Format$(Now,
�hh:mm:ss

AM/PM mm- dd-
yy�)

�01:00:00 AM 01-01-00�

You can also compare dates and times directly. For example, here�s how you loop
until the current time (returned as a string by Time$) exceeds the time the user has
entered in a text box (for example, �15:00:00�); when the time is up, the program
beeps and displays a message box:

While Time$ < Text1.Text

Wend

Beep

MsgBox ("Time�s up!")

Warning! Don�t use this code snippet for more than an example of how to compare
times! The eternal looping while waiting for something to happen is a bad idea in
Windows, because your program monopolizes a lot of resources that way. Instead,
set up a Visual Basic Timer object and have a procedure called, say, every second.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\114-115.html (3 of 4) [3/14/2001 1:28:58 AM]

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\114-115.html (4 of 4) [3/14/2001 1:28:58 AM]

Handling Financial Data

You finally landed that big programming job at MegaMegaBank�congratulations!
But now there�s some trouble�just what is an �internal rate of return� anyway? Visual
Basic to the rescue�there are 13 Visual Basic functions devoted entirely to financial
work, and they appear in Table 3.12.

Table 3.12
The Visual
Basic financial
functions. To
Do This

Use This

Calculate
depreciation

DDB, SLN, SYD

Calculate
future value

FV

Calculate
interest rate

Rate

Calculate
internal rate of

return
IRR, MIRR

Calculate
number of

periods
NPer

Calculate
payments

IPmt, Pmt, PPmt

Calculate
present value

NPV, PV

TIP: If you�re going to be working with financial data, checkout the Visual Basic
currency data in �Declaring Variables� earlier in this chapter. The currency data type
can hold values from -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

Ending A Program At Any Time

Our last topic in this chapter will be about ending programs. There are times when
you want to end a program without any further ado�for example, to make an Exit
menu item active. How do you do that?

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\116-116.html (1 of 2) [3/14/2001 1:28:59 AM]

You use the End statement. This statement stops execution of your program�but
note that it does so immediately, which means that no Unload() or similar event
handling functions are called. End just brings the program to an end, which is what
it should do.

TIP: The Stop statement is similar to End, except that it puts the program in a
break state. Executing a Stop statement, therefore, is just like running into a
breakpoint�the debugger will come up.

Visual Basic 6 Black Book:The Visual Basic Language

http://24.19.55.56:8080/temp/ch03\116-116.html (2 of 2) [3/14/2001 1:28:59 AM]

Chapter 4
Managing Forms In Visual Basic
If you need an immediate solution to:

Setting Title Bar Text

Adding/Removing Min/Max Buttons And Setting A Window�s Border

Adding Toolbars To Forms

Adding Status Bars To Forms

Referring To The Current Form

Redrawing Form Contents

Setting Control Tab Order

Moving And Sizing Controls From Code

Showing And Hiding Controls In A Form

Measurements In Forms

Working With Multiple Forms

Loading, Showing, And Hiding Forms

Setting The Startup Form

Creating Forms In Code

Using The Multiple Document Interface

Arranging MDI Child Windows

Opening New MDI Child Windows

Arrays Of Forms

Coordinating Data Between MDI Child Forms (Document Views)

Creating Dialog Boxes

All About Message Boxes And Input Boxes

Passing Forms To Procedures

Minimizing/Maximizing And Enabling/Disabling Forms From Code

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\117-123.html (1 of 4) [3/14/2001 1:29:07 AM]

In Depth

In this chapter, we�ll take a look at handling forms in Visual Basic. There�s a great
deal to see about form handling, and we�ll look at it all. We�ll see how to customize
forms, how to work with multiple forms, how to support the multiple document
interface (MDI), how to coordinate MDI child forms, how to use the MsgBox() and
InputBox() functions, how to load, hide, show, and unload forms, and much more.
We�ll begin the chapter by getting an overview of Visual Basic forms.

The Parts Of A Form

Forms are the names for windows in Visual Basic (originally, you called windows
under design forms, and the actual result when running a window, but common
usage has named both forms now), and you add controls to forms in the Integrated
Development Environment (IDE).

We�re designing a form in the Visual Basic IDE in Figure 4.1, and you can see
several aspects of forms there. At the top of the form is the title bar, which displays
the form�s title; here that�s just Form1. At right in the title bar is the control box,
including the minimizing/maximizing buttons and the close button. These are
controls the user takes for granted in most windows, although we�ll see they are
inappropriate in others (such as dialog boxes).

Figure 4.1 A form under design.

Under the title bar comes the menu bar, if there is one. In Figure 4.1, the form has
one menu: the File menu (we�ll see how to work with menus in the next chapter).
Under the menu bar, forms can have toolbars, as you see in the IDE itself.

The main area of a form�the area where everything takes place�is called the client
area. In general, Visual Basic code works with controls in the client area and leaves
the rest of the form to Visual Basic (in fact, the client area is itself a window). In
Figure 4.1, we�ve added a control�a command button�to the form.

Finally, the whole form is surrounded by a border, and there are several types of
borders that you can use.

The Parts Of An MDI Form

Besides standard forms, Visual Basic also supports MDI forms. An MDI form
appears in Figure 4.2.

Figure 4.2 An MDI form.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\117-123.html (2 of 4) [3/14/2001 1:29:07 AM]

javascript:displayWindow('images/04-01.jpg',680,461%20)
javascript:displayWindow('images/04-01.jpg',680,461)
javascript:displayWindow('images/04-02.jpg',407,306%20)
javascript:displayWindow('images/04-02.jpg',407,306)

You can see that an MDI form looks much like a standard form, with one major
difference, of course�the client area of an MDI form acts like a kind of corral for
other forms. That is, an MDI form can display MDI child forms in it, which is how
the multiple document interface works. In Figure 4.2, we have two documents open
in the MDI form.

That�s the third type of form you can have in Visual Basic�MDI child forms. These
forms appear in MDI child windows, but otherwise are very similar to standard
forms.

Those, then, are the three types of forms available to us in Visual Basic: standard
forms, MDI forms, and MDI child forms. We�ll work with all of them in this
chapter. In fact, we�re ready to start getting into the details now as we turn to the
Immediate Solutions section of this chapter.

Immediate Solutions

Setting Title Bar Text

You�ve submitted your project to the user-testing stage and feel smug. What could
go wrong? Suddenly the phone rings�seems they don�t like the title in the program�s
title bar: �Project1�. How can you change it?

This stymies a lot of Visual Basic programmers, because the text in the title bar
seems like something that Windows itself manages, not the program. In fact, it�s up
to the program, and setting the text in the title bar couldn�t be easier. At design time,
you just change the form�s Caption property, as shown in Figure 4.3.

Figure 4.3 Setting a form�s caption.

You can also set the Caption property at runtime in code like this (note that we use
the Me keyword here to refer to the current form�see �Referring to the Current Form
� later in this chapter):

Private Sub Command1_Click()

 Me.Caption = "Hello from Visual Basic!"

End Sub

Adding/Removing Min/Max Buttons And Setting A Window�s Border

Forms usually come with minimizing and maximizing buttons, as well as a close
box at the upper right. However, that�s not appropriate in all cases, as we�ll see
when we design dialog boxes later in this chapter.

To remove these buttons, you can set the form�s ControlBox property to False, as

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\117-123.html (3 of 4) [3/14/2001 1:29:07 AM]

javascript:displayWindow('images/04-03.jpg',680,506%20)
javascript:displayWindow('images/04-03.jpg',680,506)

shown in Figure 4.4. Note that the usual buttons are missing from the form at the
upper right.

Figure 4.4 Removing the control box from a form.

TIP: If you are thinking of designing a dialog box, take a look at �Creating Dialog
Boxes� later in this chapter�besides removing the control box, you should also set
the dialog�s border correctly, add OK and Cancel buttons, and take care of a few
more considerations.

You can also set what buttons are in a form by setting its border type. For example,
if you set the border style to a fixed type, the minimizing and maximizing buttons
will disappear.

Setting A Form�s Border

You set a form�s border style with its BorderStyle property; here are the possible
values for that property:

" 0�None

" 1�Fixed Single

" 2�Sizable

" 3�Fixed Dialog

" 4�Fixed Tool window

" 5�Sizable Tool window

We�ll see more about using the BorderStyle property when we work with dialog
boxes in this chapter.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\117-123.html (4 of 4) [3/14/2001 1:29:07 AM]

javascript:displayWindow('images/04-04.jpg',680,506%20)
javascript:displayWindow('images/04-04.jpg',680,506)

Adding Toolbars To Forms

For some reason, adding toolbars to forms isn�t covered in a lot of Visual Basic books. However, users have
come to expect toolbars in more complex programs, and we�ll see how to add them here. Toolbars provide
buttons that correspond to menu items and give the user an easy way to select the commands those items
correspond to.

Adding A Toolbar With The Application Wizard

The easiest way to design a toolbar and add it to a program is with the Application Wizard. When you create
a new application using the Application Wizard, it lets you design the toolbar, as shown in Figure 4.5.

Figure 4.5 Designing a toolbar with the Application Wizard.

This is a great way to put a toolbar in a program, because the support is already there for all these buttons by
default. When you create the program, here�s how it handles the buttons in the toolbar, with a Select Case
statement that looks at the button�s Key value:

Private Sub tbToolBar_ButtonClick(ByVal Button As ComctlLib.Button)

 On Error Resume Next

 Select Case Button.Key

 Case "New"

 LoadNewDoc

 Case "Open"

 mnuFileOpen_Click

 Case "Save"

 mnuFileSave_Click

 Case "Print"

 mnuFilePrint_Click

 Case "Copy"

 mnuEditCopy_Click

 Case "Cut"

 mnuEditCut_Click

 Case "Paste"

 mnuEditPaste_Click

 Case "Bold"

 ActiveForm.rtfText.SelBold = Not ActiveForm.rtfText.SelBold

 Button.Value = IIf(ActiveForm.rtfText.SelBold, tbrPressed,_

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\123-126.html (1 of 3) [3/14/2001 1:29:20 AM]

javascript:displayWindow('images/04-05.jpg',483,353%20)
javascript:displayWindow('images/04-05.jpg',483,353)

 tbrUnpressed)

 Case "Italic"

 ActiveForm.rtfText.SelItalic = Not ActiveForm.rtfText._

 SelItalic

 Button.Value = IIf(ActiveForm.rtfText.SelItalic, tbrPressed,_

 tbrUnpressed)

 Case "Underline"

 ActiveForm.rtfText.SelUnderline = Not _

 ActiveForm.rtfText.SelUnderline

 Button.Value = IIf(ActiveForm.rtfText.SelUnderline,_

 tbrPressed,tbrUnpressed)

 Case "Align Left"

 ActiveForm.rtfText.SelAlignment = rtfLeft

 Case "Align Right"

 ActiveForm.rtfText.SelAlignment = rtfRight

 Case "Center"

 ActiveForm.rtfText.SelAlignment = rtfCenter

 End Select

End Sub

Adding A Toolbar To A Program Yourself

You can also add toolbars to already-existing programs; just follow these steps:

1. Use the Project[vbar]Components item to open the Components box, and select the Controls tab.

2. Click the Microsoft Windows Common Controls box, and click on OK to close the Components box.

3. Double-click the New Toolbar tool in the toolbox to add a new toolbar to your form now.

4. Right-click the toolbar now, and select the Properties item in the pop-up menu that appears, opening the
button�s property page, as shown in Figure 4.6.

Figure 4.6 Setting a toolbar button�s properties.

5. Click the Buttons tab in the property page now, and click Insert Button to insert a new button into the
toolbar.

6. Give the new button the caption you want, and set its Key property to a string of text you want to refer to
the button with in code (in Figure 4.6, we set the new button�s Key property to �First�).

7. Add other buttons in the same way and close the property page.

8. Double-click a button in the toolbar now to open the code window, displaying Toolbar1_ButtonClick():

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\123-126.html (2 of 3) [3/14/2001 1:29:20 AM]

javascript:displayWindow('images/04-06.jpg',416,384%20)
javascript:displayWindow('images/04-06.jpg',416,384)

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)

...

End Sub

9. Add the code you want to Toolbar1_ButtonClick(). You do this with a Select Case statement, selecting
on the buttons� Key property:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)

 Select Case Button.Key

 Case "First"

 MsgBox "You clicked the first button."

 Case "Second"

 MsgBox "You clicked the second button."

 Case "Third"

 MsgBox "You clicked the third button."

 End Select

End Sub

And that�s it�now we�ve added a toolbar to a program; when the user clicks a key in the toolbar, our program
will handle it. The result appears in Figure 4.7.

Figure 4.7 A form with a toolbar.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\123-126.html (3 of 3) [3/14/2001 1:29:20 AM]

javascript:displayWindow('images/04-07.jpg',260,202%20)
javascript:displayWindow('images/04-07.jpg',260,202)

Adding Status Bars To Forms

You�ve finished your program, and it�s ready to go to market�but suddenly the
project director calls and asks why there�s so many message boxes popping up all
the time. You explain that you have to give the user feedback on the file
downloading process�after all, downloading the 200MB initialization file from the
Internet takes some time, and you like to update the user on the process every time a
kilobyte of data has been read.

�What about using the status bar?� the project director asks.

Hmm, you think�what about using the status bar?

The easiest way to put a status bar in a form is to design your program with the
Application Wizard, and the result of that process appears earlier in Figure 4.2.
However, you can also add status bars to a program yourself with these steps:

1. Use the Project[vbar]Components item to open the Components box, and select
the Controls tab.

2. Click the Microsoft Windows Common Controls box, and click on OK to close
the Components box.

3. Double-click the New Status Bar tool in the toolbox to add a new status bar to
your form now.

4. Right-click the status bar, and select the Properties item in the pop-up menu that
appears, opening the button�s property page, as shown in Figure 4.8.

Figure 4.8 Adding panels to a status bar.

5. Status bars are organized into panels, and each panel can display separate text.
To add the panels you want to the status bar, use the Insert Panel button. Close the
property page.

6. Now you can set the text in the panels from code. You do that with the status bar
�s Panels collection. The first panel in the status bar is Panels(1), the second
Panels(2), and so on. For example, to set the text in the first panel to �Status: OK�,
you would use this code:

Private Sub Command1_Click ()

 StatusBar1.Panels(1).Text = "Status: OK"

End Sub

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\126-131.html (1 of 4) [3/14/2001 1:29:32 AM]

javascript:displayWindow('images/04-08.jpg',416,336%20)
javascript:displayWindow('images/04-08.jpg',416,336)

The result appears in Figure 4.9�now we�re using status bars in our programs.

Figure 4.9 A new status bar in a program.

Referring To The Current Form

You�ve written a terrific subroutine to change a form�s color to red

Sub ColorWindow(FormToColor As Form)

 FormToColor.BackColor = RGB(255, 0, 0)

End Sub

and you want to color all the forms in your project when the user clicks a button.
That�s easy to do using the Me keyword, which refers to the current object. Here,
for example, is how we�d pass the current form to the ColorWindow() subroutine:

Private Sub Command1_Click()

 ColorWindow Me

End Sub

That is, Me is an implicit variable, always available, and stands for the current
object, which comes in handy when you want to pass the current object to a
procedure.

TIP: The Me keyword is also very useful in class modules where more than one
instance of a class can occur, because it always refers to the current instance.

Redrawing Form Contents

You�ve written some code to draw an �x� across a form like this:

Private Sub Command1_Click()

 Line (0, 0)-(ScaleWidth, ScaleHeight)

 Line (0, ScaleHeight)-(ScaleWidth, 0)

End Sub

You try it out and it looks perfect�but then the boss walks past and you minimize
your program for a second to go back to that word-processing program so you�ll
look busy. When you maximize the x program again, the x is gone�what happened?

One of the biggest headaches for Windows programmers is refreshing the window

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\126-131.html (2 of 4) [3/14/2001 1:29:32 AM]

javascript:displayWindow('images/04-09.jpg',260,202%20)
javascript:displayWindow('images/04-09.jpg',260,202)

when required, because that involves redrawing the entire form�s contents. To make
matters worse, this is a common occurrence, because in Windows, the user is
always covering and uncovering windows, minimizing and maximizing them, and
changing their size, all of which means that your program has to keep redrawing
itself.

In C or C++ programs, you have to write all the redrawing code yourself;
fortunately, there is an easy fix in Visual Basic (and that�s one of the things that
made Visual Basic so popular in the first place)�you just use the AutoReDraw
property. You�ve probably already used the AutoReDraw property, but we include
it here for reference. When you set this property to True, as shown in Figure 4.10,
the graphics displayed in the form are stored and redisplayed when needed. All the
window refreshes are done for you.

Figure 4.10 Setting AutoReDraw to True.

Now when you minimize and then maximize your x program, the x reappears as it
should. Problem solved!

Setting Control Tab Order

Another call from the Testing Department. They�ve been going over your program
with a fine-tooth comb and asking about the keyboard interface.

What does that mean? you ask.

They explain that theoretically, according to Microsoft, users should be able to run
all Windows programs with the keyboard alone.

But that was archaic years ago, you say.

Add it to your program, they say.

In Visual Basic, you can make controls accessible to the keyboard by setting their
tab order. The user can move around from control to control, highlighting the
currently selected control, using the Tab key. But it�s up to you to set the order in
which the focus moves from control to control, and even whether or not a control
can be reached with the Tab key.

To set the tab order of the controls in your program, follow these steps:

1. Select a control whose tab order you want to set with the mouse, as shown in
Figure 4.11.

Figure 4.11 Setting a control�s TabIndex property to set its tab order.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\126-131.html (3 of 4) [3/14/2001 1:29:32 AM]

javascript:displayWindow('images/04-10.jpg',680,506%20)
javascript:displayWindow('images/04-10.jpg',680,506)
javascript:displayWindow('images/04-11.jpg',680,506%20)
javascript:displayWindow('images/04-11.jpg',680,506)

2. Next, make sure the control�s TabStop property is set to True, as shown in
Figure 4.11. If this property is False, the user cannot reach the control using the Tab
key.

3. Now set the control�s position in the tab order by setting its TabIndex property.
The first control in the tab order has a TabIndex of 0, the next a TabIndex of 1,
and so on.

4. When you run the program, the first control is highlighted; when the user presses
the Tab key, the focus moves to the second control in the tab order, when he presses
Tab again, the focus moves to the third control, and so on.

That�s all it takes�now you�re giving your program a keyboard interface.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\126-131.html (4 of 4) [3/14/2001 1:29:32 AM]

Moving And Sizing Controls From Code

Sometimes it�s necessary to move or resize the controls in a form as a program is
running, but for some reason, many Visual Basic programmers think you can only
do that at design time. In fact, you can do it at runtime easily.

All controls have these properties available at design time or runtime to set their
location and dimensions:

" Top�The y coordinate of the top left of the control.

" Left�The x coordinate of the top left of the control.

" Width�The width of the control.

" Height�The height of the control.

You can change all these settings interactively to move or resize a control in a form.
Note that all measurements are in twips (1/1440 of an inch) by default, and that the
origin (0, 0) in a form is at upper left.

You can also use a control�s Move() method to move a control to a new location:

object.Move left, [top, [width, [height]]]

Here�s an example�in this case, when the user clicks a button, Command1, we
double the button�s width and height, and move it 500 twips to the left:

Private Sub Command1_Click()

 Const intIncrement = 500

 Command1.Width = 2 * Command1.Width

 Command1.Height = 2 * Command1.Height

 Command1.Move (Command1.Left + intIncrement)

End Sub

TIP: One way of creating simple animation is to use an Image control to display an
image and use its Move() method to move it around a form.

Showing And Hiding Controls In A Form

The Testing Department is on the phone again�does your program really need 120
buttons in the main form? After all, that�s exactly what menus were designed for: to

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\131-133.html (1 of 3) [3/14/2001 1:29:36 AM]

hide controls not needed, getting them out of the user�s way. (In fact, that�s usually a
good way to determine if a control item should be in a menu or on the main form:
you use menus to make options available to the user at all times, while keeping
them out of the way.)

However, let�s say you really don�t want to put your control items into menus�you
can still use buttons if you hide the ones that don�t apply at a particular time,
showing them when appropriate. Hiding and showing controls in a form as needed
can produce dramatic effects at times.

Showing and hiding controls is easy: just use the control�s Visible property. Setting
this property to True displays the control; setting it to False hides it. Here�s an
example where we make a button disappear (probably much to the user�s surprise)
when the user clicks it:

Private Sub Command1_Click()

 Command1.Visible = False

End Sub

Measurements In Forms

The default measurement units for forms are twips, but the project design board
says they want the data-entry forms you�re designing to look like real 3×5 cards on
the screen. Can you convert from twips to inches in Visual Basic? Yes, you can, and
we�ll take a look at that and other measurement issues here.

You can get the dimensions of a form�s client area with these properties:

" ScaleWidth�The width of the client area.

" ScaleHeight�The height of the client area.

" ScaleLeft�The horizontal coordinate of upper left of client area.

" ScaleTop�The vertical coordinate of upper left of client area.

And you can get the overall dimensions of the form using these properties:

" Width�The width of the form.

" Height�The height of the form.

" Left�The horizontal coordinate of upper left of the form

" Top�The vertical coordinate of upper left of the form

You can also use the ScaleMode property to set a form�s coordinate system units
�you don�t have to use twips. Here are the possible values for ScaleMode :

" 0�User-defined

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\131-133.html (2 of 3) [3/14/2001 1:29:36 AM]

" 1�Twips (1/1440ths of an inch)

" 2�Points (1/72nds of an inch)

" 3�Pixels

" 4�Characters (120 twips horizontally, 240 twips vertically)

" 5�Inches

" 6�Millimeters

" 7�Centimeters

User-Defined Coordinates

To make life easier for yourself, you can set up a user-defined coordinate system:
just set the ScaleWidth and ScaleHeight properties yourself. For example, if you
want to plot data on a 1000x1000 grid, just set ScaleWidth and ScaleHeight to
1000. To draw a scatter plot of your data, then, you could use PSet() to set
individual pixels directly. If one of the points to graph was (233, 599), you could
draw that dot this way: PSet(233, 599).

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\131-133.html (3 of 3) [3/14/2001 1:29:36 AM]

Working With Multiple Forms

You�ve designed your program and it�s a beauty: an introductory form to welcome
the user, a data-entry form to get data from the user, a summary form to display the
data analysis results, a logon form to connect to the Internet�it�s all there.

Suddenly it occurs to you�aren�t Visual Basic projects organized into modules and
forms? How does the code in one form reach the code in another�that is, how can
the code in the analysis module read what the user has entered in the data-entry
form? It�s time to take a look at working with multiple forms.

For example, let�s say that your introductory form looks something like that in
Figure 4.12.

Figure 4.12 A single form that lets the user display another form.

When the user clicks the Show Form2 button, the program should display Form2
on the screen�and place the text �Welcome to Visual Basic� in the text box in Form2
as well, as shown in Figure 4.13. To be able to do that, we�ll need to reach one form
from another in code.

Figure 4.13 A multiform program.

Create a new Visual Basic project now. This project has one default form, Form1.
To add another form, Form2, just select the Add Form item in the Project menu;
click on OK in the Add Form dialog box that appears to accept the default new
form. In addition, add a new text box, Text1, to the new form, Form2.

In addition, add a command button to Form1 and give it the caption �Show Form2�
and open the code for that button now:

Private Sub Command1_Click ()

End Sub

When the user clicks the Show Form2 button, we will show Form2, which we do
with Form2�s Show() method:

Private Sub Command1_Click()

 Form2.Show

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\134-138.html (1 of 4) [3/14/2001 1:29:51 AM]

javascript:displayWindow('images/04-12.jpg',586,324%20)
javascript:displayWindow('images/04-12.jpg',586,324)
javascript:displayWindow('images/04-13.jpg',824,525%20)
javascript:displayWindow('images/04-13.jpg',824,525)

...

End Sub

Next, to place the text �Welcome to Visual Basic� in the text box, Text1, in Form2,
we need to use that text box�s fully qualified name: Form2.Text1, indicating that the
text box we want is in Form2. We can use that text box�s Text property this way to
set the text in the box:

Private Sub Command1_Click()

 Form2.Show

 Form2.Text1.Text = "Hello from Visual Basic"

End Sub

TIP: One useful property that controls have is the Parent property. Controls are
really child windows of the form they�re in, so if you wanted to set the background
color of the form that Text1 is in and don�t know that form�s name, you can use the
Text1.Parent.BackColor property.

That completes the code for the Show Form2 button. Form2 has a button labeled
Hide Form, and we can implement that by hiding Form2 in that button�s event
handler procedure:

Private Sub Command1_Click()

 Hide

End Sub

WARNING! If you hide all windows in a Visual Basic program that has no
Main() procedure in a module, the program will end.

And that�s it�we�ve written a program that handles multiple forms.

TIP: You can also make variables global in a Visual Basic project by declaring
them at the module level and using the Public keyword. The code in all forms has
access to global variables (but in general, you should limit the number of global
variables you use so the global space remains uncluttered and you don�t get conflicts
and unintended side effects with variables of the same name).

Loading, Showing, And Hiding Forms

There are times when you might want to work with a form before displaying it on

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\134-138.html (2 of 4) [3/14/2001 1:29:51 AM]

the screen to initialize it (with graphics and so on), in which case you can load the
form into memory using the Load statement.

TIP: You don�t need to load or unload forms to show or hide them�the loading and
unloading processes are automatic. You usually load forms explicitly only to work
on them before displaying them, as Visual Basic recommends if you want to work
with a form before showing it. However, it actually turns out that you don�t really
need to use Load even then, because referring to a form makes Visual Basic load it
automatically. This means you don�t have to load forms to use the Show() or Hide()
methods with them.

To actually show the form on the screen, then, you use the Show() method. Here�s
an example in which we load a new form, Form2, and then show it:

Private Sub Command1_Click()

 Load Form2

 Form2.Show

End Sub

TIP: If you load an MDI child window without having loaded its associated MDI
frame, the MDI frame is also loaded automatically.

After displaying a form, you can hide it with the Hide() method and unload it
(although that�s not necessary) with the Unload statement. You usually unload
forms if you have a lot of them and are concerned about memory usage. Here�s an
example in which we hide Form2 and then unload it:

Private Sub Command2_Click()

 Form2.Hide

 Unload Form2

End Sub

Setting The Startup Form

Well, the program is complete, and you�ve saved writing the best for last: the
opening form in which you greet the user. Unfortunately, that greeting form is
Form249, and when you actually test the program, Visual Basic pops Form1,
which is the Import File dialog box, onto the screen first. How can you make the
program start with Form249?

You can set the startup form following these steps:

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\134-138.html (3 of 4) [3/14/2001 1:29:51 AM]

1. Select the Project[vbar]Properties item.

2. Select the General tab in the Project Properties box that opens, as shown in
Figure 4.14.

Figure 4.14 Setting the startup form.

3. Set the form you want as the startup form in the Startup Object box, as also
shown in Figure 4.14.

That�s it�now the program will display the form you�ve selected first when the
program runs.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\134-138.html (4 of 4) [3/14/2001 1:29:51 AM]

javascript:displayWindow('images/04-14.jpg',415,374%20)
javascript:displayWindow('images/04-14.jpg',415,374)

Creating Forms In Code

You�ve added a handy calculator form to your financial planning program�but you
find that many users have several calculations open at once and want to open
multiple calculators. How do you create and display new forms like that in Visual
Basic?

New forms are simply new objects in Visual Basic. To declare a new form based on
a form you already have, say Form1, you just use Dim :

Private Sub NewForm_Click()

 Dim NewForm As Form1

...

End Sub

Next, you create the new form with the New keyword:

Private Sub NewForm_Click()

 Dim NewForm As Form1

 Set NewForm = New Form1

...

End Sub

Finally, you show the new form:

Private Sub NewForm_Click()

 Dim NewForm As Form1

 Set NewForm = New Form1

 NewForm.Show

End Sub

Calling this subroutine will add as many new forms as you want to a program.

Note that we do not keep track of the new form�s name (NewForm is a local
variable in NewForm_Click(), and you can�t use it after returning from that
procedure); you might want to save the new forms in an array so you can close them
under program control.

Using the code, we create new forms, as shown in Figure 4.15.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\138-142.html (1 of 4) [3/14/2001 1:30:21 AM]

Figure 4.15 Creating and displaying new forms.

Using The Multiple Document Interface

You�ve written a new editor program, and it�s a great success. But then you start
getting calls from the Field Testing Department: users want to open more than one
document at a time. Just how do you do that?

You use MDI forms. MDI frame windows can display multiple child windows
inside them; in fact, the Visual Basic IDE itself is an MDI frame window.

For example, if you already have a program based on a single form, Form1, and you
want to make that into an MDI child window inside an MDI frame, follow these
steps:

1. Add a new MDI form to the project using the Project[vbar]Add MDI Form item.

2. Set the MDIChild property of the form you want to use as the MDI child form
(Form1 here) to True, as shown in Figure 4.16.

Figure 4.16 Setting a form�s MDIChild property to True.

3. Run the program; the form you�ve made into the MDI child form appears in the
MDI form, as shown in Figure 4.17.

Figure 4.17 Creating an MDI child form

TIP: In Visual Basic, you can use all kinds of forms as MDI children in an MDI
form, as long as their MDIChild property is set to True. You can also use Show()
and Hide() on those windows to manage them as you like.

Arranging MDI Child Windows

So you�ve made your program an MDI program, just as the users asked. However,
the Testing Department is back on the phone, and they think it would be nice if you
could provide some way of arranging the MDI children in the main MDI form so it
looks �tidy.�

You could arrange the MDI child forms with their Left, Top, Width, and Height
properties, but there�s an easier way�you can use the MDI form method Arrange().

For example, if you add a menu item to an MDI form named, say, �Arrange All,�

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\138-142.html (2 of 4) [3/14/2001 1:30:21 AM]

javascript:displayWindow('images/04-15.jpg',416,379%20)
javascript:displayWindow('images/04-15.jpg',416,379)
javascript:displayWindow('images/04-16.jpg',680,506%20)
javascript:displayWindow('images/04-16.jpg',680,506)
javascript:displayWindow('images/04-17.jpg',342,271%20)
javascript:displayWindow('images/04-17.jpg',342,271)

you can use the Arrange() method to arrange all the windows in the form in a
cascade this way:

Private Sub ArrangeAll_Click()

 Me.Arrange vbCascade

End Sub

Using this method results in the cascade of MDI children seen in Figure 4.18.

Figure 4.18 Arranging MDI child forms.

The possible values to pass to Arrange() to specify the way you want to arrange
MDI children appear in Table 4.1.

Table 4.1 Ways
of arranging MDI
child windows.
Constant

ValueDoes This

vbCascade 0 Cascades all nonminimized MDI child windows
vbTileHorizontal 1 Tiles all nonminimized MDI child forms horizontally

vbTileVertical 2 Tiles all nonminimized MDI child forms vertically
vbArrangeIcons 3 Arranges icons for minimized MDI child forms

Opening New MDI Child Windows

Now that you�ve supported MDI, your program�s users want to actually open
multiple documents�how can you allow them to do that?

You can do this one of two ways: first, you can create all the forms you want to use
at design time and set their Visible properties to False so they don�t appear when the
program starts. When you want to show or hide them, you can use Show() or
Hide().

You can also create new forms as needed�see �Creating Forms In Code� earlier in
this chapter. For example, here we create and display a new MDI child form
(assuming Form1�s MDIChild property is set to True), as well as setting its
caption:

Private Sub NewWindow_Click ()

 Dim NewForm As Form1

 Set NewForm = New Form1

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\138-142.html (3 of 4) [3/14/2001 1:30:21 AM]

javascript:displayWindow('images/04-18.jpg',342,271%20)
javascript:displayWindow('images/04-18.jpg',342,271)

 NewForm.Caption = "Document"

 NewForm.Show

End Sub

(If you want to display text in these new child forms, you might use a rich text box
to cover the form�s client area when you design them.)

We�re adding forms this way in Figure 4.19.

Figure 4.19 Creating new MDI children from code.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\138-142.html (4 of 4) [3/14/2001 1:30:21 AM]

javascript:displayWindow('images/04-19.jpg',362,300%20)
javascript:displayWindow('images/04-19.jpg',362,300)

Arrays Of Forms

Now that you�ve written your MDI program, you suddenly have a lot of windows to
manage. The user wants to open 20 documents at the same time�how can you keep track of
all that? Wouldn�t it be nice if you could use arrays of forms in Visual Basic and just refer to
each form with one single array index?

You can do that in Visual Basic (in fact, you can create arrays of many types of objects,
excluding such objects that there can only be one of, like the application object, App). You
create an array of forms just as you would create an array of any other kind of object; here,
we�re creating an array of Form1 objects, because that�s the type of form we�ll use as MDI
children in an MDI program:

Dim Forms(1 To 20) As Form1

If we declare this array, Forms(), as a form-level array in the MDI form, we can refer to that
array in all procedures in the MDI form. For example, we might want to create and display a
new MDI child form in a procedure named NewWindow_Click():

Private Sub NewWindow_Click()

End Sub

Next, we set up a static variable to hold the total number of MDI child forms,
NumberForms, and increment that variable now that we�re adding a new form:

Private Sub NewWindow_Click()

 Static NumberForms

 NumberForms = NumberForms + 1

...

End Sub

Now, we create a new form and add it to the form array:

Private Sub NewWindow_Click()

 Static NumberForms

 NumberForms = NumberForms + 1

 Set Forms(NumberForms) = New Form1

...

End Sub

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\142-145.html (1 of 3) [3/14/2001 1:30:27 AM]

Throughout the rest of the program, now, we�re able to refer to the new form as a member of
the form array; here, for example, we set its caption and show it, referring to it with an index
value in the form array:

Private Sub NewWindow_Click()

 Static NumberForms

 NumberForms = NumberForms + 1

 Set Forms(NumberForms) = New Form1

 Forms(NumberForms).Caption = "Document" & Str(NumberForms)

 Forms(NumberForms).Show

End Sub

Coordinating Data Between MDI Child Forms (Document Views)

Your new word-processor program is almost done�just one more refinement to add. You
want to allow the user to open multiple views into the same document. A view is just a
window into a document, and if a document has multiple views open, the user can scroll
around in different parts of the same document at the same time. You�ve been able to open
the same document in several view windows now�but what if the user starts typing into one
view? All the other views should also be updated with the new text as well. How do you
keep all the open views of the same document coordinated?

We�ll see how this works now. In this example, the MDI child windows will be based on a
form, Form1, in which we�ve placed a text box. The user can open as many MDI child
windows as they like with the New item in the Window menu. When they type in one MDI
child�s text box, however, we should mirror any such changes in the other MDI children�s
text boxes as well. This is shown in Figure 4.20, where the text appears simultaneously in
both MDI children while the user types into one.

Figure 4.20 Coordinating MDI children.

We start by adding a new module to the program with the Project[vbar]Add Module item so
that we can set up a global array of forms, Forms, and an array index variable,
NumberForms, in that module:

Public Forms(1 To 20) As Form1

Public NumberForms As Integer

Next, we add a Window menu to the MDI form. We also add new forms to that array of
forms when the user creates such new forms by adding this code to the MDI form�s New
item in the Window menu:

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\142-145.html (2 of 3) [3/14/2001 1:30:27 AM]

javascript:displayWindow('images/04-20.jpg',826,494%20)
javascript:displayWindow('images/04-20.jpg',826,494)

Private Sub NewWindow_Click()

 NumberForms = NumberForms + 1

 Set Forms(NumberForms) = New Form1

 Forms(NumberForms).Caption = "Document" & Str(NumberForms)

 Forms(NumberForms).Show

End Sub

Now the Forms array holds the MDI children in our program.

When the user types text into the text box displayed in an MDI child, we want to update all
the other MDI children as well, making them display the same text. When you type into a
text box, a Change event occurs, and we�ll add code to that event�s handler function to
update all the other MDI children:

Private Sub Text1_Change()

End Sub

Here, we store the text in the just-changed text box and, in this simple example, just loop
over all MDI children, updating them to match the changed text box:

Private Sub Text1_Change()

 Dim Text As String

 Text = Text1.Text

 For intLoopIndex = 1 To NumberForms

 Forms(intLoopIndex).Text1.Text = Text

 Next intLoopIndex

End Sub

Now when you change the text in one child, the text in all children is updated. In this way,
we can support multiple views into the same document.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\142-145.html (3 of 3) [3/14/2001 1:30:27 AM]

Creating Dialog Boxes

It�s time to ask the user for some feedback, and you don�t want to use the Visual
Basic input box because that can only accept one line of text. Besides, you don�t like
the way it looks (it�s not a great favorite among Visual Basic programmers, perhaps
for that reason). Looks like you�ll have to use a dialog box. How do they work in
Visual Basic?

To add a dialog box to a project, select the Project[vbar]Add Form item. You can
add a simple form and make it into a dialog box, but Visual Basic already has a
predefined dialog box form, named Dialog, so select that in the Add Form box and
click Open.

TIP: To learn more about adding predefined forms to a project, see �Using Visual
Basic Predefined Forms, Menus, And Projects� in Chapter 2.

This adds a new dialog box to the project, as shown in Figure 4.21.

Figure 4.21 A new dialog box.

This dialog box comes with an OK and Cancel button, and its BorderStyle property
is already set to 3, which creates a fixed dialog-style border with only one control
button: a close button.

We add a text box, Text1, to the dialog box, as also shown in Figure 4.21. Next, we
declare a Public string, Feedback, in the dialog box�s (General) section; this string
will hold the text that the user gives us as feedback:

Public Feedback As String

When the dialog box opens, we can initialize Feedback to the empty string:

Private Sub Form_Load()

 Feedback = ""

End Sub

If the user clicks the Cancel button, we want to leave the text in Feedback as the
empty string and just hide the dialog box:

Private Sub CancelButton_Click()

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\145-148.html (1 of 4) [3/14/2001 1:30:42 AM]

javascript:displayWindow('images/04-21.jpg',720,506%20)
javascript:displayWindow('images/04-21.jpg',720,506)

 Hide

End Sub

If the user clicks OK, on the other hand, we fill the Feedback string with what the
user has typed into the text box, and then hide the dialog box:

Private Sub OKButton_Click()

 Feedback = Text1.Text

 Hide

End Sub

That completes the dialog box. In the program�s main form, we can show that dialog
box when required this way�note that we pass a value of 1 to the Show() method,
which displays our dialog box as modal. Modal means that the user must dismiss the
dialog box before continuing on with the rest of the program (the default value
passed to Show() is 0, which displays windows in a non-modal way):

Private Sub Command1_Click()

 Dialog.Show 1

...

End Sub

Next, we can display the feedback that the user has given us, if any, by examining
the dialog�s Feedback string this way:

Private Sub Command1_Click()

 Dialog.Show 1

 Text1.Text = Dialog.Feedback

End Sub

And that�s it�now we are supporting dialog boxes, as shown in Figure 4.22.

Figure 4.22 Using a newly created dialog box.

TIP: One good rule for constructing dialog boxes: always add a Cancel button so
that if users open the dialog box by mistake, they can close it without consequences.

All About Message Boxes And Input Boxes

Visual Basic provides two ways of displaying message boxes and input dialog boxes:

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\145-148.html (2 of 4) [3/14/2001 1:30:42 AM]

javascript:displayWindow('images/04-22.jpg',544,282%20)
javascript:displayWindow('images/04-22.jpg',544,282)

using MsgBox() and InputBox(). We�ll cover their syntax in the following
subsections.

The MsgBox() Function

You use MsgBox() to display a message to the user and get a return value
corresponding to one of the buttons in the message box. Here�s the syntax:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The prompt argument holds the string displayed as the message in the dialog box.
(The maximum length of prompt is approximately 1,024 characters.)

TIP: If prompt is made up of more than one line, you can separate the lines using a
carriage return character (Chr(13)), a linefeed character (Chr(10)), or both
(Chr(13) & Chr(10)) between each line.

The buttons argument specifies what to put into the message box, as specified in
Table 4.2. The default value for buttons is 0.

Table 4.2 MsgBox()
constants. Constant

Value Description

vbOKOnly 0 Display OK button only
vbOKCancel 1 Display OK and Cancel buttons

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Display Yes, No, and Cancel buttons

vbYesNo 4 Display Yes and No buttons
vbRetryCancel 5 Display Retry and Cancel buttons

vbCritical 16 Display Critical Message icon
vbQuestion 32 Display Warning Query icon

vbExclamation 48 Display Warning Message icon
vbInformation 64 Display Information Message icon

vbDefaultButton1 0 First button is default
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
vbDefaultButton4 768 Fourth button is default

vbApplicationModal 0 Application modal; the user must respond to
the message box before continuing work in the

current application.
vbSystemModal 4096 System modal; all applications are suspended

until the user responds to the message box.
vbMsgBoxHelpButton 16384 Adds Help button to the message box

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\145-148.html (3 of 4) [3/14/2001 1:30:42 AM]

VbMsgBoxSetForeground 65536 Specifies the message box window as the
foreground window

vbMsgBoxRight 524288 Text is right-aligned
vbMsgBoxRtlReading 1048576Specifies text should appear as right-to-left

reading on Hebrew and Arabic systems

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\145-148.html (4 of 4) [3/14/2001 1:30:42 AM]

The title parameter holds the string displayed in the title bar of the dialog box. (If you don�t specify
title, the application name is placed in the title bar.)

The helpfile argument is a string that identifies the Help file to use to provide context-sensitive Help
for the dialog box.

The context argument is the Help context number assigned to the appropriate Help topic.

The possible return values from MsgBox() appear in Table 4.3.

Table 4.3
MsgBox()
return
values.
Constant

ValueDescription

vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore

vbYes 6 Yes
vbNo 7 No

The InputBox() Function

You can use the InputBox() function to get a string of text from the user. Here�s the syntax for this
function:

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,

context])

The prompt argument is a string displayed as the message in the dialog box.

The title argument is a string displayed in the title bar of the dialog box. (If you don�t specify the
title, the application name is placed in the title bar.)

The default argument is a string displayed in the text box as the default response if no other input is
provided.

The xpos argument is a number that specifies (in twips) the horizontal distance of the left edge of
the dialog box from the left edge of the screen.

The ypos argument is a number that specifies (in twips) the vertical distance of the upper edge of

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\148-152.html (1 of 3) [3/14/2001 1:30:44 AM]

the dialog box from the top of the screen.

The helpfile argument is a string that identifies the Help file to use to provide context-sensitive Help
for the dialog box.

The context argument is the Help context number assigned to the appropriate Help topic.

The InputBox() function returns the string the user entered.

Passing Forms To Procedures

You can pass forms to procedures just as you would any object. Here, we�ve set up a subroutine,
ColorWindowWhite(), to turn the background color of a form to white:

Sub ColorWindowWhite(FormToColor As Form)

End Sub

In this case, we can simply refer to the form passed to this subroutine by the name we�ve given the
passed parameter, FormToColor :

Sub ColorWindowWhite(FormToColor As Form)

 FormToColor.BackColor = RGB(255, 255, 255)

End Sub

Now you can pass a form to the ColorWindowWhite() subroutine easily:

Private Sub Command1_Click()

 ColorWindowWhite Me

End Sub

And that�s all it takes to pass a form to a procedure.

Minimizing/Maximizing And Enabling/Disabling Forms From Code

To exert a little more control over the windows in your programs, you can set the WindowState
property to maximize or minimize them. Here�s how you set that property, and what those settings
mean:

" 0�Normal

" 1�Minimized

" 2�Maximized

Here�s an example, where we minimize a form when the user clicks a button:

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\148-152.html (2 of 3) [3/14/2001 1:30:44 AM]

Private Sub Command1_Click()

 WindowState = 1

End Sub

You can also set the Enabled property to enable or disable a window (when it�s disabled, it will
only beep if the user tries to give it the focus). You set the Enabled property to True to enable a
window and to False to disable it.

Visual Basic 6 Black Book:Managing Forms In Visual Basic

http://24.19.55.56:8080/temp/ch04\148-152.html (3 of 3) [3/14/2001 1:30:44 AM]

Chapter 5
Visual Basic Menus
If you need an immediate solution to:

Using The Visual Basic Application Wizard To Set Up Your Menus

What Item Goes In What Menu?

Adding A Menu To A Form

Modifying And Deleting Menu Items

Adding A Menu Separator

Adding Access Characters

Adding Shortcut Keys

Creating Submenus

Creating Immediate (�Bang�) Menus

Using The Visual Basic Predefined Menus

Adding A Checkmark To A Menu Item

Disabling (Graying Out) Menu Items

Handling MDI Form And MDI Child Menus

Adding A List Of Open Windows To An MDI Form�s Window Menu

Making Menus And Menu Items Visible Or Invisible

Creating And Displaying Pop-Up Menus

Adding And Deleting Menu Items At Runtime

Adding Bitmaps To Menus

Using The Registry To Store A Most Recently Used (MRU) Files List

In Depth

Everyone who uses Windows knows about menus�they�re those clever controls that
hide away lists of items until you want to make a selection, like the Visual Basic
File menu, which appears in Figure 5.1. And, in fact, that�s the design philosophy

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\153-157.html (1 of 4) [3/14/2001 1:30:58 AM]

behind menus: rather than presenting the user with all possible controls at once,
menus hide their items until needed. Imagine a program with 50 buttons all over it
�Save File, Save File As, Insert Object, Paste Special, and so on�you�d hardly have
space for anything else. That�s why menus are so popular: they present their
controls in drop-down windows, ready to use when needed.

Figure 5.1 The Visual Basic File menu.

In this chapter, we�re going to take a look at using menus in Visual Basic. We�ll
start with an overview of designing your menu system, including some
considerations that Microsoft has developed. Then we�ll go to this chapter�s
Immediate Solutions, seeing how to use the Visual Basic Menu Editor to create and
modify menus. We�ll also see how to modify menus and the items they include from
code, when a program is running. And, of course, we�ll see some special topics, like
how to create a Most Recently Used (MRU) list of files and how to use Windows
functions to add bitmaps to menu items.

We�ll start our overview on Visual Basic menus now by taking a look at the parts of
a menu.

Menu Design Considerations

Every Windows programmer is familiar with the parts of a menu; for reference, they
appear in Figure 5.1. The menu names in a program appear in the menu bar�usually
just under the title bar�and when the user selects a menu, that menu opens, like the
File menu in Figure 5.1.

Each menu usually contains items arranged in a vertical list. These items are often
grouped into functional groups with menu separators, or thin horizontal rules, as
shown in Figure 5.1. When the user selects a menu item (from the keyboard or with
the mouse), that item appears highlighted; pressing Enter or releasing the mouse
button opens that item.

Menu items can also be disabled (also called �grayed out�), as shown in Figure 5.1.
A disabled item is not accessible to the user and does nothing if selected.

TIP: If your program presents the user with a lot of disabled menu items, the user
may feel locked out and frustrated. To avoid such situations, many programs add or
remove menu items from menus at runtime, and we�ll see how to do that in this
chapter.

Access Characters And Shortcuts

Ideally, each item should have a unique access character for users who choose
commands with keyboards. The user reaches the menu or menu item by pressing Alt

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\153-157.html (2 of 4) [3/14/2001 1:30:58 AM]

javascript:displayWindow('images/05-01.jpg',826,595%20)
javascript:displayWindow('images/05-01.jpg',826,595)

key and the access character. The access character should be the first letter of the
menu title, unless another letter offers a stronger link; no two menus or menu items
should use the same access character.

Shortcuts are also useful to the user; these keys are faster than access characters in
that the user only needs to enter a shortcut to execute the corresponding menu item.
For example, the New Project shortcut in Figure 5.1 is Ctrl+N.

Note also that an ellipsis (&) should follow names of menu items that display a
dialog box (Save As&, Preferences&, etc.) when selected. In addition, if you have
menus in the menu bar that execute a command immediately instead of opening a
menu, you should append an exclamation point to the menu�s name, such as
Collate!

Designing Your Menus

A popular aspect of Windows is that it gives the user a common interface, no matter
what program they�re using, and users have come to expect that. In fact, if it�s hard
to learn a new, nonstandard Windows program, the user may well turn to a
Windows-compliant alternative, so it�s a good idea to stick with the Windows
standards.

Most programs have a File menu first (at left) in the menu bar, followed by other
menus, like a View menu, a Tools menu, and so on, followed by a Help menu,
which usually appears last (and often at the extreme right in the menu bar). Users
expect to find certain standard items in particular menus; for a list of these items,
see �What Item Goes In What Menu?� in this chapter.

Microsoft recommends that you keep your menu item names short. For one thing, if
you want to release your application internationally, the length of words tends to
increase approximately 30 percent in foreign versions, and you may not have
enough space to list all of your menu items. Microsoft also recommends that you
use the mnu prefix in code for menus, like mnuFile, and menu items, like
mnuFileOpen.

That completes our overview�it�s time to turn to the Immediate Solutions.

Immediate Solutions

Using The Visual Basic Application Wizard To Set Up Your Menus

Probably the easiest way to get a substantial menu system going in your program is
to design that program with the Visual Basic Application Wizard. The
menu-designing window that appears when you build an application with the
Application Wizard appears in Figure 5.2.

Figure 5.2 Using the Application Wizard to design a menu system.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\153-157.html (3 of 4) [3/14/2001 1:30:58 AM]

javascript:displayWindow('images/05-02.jpg',483,353%20)
javascript:displayWindow('images/05-02.jpg',483,353)

You can arrange, add, or remove menu items with the click of a mouse. The
Application Wizard isn�t for everyone, but it can create a very complete menu
system, as shown in Figure 5.3, where the File menu in the created application is
open.

Figure 5.3 An Application Wizard�designed program�s menu system.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\153-157.html (4 of 4) [3/14/2001 1:30:58 AM]

javascript:displayWindow('images/05-03.jpg',416,379%20)
javascript:displayWindow('images/05-03.jpg',416,379)

What Item Goes In What Menu?

The Testing Department gives you a call to ask why the Paste item in your new
application is in the View menu. You ask if they had a different menu in mind, and
they mention something about the Edit menu. How can you avoid such calls? With
the following lists.

Users expect to find certain standard items in certain menus if your program is
going to support those items. To start us off, here�s the kind of item you might find
in the File menu (note that not all programs will use all these menus):

" New

" Open

" Close

" Close All

" Save

" Save As

" Save All

" Properties

" Templates

" Page Setup

" Print Preview

" Print

" Print Using

" Send

" Update

" Exit

TIP: Even in programs that don�t handle files, it�s not uncommon to see a File
menu for one reason�that�s where the user expects the Exit item. Don�t forget to add
an Exit item to your menu system (you can end a Visual Basic program using the
End statement, so this menu item is easy to implement).

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\163-168.html (1 of 5) [3/14/2001 1:31:08 AM]

The Edit menu usually holds items like these:

" Undo

" Redo

" Cut

" Copy

" Paste

" Paste Using

" Paste Special

" Clear

" Select All

" Find

" Replace

" Bookmark

" Insert Object (unless you have a separate Insert menu)

The View menu has items like these:

" Toolbar

" Status Bar

" Refresh

" Options

The Window menu has items like these:

" New Window

" Cascade

" Tile Windows

" Arrange All

" Split

" List Of Windows

The Help menu has items like these:

" Help

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\163-168.html (2 of 5) [3/14/2001 1:31:08 AM]

" Help Index

" Help Table of Contents

" Search for Help On

" Web Support

" About

Adding A Menu To A Form

The design process is complete�it�s time to start adding menus to your new program.
But when you sit down and start looking for the Menu tool in the toolbox, you find
that there isn�t one. Just how do you add a menu to a form?

You use the Visual Basic Menu Editor. You�ll get a basic introduction to the Menu
Editor here, and we�ll use it throughout this chapter. To add a menu to a form, select
that form (that is, click on it), and open the Menu Editor by selecting the Menu
Editor in the Tools menu. Or, you can select its icon in the toolbar (which has the
tool tip �Menu Editor�). The Visual Basic Menu Editor appears in Figure 5.4.

Figure 5.4 The Visual Basic Menu Editor.

Creating A New Menu

To create a new menu, you only have to provide two essential items: the caption of
the menu and its name. The Caption property holds the title of the menu, such as
File, and the Name property holds the name you�ll use for that menu in code, such
as mnuFile.

Fill in the Caption and Name properties for your new menu now. Congratulations
�you�ve created a new menu. Now it�s time to add items to the new menu.

Creating A New Menu Item

We can add a new menu item, say, New, to the File menu we�ve just created. To do
so, click the Next button in the Menu Editor, moving the highlighted bar in the box
at the bottom of the Menu Editor down one line. If you just entered new Caption
and Name values and left it at that, you�d create a new menu, not a new menu item.
So click the right-pointing arrow button in the Menu Editor now to indent the next
item four spaces in the box at the bottom of the Menu Editor. Now enter the
Caption (�New�) and Name, (�mnuFileNew�) values for the new menu item.

The menu item you�ve just created appears in the Menu Editor below the File menu
item and indented, like this:

File

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\163-168.html (3 of 5) [3/14/2001 1:31:08 AM]

javascript:displayWindow('images/05-04.jpg',363,363%20)
javascript:displayWindow('images/05-04.jpg',363,363)

....New

This means that we now have a File menu with one item in it�New.

That�s how your menu system is displayed in the Menu Editor: as a series of
indented items. For example, here�s how a File menu with New and Open items,
followed by an Edit menu with three items, Cut, Copy, and Paste, would look in the
Menu Editor:

File

....New

...Open

Edit

....Cut

....Copy

....Paste

Here�s how to create a new menu system in the Menu Editor, step-by-step:

1. Enter the first menu�s Caption and Name.

2. Click the Next button (or press Enter).

3. Click the right arrow to indent one level, making this next entry a menu item.

4. Enter the menu item�s Caption and Name.

5. Click the Next button (or press Enter).

6. Repeat Steps 4 and 5 for all the items in the first menu.

7. Click the Next button (or press Enter).

8. Click the left arrow to outdent, making this next entry a menu.

9. Enter the next menu�s Caption and Name.

10. Click the right arrow to indent one level, making this next entry a menu item.

11. Repeat Steps 4 and 5 for the items in this new menu.

12. Repeat Steps 7 through 11 for the rest of the menus in the program.

13. Click on OK to close the Menu Editor.

14. Edit the code.

You edit the code for menu items just as you do for other controls�click the menu
item in the form under design (opening the item�s menu if necessary). This opens
the menu item�s event handler, like this:

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\163-168.html (4 of 5) [3/14/2001 1:31:08 AM]

Private Sub mnuFileNew_Click()

End Sub

Just add the code you want to execute when the user chooses this menu item to the
event handler procedure:

Private Sub mnuFileNew_Click()

 LoadNewDoc

End Sub

And that�s it�now you�ve added a menu system to your program.

Modifying And Deleting Menu Items

You think the program is perfect, but the users are complaining that they don�t like
having the Save As item in the Edit menu and want to move it to the File menu. Is
that possible?

Yes, using the Menu Editor. You can rearrange, add, or remove items in your menu
with the Menu Editor, so open that tool now (as shown in Figure 5.4).

Inserting Or Deleting Items In A Menu System

To add a new item to a menu, or a new menu to the menu system, select an item in
the Menu Editor, and click the Insert button. This inserts a new, empty entry into
the menu just before the item you selected:

File

....New

....Open

...

Edit

....Cut

....Copy

....Paste

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\163-168.html (5 of 5) [3/14/2001 1:31:08 AM]

Now just enter the new item�s Caption and Name properties, and you�re all set.

To remove a menu or menu item, just select that menu or item and click the Delete
button.

Rearranging Items In A Menu System

You can use the four arrow buttons in the Menu Editor to move items up and down,
as well as indent or outdent (that is, remove one level of indenting) menu items.
Here�s what the arrows do:

" Right arrow� Indents a menu item.

" Left arrow� Outdents a menu item.

" Up arrow� Moves the currently selected item up one level.

" Down arrow� Moves the currently selected item down one level.

For example, to move the Save As item from the Edit menu to the File menu, just
select that item and keep clicking the up arrow button until the Save As item is
positioned as you want it in the File menu.

Adding A Menu Separator

Menus themselves allow you ways to group commands by function (File, Edit, and
so on). Often within a menu, however, it helps the user to group menu items by
function (Print, Print Preview, Page Setup, and so on). You do that with menu
separators.

A menu separator is a horizontal rule that really only has one purpose�to divide
menu items into groups (refer back to Figure 5.1). And using the Menu Editor, you
can add separators to your menus.

To add a menu separator, select an item in the Menu Editor and click Insert to create
a new item just before the item you selected. To make this new item a menu
separator, just give use a hyphen (-) for its Caption property. You must give all
menu items a name�even if they don�t do anything�so give it a dummy Name
property value as well, such as mnuSeparator.

When you run the program, you�ll see the menu separators in place, as in the menu
in Figure 5.5. Now we�re adding menu item separators to our menus.

Figure 5.5 A menu with menu separators.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\168-174.html (1 of 4) [3/14/2001 1:31:44 AM]

javascript:displayWindow('images/05-05.jpg',416,379%20)
javascript:displayWindow('images/05-05.jpg',416,379)

Adding Access Characters

The Testing Department�s calling again: They like the menus you�ve added to your
program, but there�s the keyboard access issue. Theoretically, they say, users should
be able to use the keyboard for everything.

It�s time to add access characters to your program. When the user presses the Alt
key and an access character, the menu item corresponding to that access character is
selected. How do you associate an access character with a menu or menu item? It�s
easy�just place an ampersand (&) in front of the character you want to make into the
access character in that menu or item�s caption.

For example, if you had this menu system

File

....New

....Open

Edit

....Cut

....Copy

....Paste

you could make a letter in all menus or menu items into access characters by
placing an ampersand in front of it:

&File

....&New

....&Open

&Edit

....&Cut

....C&opy

....&Paste

Avoiding Access Character Duplication

Note in the previous example that we have two items�Cut and Copy�in the Edit
menu that begin with �C�. That�s a problem, because an access character must be
unique at its level (where the level is the menu bar for menus and a menu for menu
items). To avoid confusion (both to the user and to Visual Basic), we make �o�, the
second letter in Copy, the access character for that item.

The result of adding access characters to your menus at design time appears in the
Menu Editor in Figure 5.6. At runtime, access characters appear underlined in
menus, as shown in Figure 5.7.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\168-174.html (2 of 4) [3/14/2001 1:31:44 AM]

Figure 5.6 Adding access characters.

Figure 5.7 Access characters are underlined.

To use an access key, users first open the menu in which the item they want to
select appears (possibly using an access key, like Alt+F for the File menu), then
they press the Alt key and the access key.

Adding Shortcut Keys

One of the most powerful aspects of menus are shortcut keys�single keys or key
combinations that let the user execute a menu command immediately (without
having to open the menu the command is in, as you must do with access keys). You
usually use function keys (although many PCs now go up to F16, it�s best to limit
yourself to F1 through F10) or Ctrl key combinations for shortcut keys. For
example, the standard shortcut key for Select All is Ctrl+A, and entering that
shortcut selects all the text in a document.

Giving a menu item a shortcut key is very easy in the Menu Editor. Just open the
Menu Editor, select the item you want to give a shortcut key to (such as the File
menu�s New item in Figure 5.8) and select the shortcut key you want to use in the
Menu Editor box labeled Shortcut. (Note that to open the Menu Editor, the form
you�re designing must be the active window in Visual Basic, not the code window.)
In Figure 5.8, we give the New item the shortcut Ctrl+N.

Figure 5.8 Setting a shortcut key.

That�s all it takes�now run the program, as shown in Figure 5.9. You can see the
Ctrl+N at the right in the menu item named New�we�ve installed our menu shortcut.

Figure 5.9 Shortcut key in a program�s menu.

Shortcut Key Standards

Windows conventions now include a set of standard shortcut keys that are supposed
to apply across most Windows applications. Here are the most common shortcut
keys (be very careful when using these key combinations for other purposes; your
users may expect the standard response):

" Ctrl+A�Select All

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\168-174.html (3 of 4) [3/14/2001 1:31:44 AM]

javascript:displayWindow('images/05-06.jpg',363,363%20)
javascript:displayWindow('images/05-06.jpg',363,363)
javascript:displayWindow('images/05-07.jpg',416,379%20)
javascript:displayWindow('images/05-07.jpg',416,379)
javascript:displayWindow('images/05-08.jpg',363,363%20)
javascript:displayWindow('images/05-08.jpg',363,363)
javascript:displayWindow('images/05-09.jpg',416,379%20)
javascript:displayWindow('images/05-09.jpg',416,379)

" Ctrl+B�Bold

" Ctrl+C�Copy

" Ctrl+F�Find

" Ctrl+G�Go To

" Ctrl+H�Replace

" Ctrl+I�Italic

" Ctrl+J�Justify

" Ctrl+N�New

" Ctrl+O�Open

" Ctrl+P�Print

" Ctrl+Q�Quit

" Ctrl+S�Save

" Ctrl+U�Underline

" Ctrl+V�Paste

" Ctrl+W�Close

" Ctrl+X�Cut

" Ctrl+Z�Undo

" F1�Help

Creating Submenus

The email is in�and it�s more praise for your program, AmazingWingDings (Deluxe
version). It�s gratifying to read the great reviews�but one user asks if you couldn�t
place the Red, Green, and Blue color selections in the Edit menu into a submenu.
What are submenus, and how can you create them?

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\168-174.html (4 of 4) [3/14/2001 1:31:44 AM]

What the user wants appears in Figure 5.10. As you can see in that figure, the
Colors item in the Edit menu has a small arrow at the right. This indicates that there
�s a submenu attached to this menu item. Selecting the menu item opens the
submenu, as also shown in Figure 5.10. As you can see, submenus appear as menus
attached to menus.

Figure 5.10 A program with a submenu.

Submenus let you organize your menu system in a compact way, and adding them
to a program is simple. For example, let�s say you started this way, with a Red,
Green, and Blue menu item in the Edit menu:

Edit

....Cut

....Copy

....Paste

....Red

....Green

....Blue

....Select All

To put those items in a submenu, we first add a name for the submenu�say, Colors:

Edit

....Cut

....Copy

....Paste

....Colors

....Red

....Green

....Blue

....Select All

All that�s left is to indent (using the right arrow in the Menu Editor) the items that
should go into that submenu (note that they must appear just under the submenu�s
name):

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\174-180.html (1 of 5) [3/14/2001 1:33:52 AM]

javascript:displayWindow('images/05-10.jpg',317,256%20)
javascript:displayWindow('images/05-10.jpg',317,256)

Edit

....Cut

....Copy

....Paste

....Colors

........Red

........Green

........Blue

....Select All

That�s it�close the Menu Editor.

You add code to submenu items in the same way that you add code to menu items
�just click them to open the corresponding event-handling function and add the code
you want, as we�ve done here to report the user�s color selection:

Private Sub mnuEditColorsBlue_Click()

 MsgBox ("You selected Blue")

End Sub

Private Sub mnuEditColorsGreen_Click()

 MsgBox ("You selected Green")

End Sub

Private Sub mnuEditColorsRed_Click()

 MsgBox ("You selected Red")

Creating Immediate (�Bang�) Menus

Sometimes you�ll see immediate menus (also called �bang� menus) in menu bars.
These are special menus that don�t open�when you merely click them in the menu
bar, they execute their associated command. The name of these menus is followed
with an exclamation mark (!) like this: Download! When you click the Download!
item in the menu bar, the downloading process starts at once, without opening a
menu at all.

Now that toolbars are so common, one sees fewer immediate menus (that is,
toolbars act very much like immediate menus are supposed to work), but some
programmers still use them And because they�re easy to create, we�ll cover them
here.

To create an immediate menu, just add a menu, such as Download! (don�t forget to
add exclamation point on the end of �Download� in the Caption property, but not in

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\174-180.html (2 of 5) [3/14/2001 1:33:52 AM]

the Name property), and don�t give it any menu items. Instead, place the code you
want to run in the Click event handler for the menu itself:

Private Sub mnuDownload_Click()

 MsgBox ("Downloading from the Internet...")

End Sub

That�s all you need. Now when the user selects the Download! menu, this code will
be executed. We�re about to execute the Download! immediate menu in Figure 5.11.
Note that there is no menu opening, even though the Download! item in the menu
bar is selected.

Figure 5.11 Selecting an immediate menu.

Using The Visual Basic Predefined Menus

You can use the Visual Component Manager to add a predefined menu to a form
(note that not all versions of Visual Basic come with the Visual Component
Manager). As you can see in the Visual Component Manager�s Visual
Basic|Templates|Menus folder, as shown in Figure 5.12, six predefined menus are
available. These menus include a File menu, an Edit menu, a Help menu, a Window
menu, and so on. To add one of these menus to a form, just select the form and
double-click the menu in the Visual Component Manager.

Figure 5.12 Selecting a predefined menu.

For example, we can add a predefined File menu to a form this way. The result
appears in Figure 5.13.

Figure 5.13 Using a predefined menu.

Adding a predefined menu also adds code to the form. For example, here�s the
skeletal code that�s added when you add a predefined File menu:

Private Sub mnuFileNew_Click()

 MsgBox "New File Code goes here!"

End Sub

Private Sub mnuFileOpen_Click()

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\174-180.html (3 of 5) [3/14/2001 1:33:52 AM]

javascript:displayWindow('images/05-11.jpg',317,256%20)
javascript:displayWindow('images/05-11.jpg',317,256)
javascript:displayWindow('images/05-12.jpg',478,328%20)
javascript:displayWindow('images/05-12.jpg',478,328)
javascript:displayWindow('images/05-13.jpg',378,394%20)
javascript:displayWindow('images/05-13.jpg',378,394)

 MsgBox "Open Code goes here!"

End Sub

Private Sub mnuFilePrint_Click()

 MsgBox "Print Code goes here!"

End Sub

Private Sub mnuFilePrintPreview_Click()

 MsgBox "Print Preview Code goes here!"

End Sub

Private Sub mnuFilePrintSetup_Click()

 MsgBox "Print Setup Code goes here!"

End Sub

Private Sub mnuFileProperties_Click()

 MsgBox "Properties Code goes here!"

End Sub

Private Sub mnuFileSave_Click()

 MsgBox "Save File Code goes here!"

End Sub

Private Sub mnuFileSaveAll_Click()

 MsgBox "Save All Code goes here!"

End Sub

Private Sub mnuFileSaveAs_Click()

 MsgBox "Save As Code goes here!"

End Sub

Private Sub mnuFileSend_Click()

 MsgBox "Send Code goes here!"

End Sub

TIP: If you don�t have the Visual Component Manager, you can add a form with a
predefined menu to a project. Select Project|Add Form, click the Existing tab, and

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\174-180.html (4 of 5) [3/14/2001 1:33:52 AM]

open the Menus folder to find the possible menu forms to add to your project.

Adding A Checkmark To A Menu Item

When you want to toggle an option in a program, such as Insert mode for entering
text, it�s easy to add or remove checkmarks in front of menu items. Displaying a
checkmark gives visual feedback to the user about the toggle state of the option, and
there�s two ways to add checkmarks to menu items: at design time and at runtime.

Adding Checkmarks At Design Time

To add a checkmark to a menu item at design time, you simply select the Checked
box in the Menu Editor, as shown in Figure 5.14, where we add a checkmark to the
Edit menu�s Insert item.

Figure 5.14 Adding a checkmark to a menu item at design time.

Now when the Edit menu is first displayed, the Insert item will appear checked.

Adding Checkmarks At Runtime

You can also set checkmarks at runtime using a menu item�s Checked property. For
example, here�s how we toggle the Insert item�s checkmark each time the user
selects that item; setting Checked to True places a checkmark in front of the item,
and to False removes that checkmark:

Private Sub mnuEditInsert_Click()

 Static blnChecked As Boolean

 blnChecked = Not blnChecked

 mnuEditInsert.Checked = blnChecked

End Sub

Running this code toggles a checkmark in front of the Insert item, as shown in
Figure 5.15.

Figure 5.15 Adding a checkmark to a menu item at runtime.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\174-180.html (5 of 5) [3/14/2001 1:33:52 AM]

javascript:displayWindow('images/05-14.jpg',363,363%20)
javascript:displayWindow('images/05-14.jpg',363,363)
javascript:displayWindow('images/05-15.jpg',317,256%20)
javascript:displayWindow('images/05-15.jpg',317,256)

Disabling (Graying Out) Menu Items

To indicate to the user that a menu item is not available at a particular time (such as
Copy when there is no selected text), you can disable a menu item (also called
�graying it out�). And you can do this at design time or runtime.

Disabling Menu Items At Design Time

To disable a menu item at design time, just deselect the Enabled box in the Menu
Editor, as shown in Figure 5.16, where we disable the Insert menu item.

Figure 5.16 Disabling a menu item at design time.

Now when the Edit menu is first shown, the Insert item will be disabled.

Disabling Menu Items At Runtime

You can also disable (and enable) menu items at runtime using the item�s Enabled
property. You set this property to True to enable a menu item and to False when you
want to disable an item.

For example, here�s how we disable the Edit menu�s Insert item when the user clicks
it (note that in this program there is then no way for the user to enable it again):

Private Sub mnuEditInsert_Click()

 mnuEditInsert.Enabled = False

End Sub

Figure 5.17 shows the result�we�ve disabled the Insert menu item.

Figure 5.17 Disabling a menu item at runtime.

Handling MDI Form And MDI Child Menus

You�ve created your new program, the SuperWizardTextEditor, and made it an MDI
program. But now there�s a call from the Testing Department�users are getting
confused. Why is the Edit menu still visible when no documents are open to edit?
Can you fix this?

Yes you can. Visual Basic lets you specify two menus in an MDI program, one for
the MDI form and one for the MDI child form (and more if you have several types
of MDI child forms). If the MDI form has a menu and the MDI child form has no

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\180-185.html (1 of 4) [3/14/2001 1:34:22 AM]

javascript:displayWindow('images/05-16.jpg',363,363%20)
javascript:displayWindow('images/05-16.jpg',363,363)
javascript:displayWindow('images/05-17.jpg',317,256%20)
javascript:displayWindow('images/05-17.jpg',317,256)

menu, the MDI form�s menu is active at all times.

If, on the other hand, the MDI child form has a menu, that menu takes over the MDI
form�s menu system any time one or more of those child forms is open. What this
means in practice is that you give the MDI form a rudimentary menu system
(typically just File and Help menus) and save the full menu system (like File, Edit,
View, Insert, Format, Tools, Window, Help, and so on) for the child windows to
ensure the full menu system is on display only when documents are open and those
menus apply.

For example, you might add just this simple menu system to the MDI form in an
MDI program. Note that you should, at a minimum, give the user some way to open
a new or existing document, and you should provide access to Help:

File

....New

....Open

Help

....Contents

Here�s an example of a full menu system you might then give to the MDI child
form, which will take over the main MDI form�s menu system when a child form is
open:

File

....New

....Open

....Save

....Save As

Edit

....Cut

....Copy

....Paste

Tools

....Graphics Editor

....Charts Editor

....Exporter

Help

....Contents

TIP: If the user closes all documents at any time, the MDI form�s menu system

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\180-185.html (2 of 4) [3/14/2001 1:34:22 AM]

becomes active again�it�s only when MDI child forms are open that their menus take
over the main menu system.

Adding A List Of Open Windows To An MDI Form�s Window Menu

You might have noticed that Window menus in professional MDI programs include
a list of open MDI child windows, and you can select which child is active by
selecting from this list. You can add that to your program by adding all the code
yourself, but there�s an easier way�you can set a menu�s WindowList property.

Setting a menu�s WindowList property to True adds a list of windows to that menu,
and you can set the WindowList property in the Menu Editor simply by selecting a
checkbox, as shown in Figure 5.18.

Figure 5.18 Adding a window list to a Window menu.

Now when the program runs, the menu you added a window list to will indeed
display a list of open windows, separated from the rest of the menu items with a
menu separator, as shown in Figure 5.19.

Figure 5.19 Our window list is active.

You�ve added a touch of professionalism to your program with a single mouse click.

Making Menus And Menu Items Visible Or Invisible

The Field Testing Department is on the phone again. Someone there doesn�t like the
look of the 30 disabled menu items in the Edit menu. You explain that those items
just don�t apply in most cases, so they should be disabled. The Field Testing people
suggest you just remove those items from the Edit menu until they can be used.
How does that work?

Like other Visual Basic controls, menus and menu items have a Visible property,
and you can set that property to True to make a menu or menu item visible, and to
False to make it invisible (and so remove it from a menu bar or menu).

For example, you might have an item in the File menu: �Connect to the Internet�,
which is inappropriate in a computer that has no way to connect to the Internet. You
can make that item disappear from the File menu by setting its Visible property to
False, as we do here after checking some hypothetical variable blnCanConnect :

If blnCanConnect Then

 mnuFileInternet.Visible = True

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\180-185.html (3 of 4) [3/14/2001 1:34:22 AM]

javascript:displayWindow('images/05-18.jpg',363,363%20)
javascript:displayWindow('images/05-18.jpg',363,363)
javascript:displayWindow('images/05-19.jpg',456,363%20)
javascript:displayWindow('images/05-19.jpg',456,363)

Else

 mnuFileInternet.Visible = False

End If

Making menus and menu items visible or invisible is often a better alternative to
displaying menus with too many disabled items (which can frustrate the user and
make a program seem inaccessible).

Creating And Displaying Pop-Up Menus

Pop-up menus�those menus that appear when you right-click a form�have become
very popular these days, and we can add them to Visual Basic programs.

Creating A Pop-up Menu

To create a new pop-up menu, just use the Menu Editor as shown in Figure 5.20,
where we create a new menu named Popup (you can use whatever caption you want
for the menu; the caption does not appear when the popup menu appears�only the
items in the menu appear). The menu has two items in it: Message (displays a
message box) and Beep (beeps).

Figure 5.20 Designing a pop-up menu.

Note that we set this menu�s Visible property to False to make sure we don�t display
it in the menu bar.

We�ve created our pop-up menu now�but it doesn�t appear in the menu bar. How can
we add code to the two items in that menu?

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\180-185.html (4 of 4) [3/14/2001 1:34:22 AM]

javascript:displayWindow('images/05-20.jpg',363,363%20)
javascript:displayWindow('images/05-20.jpg',363,363)

You reach those two items, mnuPopupMessage and mnuPopupBeep, in the code window.
Double-click the form now to open the code window. The left drop-down box in the code
window lists all the objects in the form, so find mnuPopupMessage and mnuPopupBeep and
add event-handling functions to their Click events:

Private Sub mnuPopupBeep_Click()

End Sub

Private Sub mnuPopupMessage_Click()

End Sub

Here, we�ll just make the Beep item beep and the Message item display a message box
acknowledging the user�s action:

Private Sub mnuPopupBeep_Click()

 Beep

End Sub

Private Sub mnuPopupMessage_Click()

 MsgBox ("You selected the Message item")

End Sub

That completes the design of the pop-up menu�but how do we display it when the user
right-clicks the form?

Displaying A Pop-Up Menu

We want to check for right mouse button events, so add a MouseDown event handler to our
program using the code window now:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer,_

 X As Single,Y As Single)

End Sub

You can tell which mouse button went down by comparing the Button argument to these
predefined Visual Basic constants:

" vbLeftButton = 1

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\185-190.html (1 of 5) [3/14/2001 1:34:48 AM]

" vbRightButton = 2

" vbMiddleButton = 4

This means we check for the right mouse button:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer,_

 X As Single, Y As Single)

 If Button = vbRightButton Then

...

 End If

End Sub

If the right mouse button did go down, we display the pop-up menu with the PopupMenu
method:

[object.]PopupMenu menuname [, flags [,x [, y [, boldcommand]]]]

Here, menuname is the name of the menu to open, the possible values for the flags parameter
appear in Table 5.1, x and y indicate a position for the menu, and boldcommand is the name of
the one (but no more than one) menu item you want to appear bold. Here�s how we use
PopupMenu:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer,_

 X As Single, Y As Single)

 If Button = vbRightButton Then

 PopupMenu Popup

 End If

End Sub

Table 5.1 Pop-UpMenu
constants. Constant

Does This

vbPopupMenuLeftAlign Default. The specified x location defines the left edge of the pop-up
menu.

vbPopupMenuCenterAlign The pop-up menu is centered around the specified x location.
vbPopupMenuRightAlign The specified x location defines the right edge of the pop-up menu.
vbPopupMenuLeftButton Default. The pop-up menu is displayed when the user clicks a menu

item with the left mouse button only.
vbPopupMenuRightButton The pop-up menu is displayed when the user clicks a menu item

with either the right or left mouse button.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\185-190.html (2 of 5) [3/14/2001 1:34:48 AM]

That�s it�the result appears in Figure 5.21. Now we�re using pop-up menus in Visual Basic.

Figure 5.21 Our pop-up menu at work.

Adding And Deleting Menu Items At Runtime

We�ve all seen menus that change as a program runs, and that can be a sophisticated effect. It�s
also impressive if the menu can change in response to user input (for example, adding a new item
with the caption �Create Progname.exe�, where Progname is the name given the program). You
can add this capability to your program in Visual Basic.

Here, we�ll just add new items�Item 1, Item 2, and so on�to the File menu with the user clicks a
button. We start by designing our menu system, giving it a File menu with two items: New and
Items, as you can see in Figure 5.22.

Figure 5.22 Designing an extendable menu.

The Items item is actually a placeholder for the items we�ll add to the File menu. Make this item
into a control array by giving it an index, 0, in the Index box, as shown in Figure 5.22. This item
is just a placeholder�we don�t want it to be visible before the user adds items to this menu�so set
its Visible property to False, as also shown in Figure 5.22.

Now add a button to the program, and give it a Click event-handling function:

Private Sub Command1_Click()

End Sub

We�ll keep track of the items in the File menu with a variable named intItemCount, which we
increment each time the button is clicked:

Private Sub Command1_Click()

 Static intItemCount

 intItemCount = intItemCount + 1

...

End Sub

To add a new item to the Items control array, we use Load():

Private Sub Command1_Click()

 Static intItemCount

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\185-190.html (3 of 5) [3/14/2001 1:34:48 AM]

javascript:displayWindow('images/05-21.jpg',317,237%20)
javascript:displayWindow('images/05-21.jpg',317,237)
javascript:displayWindow('images/05-22.jpg',363,363%20)
javascript:displayWindow('images/05-22.jpg',363,363)

 intItemCount = intItemCount + 1

 Load mnuFileItems(intItemCount)

...

End Sub

Finally, we set the caption of the item to indicate what its item number is, and make it visible:

Private Sub Command1_Click()

 Static intItemCount

 intItemCount = intItemCount + 1

 Load mnuFileItems(intItemCount)

 mnuFileItems(intItemCount).Caption = "Item " & intItemCount

 mnuFileItems(intItemCount).Visible = True

End Sub

You can also add a Click event handler to the Items menu item (because it�s not visible in the
menu bar, find mnuFileItems in the code window and add the event handler to it there). This
event handler is passed the index of the clicked item in the control array, so we can indicate to
the user which item he has clicked:

Private Sub mnuFileItems_Click(Index As Integer)

 MsgBox ("You clicked item " + Str(Index))

End Sub

That�s it�now the File menu can grow as you like, as shown in Figure 5.23.

Figure 5.23 Adding items to a menu at runtime.

To remove items from the menu, just use Unload() statement like this (and make sure you adjust
the total item count):

Unload mnuFileItems(intItemCount)

Adding Bitmaps To Menus

You can even add bitmaps to Visual Basic menu items, although you can�t use Visual Basic
directly to do that. To see how to do that, we�ll create an example that will load in a small bitmap
file, image.bmp, and display it in a menu item.

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\185-190.html (4 of 5) [3/14/2001 1:34:48 AM]

javascript:displayWindow('images/05-23.jpg',317,256%20)
javascript:displayWindow('images/05-23.jpg',317,256)

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\185-190.html (5 of 5) [3/14/2001 1:34:48 AM]

This is going to take some Windows work, which we�ll introduce later in the book (if you don�t understand
what�s going on, it will become clear later). First, create a new project and give Form1 a File menu with
one item in it. Add a Picture control, Picture1, to the form, setting that control�s Visible property to False,
and its AutoRedraw property to True. We�ll use that control to load in the image file when the form loads:

Private Sub Form_Load()

 Picture1.Picture = LoadPicture(App.Path & "\image.bmp")

...

End Sub

To insert a bitmap into a menu item, we�ll need a handle to a bitmap. We have access to the image in the
Picture control, so we create a device context with the Windows CreateCompatibleDC() function, and an
empty bitmap with the Windows CreateCompatibleBitmap() function (note that all the Windows
functions we used must be declared before being used�we�ll see more about this later in the book):

Private Sub Form_Load()

 Picture1.Picture = LoadPicture(App.Path & "\image.bmp")

 Dim dcMemory As Long

 Dim hMemoryBitmap As Long

 dcMemory = CreateCompatibleDC(Picture1.hdc)

 hMemoryBitmap = CreateCompatibleBitmap(Picture1.hdc, 60, 30)

...

End Sub

Next, we select (that is, install) the new bitmap into the device context using SelectObject:

Private Sub Form_Load()

 Picture1.Picture = LoadPicture(App.Path & "\image.bmp")

 Dim dcMemory As Long

 Dim hMemoryBitmap As Long

 dcMemory = CreateCompatibleDC(Picture1.hdc)

 hMemoryBitmap = CreateCompatibleBitmap(Picture1.hdc, 60, 30)

 Dim pObject As Long

 pObject = SelectObject(dcMemory, hMemoryBitmap)

...

End Sub

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\190-194.html (1 of 4) [3/14/2001 1:34:58 AM]

Now that we�ve created our new device context and installed a bitmap, we can copy the image from the
Picture control�s device context to the new device context this way using the Windows BitBlt() function:

Private Sub Form_Load()

 Picture1.Picture = LoadPicture(App.Path & "\image.bmp")

 Dim dcMemory As Long

 Dim hMemoryBitmap As Long

 dcMemory = CreateCompatibleDC(Picture1.hdc)

 hMemoryBitmap = CreateCompatibleBitmap(Picture1.hdc, 60, 30)

 Dim pObject As Long

 pObject = SelectObject(dcMemory, hMemoryBitmap)

 dummy = BitBlt(dcMemory, 0, 0, 60, 30, Picture1.hdc, 0, 0, &HCC0020)

 dummy = SelectObject(dcMemory, pObject)

...

End Sub

Finally, we use the Windows ModifyMenu() function to modify the menu, installing our new bitmap:

Private Sub Form_Load()

 Picture1.Picture = LoadPicture(App.Path & "\image.bmp")

 Dim dcMemory As Long

 Dim hMemoryBitmap As Long

 dcMemory = CreateCompatibleDC(Picture1.hdc)

 hMemoryBitmap = CreateCompatibleBitmap(Picture1.hdc, 60, 30)

 Dim pObject As Long

 pObject = SelectObject(dcMemory, hMemoryBitmap)

 dummy = BitBlt(dcMemory, 0, 0, 60, 30, Picture1.hdc, 0, 0, &HCC0020)

 dummy = SelectObject(dcMemory, pObject)

 dummy = ModifyMenu(GetSubMenu(GetMenu(Me.hwnd), 0), 0, &H404, 0,_

 hMemoryBitmap)

End Sub

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\190-194.html (2 of 4) [3/14/2001 1:34:58 AM]

The result appears in Figure 5.24, where you can see our bitmap in the File menu.

Figure 5.24 Using bitmapped menu items.

The listing for this form appears in is locate in the bitmap folder on this book�s accompaning CD-ROM.
(Note that all the Windows functions we used must be declared before being used�we�ll see more about this
later in the book.)

Using The Registry To Store A Most Recently Used (MRU) Files List

Your program�s users love your new application�but there�s always something new in the Suggestions box.
Today�s suggestion asks whether you can add a Most Recently Used (MRU) list of files to the File menu.
These lists are appended to the end of the File menu and let the user select recently opened files easily. In
fact, the Visual Basic IDE has an MRU list, as you can see in Figure 5.25.

Figure 5.25 The Visual Basic MRU list.

In this example, we�ll support a very short MRU list�just one item�but the idea is easily extendable. Create a
new Visual Basic project now named �mru�, and give Form1 a File menu with two items in it: Open (
�mnuOpen�) and MRU (�mnuMRU�). Make the MRU item a control array by setting its Index property to 0
in the Menu Editor, and make it invisible by deselecting the Visible box in the Menu Editor so we can use
it as a placeholder.

This example uses the Visual Basic GetSetting() and SetSetting() functions to access the Windows
Registry. We�ll see how to use these functions in depth later in this book, but for now, we use GetSetting()
when Form1 is first loaded to see if we�ve saved a file name for the MRU list in the Registry�s
Settings/Doc1 section (here, we�ll use the application�s name as its Registry key, and we get that name from
App.Title):

Private Sub Form_Load()

 Dim FileName As String

 FileName = GetSetting(App.Title, "Settings", "Doc1")

If we have saved a file name in the Registry, we should place it in the File menu, and we do that by loading
a new menu item in the mnuMRU array, setting its caption to the file name, and making it visible this way:

Private Sub Form_Load()

 Dim FileName As String

 FileName = GetSetting(App.Title, "Settings", "Doc1")

 If FileName <> "" Then

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\190-194.html (3 of 4) [3/14/2001 1:34:58 AM]

javascript:displayWindow('images/05-24.jpg',317,256%20)
javascript:displayWindow('images/05-24.jpg',317,256)
javascript:displayWindow('images/05-25.jpg',683,478%20)
javascript:displayWindow('images/05-25.jpg',683,478)

 Load mnuMRU(1)

 mnuMRU(1).Caption = FileName

 mnuMRU(1).Visible = True

 End If

End Sub

That solves the case where we�ve stored a file name for the MRU list in the registry�but how do we store
those names there in the first place? We do that when the user selects the Open item in the File menu. To
get the file name from the user, we�ll use an Open Common Dialog box, so add a Common Dialog control
named dlgCommonDialog to the form now (if you don�t know how to do that, see Chapter 17, which
discusses file handling) and get a file name to open from the user this way:

Private Sub mnuOpen_Click()

 With dlgCommonDialog

 .DialogTitle = "Open"

 .CancelError = False

 .Filter = "All Files (*.*)|*.*"

 .ShowOpen

 If Len(.FileName) = 0 Then

 Exit Sub

 End If

Visual Basic 6 Black Book:Visual Basic Menus

http://24.19.55.56:8080/temp/ch05\190-194.html (4 of 4) [3/14/2001 1:34:58 AM]

Chapter 6
Text Boxes And Rich Text Boxes
If you need an immediate solution to:

Creating Multiline, Word-Wrap Text Boxes

Aligning Text In Text Boxes

Adding Scroll Bars To Text Boxes

Making A Text Box Read-Only

Accessing Text In A Text Box

Selecting And Replacing Text In A Text Box

Copying Or Getting Selected Text To Or From The Clipboard

Creating A Password Control

Controlling Input In A Text Box

Adding An RTF Box To A Form

Accessing Text In A Rich Text Box

Selecting Text In Rich Text Boxes

Using Bold, Italic, Underline, And Strikethru

Indenting Text In Rich Text Boxes

Setting Fonts And Font Sizes In Rich Text Boxes

Using Bullets In Rich Text Boxes

Aligning Text In A Rich Text Box

Setting Text Color In RTF Boxes

Moving The Insertion Point In RTF Boxes

Adding Superscripts And Subscripts In Rich Text Boxes

Setting The Mouse Pointer In Text Boxes And Rich Text Boxes

Searching For (And Replacing) Text In RTF Boxes

Saving RTF Files From Rich Text Boxes

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\197-201.html (1 of 4) [3/14/2001 1:35:17 AM]

Reading RTF Files Into A Rich Text Box

Printing From A Rich Text Box

In Depth

In this chapter, we�re going to start working with Visual Basic controls�in this case,
text boxes and rich text boxes. Every Windows user is familiar with text boxes.
They�re exactly what their name implies: box-like controls in which you can enter
text. Text boxes can be multiline, have scroll bars, be read-only, and have many
other attributes, as we�ll see in this chapter. Not every Windows user is familiar
with rich text boxes, on the other hand. Rich text boxes (also known as RTF boxes)
support not only plain text, but also Rich Text Format (RTF) text.

RTF text supports a variety of formats. For example, you can color text in a rich
text box, underline it, bold it, or make it italic. You can select fonts and font sizes,
as well as write the text out to disk or read it back in. RTF boxes can also hold a
great amount of data, unlike standard text boxes, which are limited to 64K
characters.

RTF text was designed to be a step beyond plain text, and because many word
processors let you save text in that format, it can provide a link between different
types of word processors. Using RTF boxes, you can also create your own simple
word processors, and that�s exactly what the Visual Basic Application Wizard does
if you create an application with it. You�ll find that the child windows in an
Application Wizard program have a rich text box stretched across them, ready for
the user to put to work.

How do you create text boxes and RTF boxes? As with other Visual Basic controls,
you use the toolbox, as shown in Figure 6.1. In that figure, the Text Box tool is the
second tool down on the right, and the RTF Box tool (which you add to a project
with the Project|Components box�s Controls tab) appears at lower right.

Figure 6.1 The Text Box and RTF Box tools.

Use Of Text Boxes And RTF Boxes In Windows Programs

In Windows programs, text boxes and RTF boxes are used to handle text-based
data, and not to let the user enter commands. When Windows first appeared,
DOS-oriented programmers used to use text boxes to accept text-based commands
from the user, but Microsoft considers that an abuse of the Windows user interface.
The user is supposed to issue commands to a program with standard Windows
controls like menu items, command buttons, radio buttons, toolbars, and so forth,
not by typing command syntax into a text box. Text boxes and RTF boxes can
certainly hold data that commands require for execution, but those controls are not

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\197-201.html (2 of 4) [3/14/2001 1:35:17 AM]

javascript:displayWindow('images/06-01.jpg',320,562%20)
javascript:displayWindow('images/06-01.jpg',320,562)

usually intended to hold the commands themselves.

With all that in mind, then, let�s start working with text boxes and RTF boxes.
These are two of the most fundamental controls in Windows, and two of the most
fun to work with. We�ll cover text boxes first in the Immediate Solutions and then
turn to rich text boxes.

Immediate Solutions

Creating Multiline, Word-Wrap Text Boxes

You�ve got a text box all set up for user feedback, and it can hold about 60
characters of text. Surely that�s enough, you think. But when you start actually
reading the users� comments, you find that they�re all favorable, but truncated (�I
loved your program! In fact, let me say that I never saw a�). Maybe it�s worthwhile
to allow the user to enter more text.

You can do that by setting the text box�s MultiLine property to True, converting a
text box into a multiline text box, complete with word wrap. The result appears in
Figure 6.2. Now your program�s users can type in line after line of text.

Figure 6.2 Creating a multiline text box.

Note that you can also add scroll bars to multiline text boxes. (See �Adding Scroll
Bars To Text Boxes� later in this chapter.)

Aligning Text In Text Boxes

The Aesthetic Design Department has sent you a memo. Your new program meets
its requirements for design standards, except for one thing: all the text boxes in your
program are stacked one on top of the other, and the Aesthetic Design Department
thinks it would be terrific if you display the text in those boxes as centered, not
left-justified.

Well, you seem to remember that text boxes have an Alignment property, so you
set it to Centered at design time in all the text boxes (there are three possibilities: 0
for left-justified, 1 for right-justified, and 2 for centered). You run your program�and
the text you enter ends up being left-justified. The Alignment property doesn�t
seem to work. What�s wrong?

You need to set the text boxes� MultiLine property to True before text alignment
will work; that�s one of the quirks of text boxes. When you set the MultiLine
property to True, everything works as it should, as you see in Figure 6.3.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\197-201.html (3 of 4) [3/14/2001 1:35:17 AM]

javascript:displayWindow('images/06-02.jpg',317,237%20)
javascript:displayWindow('images/06-02.jpg',317,237)
javascript:displayWindow('images/06-03.jpg',317,237%20)

Figure 6.3 Aligning text in a text box.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\197-201.html (4 of 4) [3/14/2001 1:35:17 AM]

javascript:displayWindow('images/06-03.jpg',317,237)

Adding Scroll Bars To Text Boxes

Now that you�re using multiline text boxes, it would be even better if you could add
scroll bars to let the user enter even more text. If your program�s users are going to
be entering a lot of text into text boxes, you can avoid the need for huge text boxes
by adding scroll bars.

Using the ScrollBars property, there are four ways to add scroll bars to a text box.
Here are the settings you use for the ScrollBars property, and the type of scroll bars
each setting displays:

" 0�None

" 1�Horizontal

" 2�Vertical

" 3�Both

Note that in order for the scroll bars to actually appear, the text box�s MultiLine
property must be True. After you install scroll bars in a text box, the result appears
as in Figure 6.4. Now the user can enter much more text simply by scrolling
appropriately.

Figure 6.4 Using scroll bars in a text box.

TIP: Although text boxes can hold up to 64K characters, that may be too much for
you to conveniently handle, and you may want to limit the maximum number of
characters a text box can hold. You do that by setting the text box�s MaxLength
property to the maximum number of characters you want the user to be able to enter
(the default value for MaxLength is 0, which actually means 64K characters).

Making A Text Box Read-Only

There are times when you want to make text boxes read-only. For example, you
might have written a calculator program in which you let the user enter operands in
text boxes and display the result in another text box. The result text box should be
read-only so that the user doesn�t enter text there by mistake. Here�s how you do
that.

Locking A Text Box

You use the Locked property to make a text box read-only. Setting this property to

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\201-205.html (1 of 4) [3/14/2001 1:35:36 AM]

javascript:displayWindow('images/06-04.jpg',317,237%20)
javascript:displayWindow('images/06-04.jpg',317,237)

True means that the user cannot enter text into the text box except under your
program�s control, like this:

Private Sub Command1_Click()

 Text1.Text = "This box is locked."

End Sub

An example of a locked text box appears in Figure 6.5 (note that users can�t tell if a
text box is locked until they try to enter text in it!)

Figure 6.5 A locked text box.

Disabling A Text Box

You can also disable a text box by setting its Enabled property to False. However,
although this means the user can�t enter text into the text box, it also means the text
in the box appears grayed. Disabling is better done to indicate that the control is
inaccessible.

Using Labels Instead Of Text Boxes

Another alternative to using read-only text boxes is to display read-only text in label
controls. (Label controls can hold as much text as a text box.) You can change the
text in a label control from code using the label�s Caption property.

Accessing Text In A Text Box

Java, C++, Visual Basic�a programmer has to switch between a lot of languages
these days. So how do you set the text in a text box again? Is there a SetText()
method?

No, you use the Text property like this:

Private Sub Command1_Click()

Text1.Text = "Hello from Visual Basic"

End Sub

When the user clicks the command button Command1, the text �Hello from Visual
Basic� appears in the text box, as shown in Figure 6.6.

Figure 6.6 Setting a text box�s text.

Selecting And Replacing Text In A Text Box

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\201-205.html (2 of 4) [3/14/2001 1:35:36 AM]

javascript:displayWindow('images/06-05.jpg',317,237%20)
javascript:displayWindow('images/06-05.jpg',317,237)
javascript:displayWindow('images/06-06.jpg',317,237%20)
javascript:displayWindow('images/06-06.jpg',317,237)

To work with part of the text in a text box, you select the text you want using three
properties:

" SelLength�Returns or sets the number of characters selected.

" SelStart�Returns or sets the starting point of selected text. If no text is selected,
SelStart indicates the position of the insertion point.

" SelText�Returns or sets the string containing the currently selected text. If no
characters are selected, SelText consists of a zero-length string (��).

For example, here�s how we select all the text in a text box and replace it with
�Welcome to Visual Basic� (which we could have done just as easily by assigning
that string to the Text property, of course). Note the use of Len() to get the length
of the text currently in the text box:

Private Sub Command1_Click()

 Text1.SelStart = 0

 Text1.SelLength = Len(Text1.Text)

 Text1.SelText = "Welcome to Visual Basic"

End Sub

That�s how it works when you want to select some text: you specify the beginning
of the selected text in SelStart, the end in SelLength, and refer to the text with the
SelText property.

Note that text selected under program control this way does not appear highlighted
in the text box.

The HideSelection Property

While on the topic of text selection, we might note the HideSelection property,
which, when True, turns off text-selection highlighting when your program loses the
focus.

Copying Or Getting Selected Text To Or From The Clipboard

After entering their new novels into your program, users were surprised that they
couldn�t copy them to the Clipboard and paste them into other applications. How
can you support the Clipboard with text in a text box?

You can copy selected text to the Clipboard using SetText:

Clipboard.SetText text, [format]

Here, text is the text you want to place into the Clipboard, and format has these
possible values:

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\201-205.html (3 of 4) [3/14/2001 1:35:36 AM]

" vbCFLink�&HBF00; DDE conversation information

" vbCFRTF�&HBF01; Rich Text Format

" vbCFText�1 (the default); Text

You can get text from the clipboard using the GetText() function this way

Clipboard.GetText([format])

where format can be taken from the earlier list of possible format types.

Here�s an example to make this clearer; in this case, we place all the text in text box
Text1 into the clipboard:

Private Sub Command1_Click()

 Clipboard.SetText Text1.Text

...

End Sub

Then we read the text back and display it in a new text box, Text2:

Private Sub Command1_Click()

 Clipboard.SetText Text1.Text

 Text2.Text = Clipboard.GetText

End Sub

TIP: Text boxes already allow the user to use these shortcuts to work with the
Clipboard: Ctrl+C to copy selected text, Ctrl+V to paste text from the clipboard, and
Ctrl+X to cut selected text.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\201-205.html (4 of 4) [3/14/2001 1:35:36 AM]

Creating A Password Control

It�s time to heighten security. Users of your new SuperSpecialDataBase program
are worried about the low security of your program, so you decide to add a little
security with password controls. Visual Basic will help out.

To convert a standard text box into a password box, you just assign some character
(usually an asterisk [*]) to the text box�s PasswordChar property. After that, your
program can read the text in the text box, but only the password character will
appear on the screen each time the user types a character, as shown in Figure 6.7.

Figure 6.7 Creating a password control.

TIP: You may be concerned that someone can copy the text in a password control
and paste it into a word processor to read it, but in fact, Clipboard-handling from the
text box is disabled if you are using a password character.

WARNING! A note about security: don�t trust the password control too far,
because there may be some security loopholes in it that someone out there can
exploit. I once wrote an article that included a tiny program to encrypt data in a
minimum-security way just to get readers started and got a letter full of angry
satisfaction from a code-breaking expert who told me it had taken him �only� five
days (with full-time access to a supercomputer) to break a file encoded with my
program.

Controlling Input In A Text Box

The Testing Department is on the phone�there�s a bug in your program. The users
are getting runtime errors. Don�t panic, you say; you�ll be right down.

You ask the users to duplicate what caused the problem, and you find that they�re
trying to add two numbers with your program: 15553 and 955Z. What�s 955Z? you
ask. A typo, they say. Is there any way you can restrict user input so this doesn�t
happen?

Yes, you can. Just use the KeyPress event and check the KeyAscii parameter,
which is the ANSI (not ASCII, despite its name) code for the just-struck key. Let�s
make this clearer with an example; here�s how you would restrict users to only
typing digits into Text1; all non-digits are simply discarded:

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\205-208.html (1 of 3) [3/14/2001 1:35:44 AM]

javascript:displayWindow('images/06-07.jpg',317,237%20)
javascript:displayWindow('images/06-07.jpg',317,237)

Private Sub Text1_KeyPress(KeyAscii As Integer)

 If KeyAscii < Asc("0") Or KeyAscii > Asc("9") Then

 KeyAscii = 0

 End If

End Sub

Besides the KeyPress, text boxes support the KeyUp and KeyDown events,
although the KeyPress event is easiest to use, because you get the character code of
the typed character passed to you immediately. In the KeyUp and KeyDown events,
you are passed a virtual key code you have to translate into a character, after
checking to see if the Shift key was down and so on. You can also use the text box�s
Change event, which occurs when there�s a change in the text box�s text.

Adding An RTF Box To A Form

So you�ve decided to make the move from text boxes to rich text boxes, and you
turn to the toolbox. Wait a minute�where�s the Rich Text Box tool in the toolbox?
The answer is that it�s not there until you add it.

To add a rich text box to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components box.

3. Find and select the Microsoft Rich Textbox Control box, and click on OK to
close the Components box.

4. The rich text control now appears in the toolbox (at lower right in Figure 6.1),
and you can use it to add rich text boxes to your forms, as shown in Figure 6.8.

Figure 6.8 Displaying rich text in a rich text box.

TIP: What these steps really accomplish is to add the Richtx32.ocx file to your
program, and you�ll need to distribute that file with your program if you use rich
text boxes.

Accessing Text In A Rich Text Box

To access text in a rich text box, you can use two properties: Text and TextRTF.
As their names imply, Text holds the text in a rich text box in plain text format (like
a text box), and TextRTF holds the text in Rich Text Format.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\205-208.html (2 of 3) [3/14/2001 1:35:44 AM]

javascript:displayWindow('images/06-08.jpg',317,237%20)
javascript:displayWindow('images/06-08.jpg',317,237)

Here�s an example where we read the text in RichTextBox1 without any RTF codes
and display that text as plain text in RichTextBox2:

Private Sub Command1_Click()

 RichTextBox2.Text = RichTextBox1.Text

End Sub

Here�s the same operation where we transfer the text including all RTF codes�that is,
here we�re transferring rich text from one rich text box to another:

Private Sub Command1_Click()

 RichTextBox2.TextRTF = RichTextBox1.TextRTF

End Sub

Selecting Text In Rich Text Boxes

Rich text boxes support the SetText property just like standard text boxes.
However, SetText only works with plain text. You can set the start and end of
plain-text selection with the SelStart and SelLength properties.

If you want to work with RTF-selected text, on the other hand, use the SelRTF
property. For example, here�s how we select the first 10 characters in
RichTextBox1 and transfer them to RichTextBox2 using SelRTF:

Private Sub Command1_Click()

 RichTextBox1.SelStart = 0

 RichTextBox1.SelLength = 10

 RichTextBox2.TextRTF = RichTextBox1.SelRTF

End Sub

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\205-208.html (3 of 3) [3/14/2001 1:35:44 AM]

The Span Method

Besides the SelRTF property, you can use the Span() method to select text based on a set of characters:

RichTextBox.Span characterset, [forward, [negate]]

The characterset parameter is a string that specifies the set of characters to look for. The forward parameter
determines which direction the insertion point moves. The negate parameter specifies whether the
characters in characterset define the set of target characters or are excluded from the set of target
characters.

You use Span() to extend a selection from the current insertion point based on a set of specified characters.
This method searches the text in the rich text box (forwards or backwards as you�ve specified) and extends
the text selection to include (or exclude, if you�ve so specified) as many of the characters you�ve specified
in the character set that it can find. For example, to select the text from the current insertion point to the end
of the sentence, use Span(�.?!�), which works for sentences ending in periods, question marks, or
exclamation marks.

Here�s an example where we use Span() to find the word �underlined� and underline it:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports underlined, bold, _

 italic, and strikethru text."

 RichTextBox1.SelStart = RichTextBox1.Find("underlined")

 RichTextBox1.Span ("underlined")

 RichTextBox1.SelUnderline = True

End Sub

Using Bold, Italic, Underline, And Strikethru

To make text bold, italic, underlined, or strikethru, you use the SelBold, SelItalic, SelUnderline, and
SelStrikethru properties. These properties work on selected RTF text only, so you have to select the text
whose format you want to change.

To make this clearer, here�s an example where we set the underline, bold, italic, and strikethru properties of
text. We start by placing some text into a rich text box:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports underlined, bold,_

 italic, and strikethru text."

...

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\209-212.html (1 of 4) [3/14/2001 1:36:05 AM]

Next, we�ll underline the word �underlined� in the text. We start by finding that word using the rich text box
Find() method:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports underlined, bold,_

 italic, and strikethru text."

 RichTextBox1.SelStart = RichTextBox1.Find("underlined")

...

We then use Span() to select the word �underlined�:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports underlined, bold,_

 italic, and strikethru text."

 RichTextBox1.SelStart = RichTextBox1.Find("underlined")

 RichTextBox1.Span ("underlined")

...

Finally, we underline the selected text by setting the rich text box�s SelUnderline property to True:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports underlined, bold,_

 italic, and strikethru text."

 RichTextBox1.SelStart = RichTextBox1.Find("underlined")

 RichTextBox1.Span ("underlined")

 RichTextBox1.SelUnderline = True

...

And we can do the same to demonstrate bold, italic, and strikethru text:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports underlined, bold,_

 italic, and strikethru text."

 RichTextBox1.SelStart = RichTextBox1.Find("underlined")

 RichTextBox1.Span ("underlined")

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\209-212.html (2 of 4) [3/14/2001 1:36:05 AM]

 RichTextBox1.SelUnderline = True

 RichTextBox1.SelStart = 0

 RichTextBox1.SelStart = RichTextBox1.Find("bold")

 RichTextBox1.Span ("bold")

 RichTextBox1.SelBold = True

 RichTextBox1.SelStart = 0

 RichTextBox1.SelStart = RichTextBox1.Find("italic")

 RichTextBox1.Span ("italic")

 RichTextBox1.SelItalic = True

 RichTextBox1.SelStart = 0

 RichTextBox1.SelStart = RichTextBox1.Find("strikethru")

 RichTextBox1.Span ("strikethru")

 RichTextBox1.SelStrikeThru = True

End Sub

Running this program yields the results you see in Figure 6.9.

Figure 6.9 Setting rich text properties.

Indenting Text In Rich Text Boxes

One of the aspects of word processors that users have gotten used to is the ability to indent text, and rich
text boxes (which are designed to be RTF word processors in a control) have this capability. To indent
paragraph-by-paragraph, you use these properties (you set them to numeric values to indicate the
indentation amount, using the measurement units of the underlying form, which is usually twips):

" SelIndent�Indents the first line of the paragraph

" SelHangingIndent�Indents all other lines of the paragraph with respect to SelIndent

" SelRightIndent�Sets the right indentation of the paragraph

To use these properties on a paragraph of text, you either select the paragraph (using SelStart and
SelLength, or Span()), or simply place the insertion point in the paragraph (you can move the insertion
point under program control with the UpTo() method).

Here�s an example: When the user places the insertion point in a paragraph of text and clicks a button,
Command1, we can indent the paragraph 500 twips. We can then outdent all lines after the first by 250
twips with respect to the overall 500-twip indentation (which means that all lines after the first will be
indented 250 twips from the left margin) and set the right indent to 100 twips:

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\209-212.html (3 of 4) [3/14/2001 1:36:05 AM]

javascript:displayWindow('images/06-09.jpg',317,191%20)
javascript:displayWindow('images/06-09.jpg',317,191)

Private Sub Command1_Click()

 RichTextBox1.SelIndent = 500

 RichTextBox1.SelHangingIndent = -250

 RichTextBox1.SelRightIndent = 100

End Sub

Running this code on a paragraph of text yields the result you see in Figure 6.10. Now we�re indenting
individual paragraphs in rich text controls.

Figure 6.10 Indenting a paragraph of text.

Besides working paragraph-by-paragraph, you can set the right margin for the whole rich text at once with
the RightMargin property. Just assign this property the new value you want for the right margin, and you
�re set.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\209-212.html (4 of 4) [3/14/2001 1:36:05 AM]

javascript:displayWindow('images/06-10.jpg',317,237%20)
javascript:displayWindow('images/06-10.jpg',317,237)

Setting Fonts And Font Sizes In Rich Text Boxes

Another call from the Field Testing Department. It seems that the users want to use different fonts in your
word-processor program. Well, some people are never satisfied�but rich text boxes can help here, too.

To set a selection�s font, you just set the SelFontName to the new font name (for example, Arial or Times
New Roman). To set a selection�s font size, you just set the SelFontSize property. That�s all it takes.

Here�s an example. In this case, we�ll display the text �This rich text box supports fonts like Arial and Courier
in different sizes.� in a rich text box, and format the words �Arial� and �Courier� in those fonts, and in different
font sizes.

We start by placing that text in a rich text box:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports fonts like Arial and_

 Courier in different sizes."

...

Next, we select the word �Arial�:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports fonts like Arial and_

 Courier in different sizes."

 RichTextBox1.SelStart = RichTextBox1.Find("Arial")

 RichTextBox1.Span ("Arial")

...

Then we display that word in Arial font, with a 24-point size:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports fonts like Arial and_

 Courier in different sizes."

 RichTextBox1.SelStart = RichTextBox1.Find("Arial")

 RichTextBox1.Span ("Arial")

 RichTextBox1.SelFontName = "Arial"

 RichTextBox1.SelFontSize = 24

...

We do the same for the word �Courier�, displaying it in 18-point size:

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\212-216.html (1 of 4) [3/14/2001 1:36:24 AM]

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports fonts like Arial and_

 Courier in different sizes."

 RichTextBox1.SelStart = RichTextBox1.Find("Arial")

 RichTextBox1.Span ("Arial")

 RichTextBox1.SelFontName = "Arial"

 RichTextBox1.SelFontSize = 24

 RichTextBox1.SelStart = 0

 RichTextBox1.SelStart = RichTextBox1.Find("Courier")

 RichTextBox1.Span ("Courier")

 RichTextBox1.SelFontName = "Courier"

 RichTextBox1.SelFontSize = 18

End Sub

The result appears in Figure 6.11.

Figure 6.11 Setting fonts and font sizes.

Being able to set the font and font size of individual text selections instead of working with all the text at once
in a rich text box is a very powerful capability.

Using Bullets In Rich Text Boxes

Rich text boxes support bullets, those black dots that appear in lists of items that you want to set off in text.
Putting a bullet in front of each item gives the list a snappy appearance and helps the reader assimilate the
information quickly.

To set bullets, you use the SelBullet and BulletIndent properties. The SelBullet property displays a bullet in
front of the paragraph in which the current selection is; the BulletIndent property indicates how much you
want the bullet to be indented from the left.

TIP: It�s a good idea to set the bullet indentation, because if you don�t, the bullet will appear right in front of
the first character in the paragraph you�re bulleting, which can look awkward.

Let�s make this clearer with an example. We start by placing some text in a rich text box:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box shows how to use bullets _

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\212-216.html (2 of 4) [3/14/2001 1:36:24 AM]

javascript:displayWindow('images/06-11.jpg',317,237%20)
javascript:displayWindow('images/06-11.jpg',317,237)

 and indent bulleted text."

...

We set the indentation for this paragraph to 200 twips:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box shows how to use bullets _

 and indent bulleted text."

 RichTextBox1.SelIndent = 200

...

Next, we set the bullet�s indent to 90 twips, so it�s set off from the rest of the text. We set that indent with the
BulletIndent property:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box shows how to use bullets _

 and indent bulleted text."

 RichTextBox1.SelIndent = 200

 RichTextBox1.BulletIndent = 90

...

Finally, we add the bullet with the SelBullet property:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box shows how to use bullets _

 and indent bulleted text."

 RichTextBox1.SelIndent = 200

 RichTextBox1.BulletIndent = 90

 RichTextBox1.SelBullet = True

End Sub

That�s it�the result appears in Figure 6.12.

Figure 6.12 Adding a bullet to text in a rich text box.

Aligning Text In A Rich Text Box

You can set the alignment of text in a rich text box paragraph-by-paragraph using the SelAlignment property.
You just select the paragraph you want to align, or place the insertion point in that paragraph, and set the
SelAlignment property to one of the following values:

" rtfLeft�0(the default); the paragraph is aligned along the left margin.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\212-216.html (3 of 4) [3/14/2001 1:36:24 AM]

javascript:displayWindow('images/06-12.jpg',317,237%20)
javascript:displayWindow('images/06-12.jpg',317,237)

" rtfRight�1; the paragraph is aligned along the right margin.

" rtfCenter�2; the paragraph is centered between the left and right margins.

Being able to align text paragraph-by-paragraph like this is much more powerful than the simple Alignment
property of a standard text box, which aligns all the text at the same time.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\212-216.html (4 of 4) [3/14/2001 1:36:24 AM]

Setting Text Color In RTF Boxes

Another call from the Testing Department�now the users want to use different text colors in your
word-processing program. Can you do that? Yes, you can, using the SelColor property.

To set colors in a rich text box, you just make a selection and set the rich text box�s SelColor property
using the RGB() function. You pass three values (each ranging from 0 to 255) to the RGB() function for
the three color values: red, green, and blue.

Here�s an example to make this clearer. We display the text �This rich text box supports font colors like
red and blue and green.� in a rich text box, and color the word �red� red, �blue� blue, and �green� green.
Here�s how that example looks in code:

Private Sub Command1_Click()

 RichTextBox1.Text = "This rich text box supports font colors like _

 red and blue and green."

 RichTextBox1.SelStart = RichTextBox1.Find("red")

 RichTextBox1.Span ("red")

 RichTextBox1.SelColor = RGB(255, 0, 0)

 RichTextBox1.SelStart = 0

 RichTextBox1.SelStart = RichTextBox1.Find("green")

 RichTextBox1.Span ("green")

 RichTextBox1.SelColor = RGB(0, 255, 0)

 RichTextBox1.SelStart = 0

 RichTextBox1.SelStart = RichTextBox1.Find("blue")

 RichTextBox1.Span ("blue")

 RichTextBox1.SelColor = RGB(0, 0, 255)

End Sub

This program produces the display you see in Figure 6.13. (Although it only appears in black and white in
this book, the word red is red, and so on!)

Figure 6.13 Coloring text in a rich text box.

Moving The Insertion Point In RTF Boxes

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\216-220.html (1 of 4) [3/14/2001 1:36:46 AM]

javascript:displayWindow('images/06-13.jpg',317,237%20)
javascript:displayWindow('images/06-13.jpg',317,237)

Using the UpTo() method, you can move the insertion point around in a rich text box. This method moves
the insertion point up to (but not including) a character or set of characters. Moving the insertion point
yourself can be a powerful technique in a rich text box�for example, you can move the insertion point to a
section of text the user is searching for. Here�s how the UpTo() method works:

RichTextBox.UpTo(characterset, forward, negate)

The characterset parameter is a string that specifies the set of characters to look for. The forward
parameter determines which direction the insertion point moves. The negate parameter specifies whether
the characters in characterset define the set of target characters or are excluded from the set of target
characters.

This is made easier to understand with an example, so let�s put together an example now. Here, we�ll
display the text �Click the button to move the insertion point here: *�, and when the user clicks a button,
we�ll move the insertion point right up to the asterisk (*).

We begin by displaying that text in a rich text box when the form loads:

Private Sub Form_Load()

 RichTextBox1.Text = "Click the button to move the insertion point _

 here: *"

End Sub

Next, when the user clicks a button, we can move the insertion point up to the asterisk in the text this way
(note, of course, that you can search for multi-character text as well as single characters):

Private Sub Command1_Click()

 RichTextBox1.UpTo ("*")

...

End Sub

That�s not quite good enough, though. Because we�ve clicked the command button, the button now has the
focus, which means the blinking insertion point in the rich text box isn�t visible at all. To make sure the
insertion point in the rich text box reappears, we give the focus back to the rich text box. This program
appears in Figure 6.14. Now we�re handling the insertion point.

Figure 6.14 Moving the insertion point in a rich text box.

Private Sub Command1_Click()

 RichTextBox1.UpTo ("*")

 RichTextBox1.SetFocus

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\216-220.html (2 of 4) [3/14/2001 1:36:46 AM]

javascript:displayWindow('images/06-14.jpg',317,237%20)
javascript:displayWindow('images/06-14.jpg',317,237)

End Sub

Adding Superscripts And Subscripts In Rich Text Boxes

Uh oh�the users of your new word-processing program, SuperDuperTextPro, are demanding more
text-formatting power. Your program has become so popular that the staff physicists are starting to use it,
but they want to use superscripts and subscripts in text. Can you add that?

Yes, with the rich text box SelCharOffset property. You use this property to make a selection a
superscript or subscript�if you set this value to a positive value, you get a superscript, and if you set it to a
negative value, you get a subscript. (All measurements use the measurement units of the underlying form,
such as twips.)

Let�s see an example. Here we can display a simple quadratic equation using this text

X12 + 2X1 + 1 = 0

where we�ll make the 1s subscripts and the first 2 a superscript. We start by displaying that text in a rich
text box:

Private Sub Form_Load()

 RichTextBox1.Text = "X12 + 2X1 + 1 = 0"

End Sub

Next, we select the characters we want and set the SelCharOffset property to positive or negative twip
values to create superscripts and subscripts:

Private Sub Command1_Click()

 RichTextBox1.UpTo ("1")

 RichTextBox1.Span ("1")

 RichTextBox1.SelCharOffset = Ð

 RichTextBox1.UpTo ("2")

 RichTextBox1.Span ("2")

 RichTextBox1.SelCharOffset = 40

 RichTextBox1.UpTo ("1")

 RichTextBox1.Span ("1")

 RichTextBox1.SelCharOffset = Ð

End Sub

That�s it�the result of this code appears in Figure 6.15. Now even the physicists will be happy.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\216-220.html (3 of 4) [3/14/2001 1:36:46 AM]

Figure 6.15 Using superscripts and subscripts in a rich text box.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\216-220.html (4 of 4) [3/14/2001 1:36:46 AM]

javascript:displayWindow('images/06-15.jpg',317,237%20)
javascript:displayWindow('images/06-15.jpg',317,237)

Setting The Mouse Pointer In Text Boxes And Rich Text Boxes

You can set the mouse pointer when it travels over a text box or rich text box. Just set
the Mousepointer property to one of the values in Table 6.1.

Table 6.1 Mouse
pointer options.
Constant

ValueDescription

rtfDefault 0 (Default) Shape determined by the object
rtfArrow 1 Arrow
rtfCross 2 Cross (cross-hair pointer)
rtfIbeam 3 I beam
rtfIcon 4 Icon (small square within a square)

rtfSize 5
Size (four-pointed arrow pointing north, south, east, and

west)

rtfSizeNESW 6
Size NE SW (double arrow pointing northeast and

southwest)
rtfSizeNS 7 Size N S (double arrow pointing north and south)

rtfSizeNWSE 8 Size NW, SE
rtfSizeEW 9 Size E W (double arrow pointing east and west)

rtfUpArrow 10 Up arrow
rtfHourglass 11 Hourglass (wait)
rtfNoDrop 12 No drop

rtfArrowHourglass 13 Arrow and hourglass
rtfArrowQuestion 14 Arrow and question mark

rtfSizeAll 15 Size all
rtfCustom 99 Custom icon specified by the MouseIcon property

Searching For (And Replacing) Text In RTF Boxes

The users of your popular new word processor, SuperDuperTextPro, are still not
satisfied. They find it inconvenient to search through 300-page documents for a
particular word. Can you add search capability to your program? Better yet, they ask,
how about search and replace?

Any word processor of any value will let the user search for text, and rich text boxes
do that with the Find() method. For example, if we placed this text in a rich text box:

Private Sub Form_Load()

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\220-224.html (1 of 4) [3/14/2001 1:36:58 AM]

 RichTextBox1.Text = "Here is some text."

End Sub

Next, we could search for the word �some� this way with Find():

Private Sub Command1_Click()

 RichTextBox1.Find ("some")

...

End Sub

After you find an item, it becomes the new selection. So, if we wanted to replace the
word �some� with, say, �the�, we could do that this way:

Private Sub Command1_Click()

 RichTextBox1.Find ("some")

 RichTextBox1.SelRTF = "the"

End Sub

In this way, we search for the word �some� in the text and replace it with �the�, as
shown in Figure 6.16.

Figure 6.16 Searching for and replacing text.

Saving RTF Files From Rich Text Boxes

You�ve gotten feedback from a user of your word processor, SuperDuperTextPro, and
it seems she�s written a 600-page novel with the program and now finds there�s no
way to save it to disk. Can you help? She will keep her computer on until she hears
from you.

You use the SaveFile() method to save the text in a rich text box to disk, and doing
that is really easy�you just use SaveFile() this way:

RichTextBox.SaveFile(pathname, [filetype])

You can save text as plain or RTF text; the settings for filetype are as follows:

" rtfRTF�0(the default); the RichTextBox control saves its contents as an RTF file.

" rtfText�1; the RichTextBox control saves its contents as a text file.

Here�s an example where we display some text in a rich text box:

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\220-224.html (2 of 4) [3/14/2001 1:36:58 AM]

javascript:displayWindow('images/06-16.jpg',317,237%20)
javascript:displayWindow('images/06-16.jpg',317,237)

Private Sub Form_Load()

 RichTextBox1.Text = "This is the text in the file."

End Sub

Next, we save that text to a file this way:

Private Sub Command1_Click()

 RichTextBox1.SaveFile ("c:\data.txt")

End Sub

And that�s all it takes. Now we�ve written RTF to a file.

TIP: Many word processors, like Microsoft Word, support RTF files, so you can now
write text formatted files that such word processors can read in and use.

Reading RTF Files Into A Rich Text Box

You can write files to disk from a rich text box with SaveFile(); how can you read
files back in? You use LoadFile().

Like SaveFile(), LoadFile() is very easy to use:

RichTextBox.LoadFile pathname, [filetype]

And you can load in plain text or RTF text files; the settings for filetype are as
follows:

" rtfRTF�0(The default); the RichTextBox control saves its contents as an RTF file.

" rtfText�1; the RichTextBox control saves its contents as a text file.

Here�s an example where we load in the file we wrote in the last topic on saving files,
data.txt:

Private Sub Command1_Click()

 RichTextBox1.LoadFile "c:\data.txt"

End Sub

That�s all there is to it�it�s that easy to load in files.

Printing From A Rich Text Box

You can print from a rich text box using the SelPrint() method and the Visual Basic
Printer object. The only thing to remember here is that you should first initialize the
printer by printing a string of zero length or similar operation.

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\220-224.html (3 of 4) [3/14/2001 1:36:58 AM]

Here�s how we print the last two words in the text �Printing this text&�; first, we
display that text in the rich text box:

Private Sub Form_Load()

 RichTextBox1.Text = "Printing this text..."

End Sub

Next, we select the last two words:

Private Sub Command1_Click()

 RichTextBox1.Find ("this text&")

 RichTextBox1.SelLength = Len("this text&")

...

Finally, we print them. Note that we have to pass the handle of the device context with
which we want to print to SelPrint(), and here, that�s the Printer object�s device
context, Printer.hDC:

Private Sub Command1_Click()

 RichTextBox1.Find ("this text...")

 RichTextBox1.SelLength = Len("this text...")

 Printer.NewPage

 RichTextBox1.SelPrint (Printer.hDC)

End Sub

Visual Basic 6 Black Book:Text Boxes And Rich Text Boxes

http://24.19.55.56:8080/temp/ch06\220-224.html (4 of 4) [3/14/2001 1:36:58 AM]

Chapter 7
Command Buttons, Checkboxes, And
Option Buttons
If you need an immediate solution to:

Setting A Button�s Caption

Setting A Button�s Background Color

Setting Button Text Color

Setting Button Fonts

Reacting To Button Clicks

Creating Button Control Arrays

Resetting The Focus After A Button Click

Giving Buttons Access Characters

Setting Button Tab Order

Disabling Buttons

Showing And Hiding Buttons

Adding Tool Tips To Buttons

Resizing And Moving Buttons From Code

Adding A Picture To A Button

Adding A Down Picture To A Button

Adding Buttons At Runtime

Passing Buttons To Procedures

Handling Button Releases

Making A Command Button Into A Cancel Button

Getting A Checkbox�s State

Setting A Checkbox�s State

Grouping Option Buttons Together

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\225-230.html (1 of 4) [3/14/2001 1:37:08 AM]

Getting An Option Button�s State

Setting An Option Button�s State

Using Graphical Checkboxes And Radio Buttons

Using Checkboxes And Option Buttons Together

In Depth

In this chapter, we�re going to take a look at what are arguably the most popular
controls in Visual Basic: buttons. These include command buttons, checkboxes, and
option buttons.

Command buttons�the plain buttons that you simply click and release�are the most
common type of buttons. These are the buttons you see everywhere in Visual Basic
applications. They are usually just rounded, rectangular, gray buttons with a caption.

Checkboxes are also familiar controls. You click a checkbox to select it and click it
again to deselect it. When you select a checkbox, a checkmark appears in it, indicating
that the box is indeed selected.

Option buttons, also called radio buttons, are like checkboxes in that you select and
deselect them. However, they are round, whereas checkboxes are square, and you
usually use option buttons together in groups. In fact, that�s the functional difference
between checkboxes and option buttons: checkboxes can work independently, but
option buttons are intended to work in groups. When you select one option button in a
group, the others are automatically deselected. For example, you might use
checkboxes to select trimmings on a sandwich (of which there can be more than one),
whereas you might use option buttons to let the user select one of a set of exclusive
options, like the current day of the week.

You use tools in the toolbox to add command buttons, checkboxes, and option buttons
to a form. In the toolbox in Figure 7.1, the Command Button tool is third down on the
right, the Checkbox tool is fourth down on the left, and the Option Button tool is
fourth down on the right.

Figure 7.1 The Command Button tool, the Checkbox tool, and the Option Button
tool.

How This Chapter Works

Because the three different types of buttons have many similar characteristics, it
makes sense to cover them in the same chapter. In fact, the three types of buttons have
so many properties and methods in common that when covering such topics, we�ll
refer to command buttons, checkboxes, and option buttons collectively as buttons.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\225-230.html (2 of 4) [3/14/2001 1:37:08 AM]

javascript:displayWindow('images/07-01.jpg',622,561%20)
javascript:displayWindow('images/07-01.jpg',622,561)

For example, all three controls have a Caption property, so when we cover how to set
captions in those controls, we�ll refer to them collectively as buttons. The title of that
topic, then, is �Setting A Button�s Caption.� If we�re covering something that refers to
one type of button exclusively, I�ll indicate that in the title of the topic, for example,
�Grouping Option Buttons Together.� In this way, we�ll be able to address both what
all the buttons have in common and what makes them useful independently.

That�s all the introduction we need�we�ll turn to the Immediate Solutions now.

Immediate Solutions

Setting A Button�s Caption

You use a button�s Caption property to set its caption. This property is available at
both design time and runtime.

After you add a button to a form, you set its caption by placing the appropriate text in
the Caption property in the Properties window. You can also change the button�s
caption at runtime, of course. As an example, we�ll use our tic-tac-toe program from
Chapter 1:

Private Sub Form_Load()

 xNow = True

End Sub

Private Sub Command_Click(Index As Integer)

 If xNow Then

 Command(Index).Caption = "x"

 Else

 Command(Index).Caption = "o"

 End If

 xNow = Not xNow

End Sub

TIP: It�s useful to be able to change the captions of buttons. For example, if a
command button�s caption reads Connect To Internet, then when you�re connected
you could change the button�s caption to Disconnect From Internet, and disconnect
from the Internet when the button is clicked.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\225-230.html (3 of 4) [3/14/2001 1:37:08 AM]

Setting A Button�s Background Color

You�ve got your program running at last, but now the Aesthetic Design Department is
on the phone. The �emergency� window in your program is colored red�why not the
Panic button in the middle of that window also?

So, how do you do that? You can use the button�s BackColor property, as shown in
Figure 7.2. Note that you also have to set the button�s Style property to Graphical
(which has a numeric value of 1). We�ll see more about graphical buttons later in this
chapter. Here, we�re setting the background color of a button at design time, and two
sets of colors are available: a set of standard Visual Basic control colors (like �Button
Face,� �Button Shadow,� and so on), and a palette of colors.

Figure 7.2 Setting a button�s background color.

You can also set the button�s BackColor property at runtime, setting it to a value
using the RGB() function, which takes three parameters (0 to 255) for the red, green,
and blue color values you want to set. Here, we change the color of a graphical button
to red:

Command1.BackColor = RGB(255, 0, 0)

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\225-230.html (4 of 4) [3/14/2001 1:37:08 AM]

javascript:displayWindow('images/07-02.jpg',681,477%20)
javascript:displayWindow('images/07-02.jpg',681,477)

Setting Button Text Color

You�ve got your graphic design program working at last. But wouldn�t it be a nice
touch if you could set the captions in the color-selection buttons to match the colors
the buttons correspond to? For example, the button with the red text lets the user
select red as the drawing color, the button with the green text lets the user select
green, and so on. You can set the color of a button�s caption using the button�s
ForeColor property.

Interestingly, only checkboxes and option buttons have a ForeColor property;
command buttons do not.

You set a button�s ForeColor property at design time, as in Figure 7.3, or at runtime
like this:

Private Sub Check1_Click()

 Check1.ForeColor = RGB(255, 0, 0)

End Sub

Figure 7.3 Setting a button�s ForeColor property at design time.

Setting Button Fonts

You�ve written an adventure-type game for your grandfather, but he�s emailed to let
you know he can�t read the �tiny text� in the buttons. He likes to run his screen in super
high-resolution mode. Can you fix that?

Yes you can. All you have to do is to make the font size in the buttons� captions
larger. To do that, you use the button�s Font property. Selecting the Font item in the
Properties window opens the Font dialog box shown in Figure 7.4. As you can see in
that figure, captions can go up to 24 point, which should be big enough for
grandfather.

Notice that there are number of options in the Font dialog box in Figure 7.4, which
means that you can�t set a single property at runtime to set a button�s font. Instead, you
can use the following properties:

" FontBold

" FontItalic

" FontName

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\230-235.html (1 of 4) [3/14/2001 1:37:21 AM]

javascript:displayWindow('images/07-03.jpg',681,478%20)
javascript:displayWindow('images/07-03.jpg',681,478)

" FontSize

" FontStrikethru

" FontUnderline

Figure 7.4 Selecting a font for a button.

You also have direct access to the button�s Font object, so you can set those properties
by referring to them as, for example, Option1.Font.Bold, Option1.Font.Italic, and
so on.

Reacting To Button Clicks

For completeness, we�ll include this one here: You respond to button clicks with the
button�s Click event. To add a Click event handler, just double-click the button at
design time, which adds a subroutine like this one:

Private Sub Command1_Click()

End Sub

Place the code you want to execute when the button is clicked in this subroutine:

Private Sub Command1_Click()

 MsgBox "You clicked the command button!"

End Sub

All three buttons have a Click event�they wouldn�t be much use otherwise�and option
buttons also have a double-click event, DblClick. If you double-click a checkbox, you
select and then deselect it (or deselect and then select it), so you�re back to where you
started. If you double-click an option button, however, you select it, no matter what its
original state, and cause a DblClick event.

Creating Button Control Arrays

You�ve decided that your new game program really does need 144 buttons in the main
form, arranged in a grid of 12×12. But what a pain it is to write 144 sub-routines to
handle the click event for each of them! Isn�t there a better way?

There is. You use a control array and one event handler function (the control array
index of the button that was clicked is passed to the event handler, so you can tell
which button you need to respond to). To create a control array, just give two controls
of the same type the same name (in the Name property); when you do, Visual Basic
will ask if you want to create a control array, as in Figure 7.5.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\230-235.html (2 of 4) [3/14/2001 1:37:21 AM]

javascript:displayWindow('images/07-04.jpg',398,341%20)
javascript:displayWindow('images/07-04.jpg',398,341)

Figure 7.5 Creating a control array.

When you create an event handler subroutine for a button in the control array, Visual
Basic will automatically pass the index of the control in the control array to that
subroutine:

Private Sub GamePiece_Click(Index As Integer)

End Sub

You can then refer to the control that caused the event as a member of an array, using
the index passed to the subroutine:

Private Sub GamePiece_Click(Index As Integer)

 GamePiece(Index).Caption = "You clicked me!"

End Sub

TIP: When you add controls to a control array, the first one has Index 0, the next has
Index 1, and so on. You can change the index of each control with its Index property,
rearranging the controls in the control array as you like.

You can also create a control array with just one control�just set that control�s Index
property to 0. Later, you can add more controls to the array at runtime if you like,
using the Load statement (see �Adding Buttons At Runtime� later in this chapter).

Resetting The Focus After A Button Click

When you click a button, the input focus is transferred to the button�and in some
cases, you don�t want that to happen. For example, say you�ve got a word-processor
program based on a rich text box control, and you have a button labeled �Search� in
the program. When the user clicks the button, then we can search for target text in the
rich text box using that box�s UpTo() method�but the focus remains on the button the
user clicked. When the user starts typing again, nothing appears in the rich text box
control because the focus is still on the button. How do you transfer the focus back to
the rich text box?

You do that with the control�s SetFocus() method, which is something you frequently
do in real programs after button clicks. Here�s how it might look in code:

Private Sub Command1_Click()

 RichTextBox1.UpTo (gstrStringToFind)

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\230-235.html (3 of 4) [3/14/2001 1:37:21 AM]

javascript:displayWindow('images/07-05.jpg',486,116%20)
javascript:displayWindow('images/07-05.jpg',486,116)

 RichTextBox1.SetFocus

End Sub

Now, when the user clicks the button and starts typing again, the focus will be back on
the rich text box, as it should be. Note that you can set the control that has the focus
when a form first appears by setting the control�s Default property to True (only one
control on a form may have that property set to True).

TIP: Buttons also have two events�GotFocus and LostFocus�that can tell you when
your button has gotten or lost the focus.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\230-235.html (4 of 4) [3/14/2001 1:37:21 AM]

Giving Buttons Access Characters

The Testing Department is on the phone again. Everyone loves your new
program, SuperDuperTextPro, but as usual there are �one or two little things.�
And, as usual, one of those things is keyboard access. Ideally, they say, the
user should be able to use programs entirely from the keyboard, without the
mouse at all. Well, you say, the button�s tab order was set correctly (see the
next topic). But, they say, what about giving your buttons access characters?

You know you can give menu items access characters�those underlined
characters in a menu item that the user can reach with the Alt key. Can you
add them to buttons?

Yes, you can, and in the same way as you do with menu items. Just place an
ampersand (&) in front of the character in the button�s caption that you want
to make into the access character for that button (and make sure that the
access character is unique among all the access characters available at one
time). As an example, we�ve given the buttons in Figure 7.6 access characters
�note the ampersand in the Caption property in the Properties window.

Figure 7.6 Setting access characters.

Setting Button Tab Order

To make your buttons more accessible from the keyboard�especially if you�ve
got a lot of them�you can use the TabStop, TabIndex, and Default
properties. Here�s what those properties do:

" TabStop indicates if this button can accept the focus when the user tabs to
it.

" TabIndex is the index of the current button in the tab order (starts at 0).

" Default is True for one control on a form only; that control will have the
focus when the form first appears (by default, so to speak, the default control
is the control with TabIndex 0).

When the user presses the Tab key, the focus moves from button to button,
ascending through the tab order.

You can arrange the tab order for your buttons with the TabIndex property.
For example, in Figure 7.7 the first button, at upper left, has the focus (you
can tell because its border is thickened). Pressing the Tab key will move the
focus to the next button, and the next, then to the next row, and so on.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\235-238.html (1 of 4) [3/14/2001 1:37:32 AM]

javascript:displayWindow('images/07-06.jpg',683,478%20)
javascript:displayWindow('images/07-06.jpg',683,478)

Figure 7.7 Using tab-enabled buttons.

TIP: Another use of tab order is in text-entry forms. If, for example, you
have 10 text boxes in a row that need to be filled out, the user can enter text
in the first one, press the Tab key to move to the next one, enter text there,
press Tab again to move to the next text box, and so on. Thoughtfully setting
the tab order in such a case can make text-oriented forms much easier on
your users.

Disabling Buttons

Another problem from the Testing Department concerning your program,
SuperDuperTextPro. It seems the users are sometimes pressing your Connect
To The Internet button twice by mistake, confusing the program and causing
crashes. Can you stop that from happening?

Yes, you can�you can disable the button by setting its Enabled property to
False when it�s inappropriate to use that button. For example, we�ve disabled
all the buttons in Figure 7.8. When a button is disabled, it is inaccessible to
the user (and it can�t accept the focus).

Figure 7.8 Disabling buttons in a form.

You can also disable buttons at runtime, of course, like this:

Private Sub Command1_Click()

 Command1.Enabled = False

End Sub

TIP: If you set a button�s Style property to Graphical (Style = 1), you can
set the button�s DisabledPicture property to a picture, such as from an image
file. And when the button is disabled, that image will appear in the button.
That can be very useful to reinforce the fact that the button is disabled�you
might have a big X appear, for example.

Showing And Hiding Buttons

In the last topic, we saw that we can disable buttons using the Enabled
property. However, it�s an inefficient use of space (and frustrating to the user)

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\235-238.html (2 of 4) [3/14/2001 1:37:32 AM]

javascript:displayWindow('images/07-07.jpg',317,237%20)
javascript:displayWindow('images/07-07.jpg',317,237)
javascript:displayWindow('images/07-08.jpg',317,237%20)
javascript:displayWindow('images/07-08.jpg',317,237)

to display a lot of disabled buttons. If you have to disable a lot of buttons,
you should hide them.

To make a button disappear, just set its Visible property to False. To make it
reappear, set the Visible property to True. You can set this property at either
design time or runtime. Here�s how to make a button disappear when you
click it (and probably startle the user!):

Private Sub Command1_Click()

 Command1.Visible = False

End Sub

TIP: If your program shows and hides buttons, you can rearrange the visible
buttons to hide any gaps using the buttons� Move method (the Move method
is discussed in �Resizing And Moving Buttons From Code� later in this
chapter).

Adding Tool Tips To Buttons

Your new word processor, SuperDuperTextPro, is a winner, but the User
Interface Testing Department has a request�can you add tool tips to the
buttons in your program? What�s a tool tip, you ask? They say that it�s one of
those small yellow boxes with explanatory text that appears when you let the
mouse cursor rest above an object on the screen. �Of course I can add those,�
you say�but can you really?

Yes you can, using the ToolTipText property for the buttons. You just place
the text you want to appear in the tool tip into the ToolTipText property to
create a tool tip for the button, and you�re all set. For example, we�ve added a
tool tip to the command button in Figure 7.9.

Figure 7.9 A button�s tool tip.

You can also set tool tip text at runtime, using the ToolTipText property this
way in code:

Private Sub Command1_Click()

 Command1.ToolTipText = "You already clicked me!"

End Sub

If your buttons change functions as your program runs, changing the buttons�
tool tip text can be very helpful to your program�s users.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\235-238.html (3 of 4) [3/14/2001 1:37:32 AM]

javascript:displayWindow('images/07-09.jpg',317,237%20)
javascript:displayWindow('images/07-09.jpg',317,237)

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\235-238.html (4 of 4) [3/14/2001 1:37:32 AM]

Resizing And Moving Buttons From Code

Your new April Fool�s program has an Exit button, but it moves around and resizes itself, making it a
moving target for the user to try to hit. Your coworkers think it�s hilarious and they love it. Your boss hates it
and asks to see you in his cubicle to discuss time management�immediately.

How do you move buttons and resize them in code? You use the Top, Left, Height, and Width properties,
or the Move method. Here�s what those properties hold:

" Left holds the horizontal coordinate of the upper left of the button.

" Top holds the vertical coordinate of the upper left of the button.

" Height holds the button�s height.

" Width holds the button�s width.

(When setting these properties, remember that the default measurement units in Visual Basic are twips, and
that the default coordinate system�s origin is at upper left in a form.)

And here�s how you use the Move method:

Button.Move left, [top, [width, [height]]]

Let�s see an example; here, we move a command button 500 twips to the right when the user clicks it:

Private Sub Command1_Click()

 Const iIncrement = 500

 Command1.Move Command1.Left + iIncrement

End Sub

Adding A Picture To A Button

Your boss (who�s been angling for a promotion) wants the company logo to appear in all the buttons in your
program. Before you start looking for a new job, take a look at the Visual Basic Picture property.

Using the Picture property, you can load an image into a button�just click the button with the ellipsis (&) in
the Picture property�s entry in the Properties window and indicate an image file in the Load Picture dialog
box that opens. That�s not all, however�you also have to set the button�s Style property to Graphical (which
has a numeric value of 1). We�ve loaded an image into a command button in Figure 7.10.

Figure 7.10 Adding a picture to a button.

When you set checkboxes and option buttons to graphical style, they actually look just like graphical
command buttons. The only difference is that when you click a graphical checkbox or option button, as

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\239-243.html (1 of 4) [3/14/2001 1:37:51 AM]

javascript:displayWindow('images/07-10.jpg',317,237%20)
javascript:displayWindow('images/07-10.jpg',317,237)

shown in Figure 7.11, they stay clicked until you click them again (and option buttons still function in
groups, of course).

Figure 7.11 A graphical checkbox.

You can also set the Picture property at runtime�but don�t try setting it directly to the name of a file. You can
only load Visual Basic Picture objects into the Picture property; such objects are returned by the
LoadPicture() function like this:

Private Sub Command1_Click()

 Command1.Picture = LoadPicture("c:\vbbb\picturebuttons\image.bmp")

End Sub

Adding A Down Picture To A Button

Besides adding a simple image to a button, you can add an image that is displayed when the button is down.
This is more useful with checkboxes and option buttons�which stay down when clicked�than it is with
command buttons.

Using the DownPicture property, you can load an image into a button�just click the button with the ellipsis (
&) in the DownPicture property�s entry in the Properties window, and indicate an image file in the Load
Picture dialog box that opens.

You also have to set the button�s Style property to Graphical (which has a numeric value of 1). For
example, we�ve loaded a down image into a command button in Figure 7.12.

Figure 7.12 Adding a down picture to a graphical checkbox.

You can also set the DownPicture property at runtime using the LoadPicture() function:

Private Sub Check1_Click()

 Check1.DownPicture = LoadPicture("c:\vbbb\picturebuttons\image2.bmp")

End Sub

TIP: You can also add an image to be displayed in a graphical button when it�s disabled by using the
DisabledPicture property.

Adding Buttons At Runtime

Your new program lets the user add options to customize things, and you want to display a new button for
each option. Is there a way to add buttons to a Visual Basic program at runtime?

Yes, there is. You can use the Load statement to load new buttons if they�re part of a control array. To see

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\239-243.html (2 of 4) [3/14/2001 1:37:51 AM]

javascript:displayWindow('images/07-11.jpg',317,237%20)
javascript:displayWindow('images/07-11.jpg',317,237)
javascript:displayWindow('images/07-12.jpg',317,237%20)
javascript:displayWindow('images/07-12.jpg',317,237)

how this works, add a new button to a form, giving it the name, say, �Command�. To make it the first
member of a control array, set its Index property to 0. Now when the user clicks this button, we can add a
new button of the same type to the form with Load. Here, we load Command(1), because Command(0) is
already on the form:

Private Sub Command_Click(Index As Integer)

 Load Command(1)

&

End Sub

The new button is a copy of the original one�which includes the original button�s position�so we move the
new button so it doesn�t cover the original one:

Private Sub Command_Click(Index As Integer)

 Load Command(1)

 Command(1).Move 0, 0

&

End Sub

Finally, we make the new button visible by setting its Visible property to True:

Private Sub Command_Click(Index As Integer)

 Load Command(1)

 Command(1).Move 0, 0

 Command(1).Visible = True

End Sub

And that�s it�we�ve added a new button to the program at runtime.

TIP: You can also remove buttons at runtime by unloading them with Unload.

Passing Buttons To Procedures

You�ve got 200 buttons in your new program, and each one has to be initialized with a long series of code
statements. Is there some easy way to organize this process? There is. You can pass the buttons to a
procedure and place the initialization code in that procedure.

Here�s an example. We can set a button�s caption by passing it to a subroutine named SetCaption() like this:

Private Sub Command1_Click()

 SetCaption Command1

End Sub

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\239-243.html (3 of 4) [3/14/2001 1:37:51 AM]

In the SetCaption() procedure, you just declare the button as a parameter; we�ll name that parameter Button
and make it of type Control:

Private Sub SetCaption(Button As Control)

End Sub

Now we can refer to the passed button as we would any parameter passed to a procedure, like this:

Private Sub SetCaption(Button As Control)

 Button.Caption = "You clicked me!"

End Sub

The result appears in Figure 7.13�when you click the command button, the SetCaption() subroutine changes
its caption, as shown.

Figure 7.13 Passing a button to a procedure to change its caption.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\239-243.html (4 of 4) [3/14/2001 1:37:51 AM]

javascript:displayWindow('images/07-13.jpg',317,237%20)
javascript:displayWindow('images/07-13.jpg',317,237)

Handling Button Releases

You can tell when a button�s been pushed using its Click event, but can you tell when it�s been
released? Yes, using the MouseUp event. In fact, buttons support the MouseDown, MouseMove,
MouseUp, KeyDown, KeyPress, and KeyUp events.

To determine when a button�s been released, you can just use its MouseUp event this way:

Private Sub Command1_MouseUp(Button As Integer, Shift As Integer,_

 X As Single, Y As Single)

 MsgBox "You released the button."

End Sub

This can be useful if you want the user to complete some action that has two parts; for example,
you can use MouseDown to begin changing (for example, incrementing or decrementing) a
setting of some kind in realtime, giving the user interactive visual feedback, and you can use
MouseUp to freeze the setting when the user releases the button.

Making A Command Button Into A Cancel Button

When you�re designing dialog boxes, you usually include an OK button and a Cancel button. In
fact, you can skip the OK button if you have other ways of letting the user select options (for
example, a Finish button or a Yes button), but a Cancel button is just about required in dialog
boxes. You should always have a Cancel button to let the user close the dialog box in case he has
opened it by mistake or changed his mind.

Command buttons do have a Cancel property, and Microsoft recommends that you set it to True if
you are making a command button into a Cancel button. Only one button can be a Cancel button
in a form.

However, there doesn�t seem to be much utility in making a command button into a Cancel button.
There�s nothing special about that button, really�it won�t automatically close a dialog box, for
example�except for one thing: when the user hits the Esc key, the Cancel button is automatically
clicked. Using the Esc key is one way users have of closing dialog boxes, but it�s not a very
compelling reason to have a separate Cancel property for buttons.

Tellingly, the Cancel button in the predefined dialog box that comes with Visual Basic (you can
add it when you select Project|Add Form) does not have its Cancel property set to True.

Getting A Checkbox�s State

You�ve added all the checkboxes you need to your new program, WinBigSuperCasino, and you�ve
connected those checkboxes to Click event handlers. But now there�s a problem�when the users set
the current amount of money they want to bet, you need to check if they�ve exceeded the limit

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\244-247.html (1 of 4) [3/14/2001 1:37:59 AM]

they�ve set for themselves. But they set their limit by clicking another checkbox. How can you
determine which one they�ve checked?

You can see if a checkbox is checked by examining its Value property (Visual Basic does have a
Checked property, but that�s only for menu items, a fact that has confused more than one
programmer). Here are the possible Value settings for checkboxes:

" 0� Unchecked

" 1� Checked

" 2� Grayed

Here�s an example; in this case, we will change a command button�s caption if a checkbox,
Check1, is checked, but not otherwise:

Private Sub Command1_Click()

 If Check1.Value = 1 Then

 Command1.Caption = "The check mark is checked"

 End If

End Sub

Setting A Checkbox�s State

Your new program, SuperSandwichesToGoRightNow, is just about ready, but there�s one hitch.
You use checkboxes to indicate what items are in a sandwich (cheese, lettuce, tomato, and more)
to let users custom-build their sandwiches, but you also have a number of specialty sandwiches
with preset ingredients. When the user selects one of those already-built sandwiches, how do you
set the ingredients checkboxes to show what�s in them?

You can set a checkbox�s state by setting its Value property to one of the following:

" 0�Unchecked

" 1�Checked

" 2�Grayed

Here�s an example; In this case, we check a checkbox, Check1, from code:

Private Sub Command1_Click()

 Check1.Value = 1

End Sub

Here�s another example that uses the Visual Basic Choose() function to toggle a checkbox�s state
each time the user clicks the command button Command1:

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\244-247.html (2 of 4) [3/14/2001 1:37:59 AM]

Private Sub Command1_Click()

 Check1.Value = Choose(Check1.Value + 1, 1, 0)

End Sub

Grouping Option Buttons Together

When you add option buttons to a form, they are automatically coordinated so that only one option
button can be selected at a time. If the user selects a new option button, all the other options
buttons are automatically deselected. But there are times when that�s not convenient. For example,
you may have two sets of options buttons: days of the week and day of the month. You want the
user to be able to select one option button in each list. How do you group option buttons together
into different groups on the same form?

You can use the frame control to group option buttons together (and, in fact, you can also use
Picture Box controls). Just draw a frame for each group of option buttons you want on a form and
add the option buttons to the frames (in the usual way�just select the Option Button tool and draw
the option buttons in the frames). Each frame of option buttons will act as its own group, and the
user can select one option button in either group, as shown in Figure 7.14.

Figure 7.14 Grouping option buttons together using frames.

For organizational purposes, and if appropriate, you might consider making the option buttons in
each group into a control array, which can make handling multiple controls easier.

Getting An Option Button�s State

You can check if an option button is selected or not with the Value property. Unlike checkboxes,
which have three settings for the Value property (corresponding to checked, not checked, and
grayed), option buttons� Value property only has two settings: True if the button is selected, and
False if not.

Here�s an example showing how to see whether or not an option button is selected. In this case, we
display a message in a message box that indicates if an option button, Option1, is selected:

Private Sub Command1_Click()

 If Option1.Value Then

 MsgBox "The option button is selected."

 Else

 MsgBox "The option button is not selected."

 End If

End Sub

And that�s all there is to it.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\244-247.html (3 of 4) [3/14/2001 1:37:59 AM]

javascript:displayWindow('images/07-14.jpg',317,237%20)
javascript:displayWindow('images/07-14.jpg',317,237)

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\244-247.html (4 of 4) [3/14/2001 1:37:59 AM]

Setting An Option Button�s State

Besides examining an option button�s state, you can also set it using the Value property. The Value property
can take two values: True or False.

Here�s an example. In this case, we just set an option button, Option1, to its selected state by setting its
Value property to True:

Private Sub Command1_Click()

 Option1.Value = True

End Sub

And that�s all it takes.

Using Graphical Checkboxes And Radio Buttons

The Aesthetic Design Department is on the phone again. Your new program is fine, but it lacks a certain
pizzazz. You say, Pizzazz? They say, how about using something better than option buttons? Something
more graphical.

As it happens, Visual Basic can help out here, because it does support graphical�that is, image-oriented
�buttons. You add an image to a button by connecting an image (as from an image file) to its Picture
property. When you�re working with checkboxes and option buttons, you should also set the button�s
DownPicture property to specify what image it should display when selected (in other words, when the
button is �down�).

Graphical checkboxes and option buttons look like image-bearing command buttons, not standard
checkboxes and option buttons. The only way you tell them apart from command buttons when the program
runs is that checkboxes and option buttons, when clicked, stay clicked (and, of course, option buttons still
function in groups).

To see how this works, we set the Picture and DownPicture properties of a set of option buttons to image
files (using the Picture and DownPicture entries in the Properties window). We also must set the Style
property of the option buttons to 1 to make them graphical buttons, and then run the program. As you can see
in Figure 7.15, the option buttons now display images: one when the button is selected and another (as in the
top button in Figure 7.15) when the button is selected.

Figure 7.15 Using graphical option buttons.

You can also add images to buttons in code using the Visual Basic LoadPicture() function. For example,
here�s how we load in a new down picture for Option1 when the user clicks it:

Private Sub Option1_Click(Index As Integer)

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\247-250.html (1 of 3) [3/14/2001 1:38:05 AM]

javascript:displayWindow('images/07-15.jpg',317,237%20)
javascript:displayWindow('images/07-15.jpg',317,237)

 Option1.DownPicture = LoadPicture("c:\vbbb\picturebuttons\image.bmp")

End Sub

Using Checkboxes And Option Buttons Together

Your new assignment: to create a program for the SuperDuper Excelsior Tours travel agency. It wants to
present users with a list of four tour packages they can choose from and to list the destination cities in each
tour. But SuperDuper also wants to let users customize their tours to some extent, so they should be able to
add or remove cities from a tour package.

Sounds like a job for Visual Basic. In fact, it sounds like a job for both option buttons and checkboxes,
because this is just how they are intended to work together: the option buttons let you select one (and only
one) option from a list, and the checkboxes display which item or items (that is, one or more than one)
correspond to that option. And because checkboxes are interactive controls, users can use them to set the
items they want.

To actually write the program the travel agency wants, we add two frames to a form, as shown in Figure
7.16, giving the first frame the caption �Tour� and the second frame the caption �Cities�. In addition, add the
option buttons and checkboxes you see in Figure 7.16.

Figure 7.16 The tour packages program.

When the user clicks Package 1, corresponding to the first tour package, we can indicate what cities are in
this tour by setting the appropriate checkboxes:

Private Sub Option1_Click()

 Check1.Value = 1

 Check2.Value = 0

 Check3.Value = 1

 Check4.Value = 0

End Sub

And that�s how the program works; we can do the same for the other option buttons now:

Private Sub Option2_Click()

 Check1.Value = 0

 Check2.Value = 1

 Check3.Value = 0

 Check4.Value = 1

End Sub

Private Sub Option3_Click()

 Check1.Value = 1

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\247-250.html (2 of 3) [3/14/2001 1:38:05 AM]

javascript:displayWindow('images/07-16.jpg',317,237%20)
javascript:displayWindow('images/07-16.jpg',317,237)

 Check2.Value = 1

 Check3.Value = 0

 Check4.Value = 0

End Sub

Private Sub Option4_Click()

 Check1.Value = 1

 Check2.Value = 1

 Check3.Value = 1

 Check4.Value = 1

End Sub

And that�s it�now run the program as shown in Figure 7.16. When you click one option button, the
corresponding tour�s cities are displayed in the checkboxes; when you click another option button, that tour�s
cities are displayed.

This program, then, offers a good example of how the unique capabilities of option buttons and checkboxes
may be integrated into the same program. The complete code for the form in Figure 7.16, tourpackages.frm,
is located in the tourpackages folder on this book�s accompaning CD-ROM.

Visual Basic 6 Black Book:Command Buttons, Checkboxes, And Option Buttons

http://24.19.55.56:8080/temp/ch07\247-250.html (3 of 3) [3/14/2001 1:38:05 AM]

Chapter 8
List Boxes And Combo Boxes
If you need an immediate solution to:

Adding Items To A List Box

Referring To Items In A List Box By Index

Responding To List Box Events

Removing Items From A List Box

Sorting A List Box

Determining How Many Items Are In A List Box

Determining If A List Box Item Is Selected

Using Multiselect List Boxes

Making List Boxes Scroll Horizontally

Using Checkmarks In A List Box

Clearing A List Box

Creating Simple Combo Boxes, Drop-Down Combo Boxes, And Drop-Down List
Combo Boxes

Adding Items To A Combo Box

Responding To Combo Box Selections

Removing Items From A Combo Box

Getting The Current Selection In A Combo Box

Sorting A Combo Box

Clearing A Combo Box

Locking A Combo Box

Getting The Number Of Items In A Combo Box

Setting The Topmost Item In A List Box Or Combo Box

Adding Numeric Data To Items In A List Box Or Combo Box

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\251-253.html (1 of 3) [3/14/2001 1:38:15 AM]

Determining Where An Item Was Added In A Sorted List Box Or Combo Box

Using Images In Combo Boxes

In Depth

In this chapter, we�re going to take a look at two popular Visual Basic controls: list
boxes and combo boxes. These controls present the user with a list of items that the
user can select from, and every Windows user is familiar with them.

List boxes do just what their name implies: display a list of items. The user can make
a selection from that list, and Visual Basic will inform our program what�s going on.
Because list boxes can use scroll bars if a list gets too long, these controls are very
useful to present long lists of items in a way that doesn�t take up too much space.

Combo boxes are list boxes combined with text boxes. With combo boxes, you can
give users the option of selecting from a list (usually a drop-down list activated when
users click the downwards-pointing arrow at right in a combo box) or typing their
selections directly into the text box part of the combo box.

List boxes and combo boxes share many properties, so it makes sense to look at them
in the same chapter. The reason they share so many properties is that the basis of
working with list boxes and combo boxes is item selection. For example, if your
program lists various books for sale, you can present their titles in a list; clicking a
book�s name can display more information about the selected book. If you want to let
the user set font size in a program, you might present font sizes in a combo box, and
when the user selects a font size, the program can then read the selected size from the
combo box.

Both list boxes and combo boxes are controls intrinsic to Visual Basic (in other
words, you don�t have to add them). You add list boxes to a form with the List Box
tool, which is fifth down on the right in the toolbox in Figure 8.1, and combo boxes
with the Combo Box tool, which is the fifth tool down on the left in the toolbox.
There�s nothing special about these controls here�you just add them as usual with the
tools in the toolbox.

Figure 8.1 The List Box tool and the Combo Box tool.

In overview, here�s how you work with both list boxes and combo boxes: To add or
delete items in one of these controls, use the AddItem or RemoveItem methods. You
can use the List, ListCount, and ListIndex properties to enable a user to access items
in the control (or you can add items to the list by using the List property at design
time). When the user makes a selection, you can determine which item was selected
with the ListIndex or Text properties.

Both list boxes and combo boxes have Click and DblClick events, and the way you

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\251-253.html (2 of 3) [3/14/2001 1:38:15 AM]

javascript:displayWindow('images/08-01.jpg',622,561%20)
javascript:displayWindow('images/08-01.jpg',622,561)

use these events depends on how you�ve defined your user interface (in other words,
does clicking an item to select it in one of these controls launch an action, or does the
user have to double-click the item?). It�s important to realize that a combo box really
is a text box and a list box�the Click events only work for the list part of a combo box.
When the user makes changes to the text box part of the combo box by typing into
that text box, a Change event (as is usual for text boxes) is triggered.

That�s how you use the list box events: Click when the user clicks the list box, and
DblClick when the user double-clicks it. For combo boxes, it�s a little more complex:
Click when the user clicks an item, DblClick when the user double-clicks an item
(the Style of the combo box must be set to Simple, Style = 1, for the DblClick event
to work), and Change when the user enters text. Note in particular that when the user
makes a selection in a combo box�s list box that changes the text in the text box, a
Change event is not triggered; the Change event only occurs when the user types text
into the combo box.

That�s all the overview we need�we�ll turn to the Immediate Solutions now.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\251-253.html (3 of 3) [3/14/2001 1:38:15 AM]

Immediate Solutions

Adding Items To A List Box

The Testing Department is calling again, and they�re telling you to get rid of all the
beautiful buttons that you�ve placed on the main form of your program. But, you say,
it�s a program that lets the user buy computer parts. We have to list what computer
parts are available. That�s just it, they say, a list should go in a list box.

So you�ve added your list box, and now it�s staring at you: a blank white box. How do
you add items to the list box?

You can add items to a list box at either design time or at runtime. At design time, you
can use the List property, which is a very handy array of the items in the list box; and
at runtime, you can use both the List property and the AddItem() method. Here�s how
you use the List property in code (keep in mind that you can get or set items in the list
box with the List array):

ListBox.List(index) [= string]

How do you keep track of the total number of items in a list box? You use the
ListCount property; that is, if you loop over the List array, you�ll use ListCount as
the maximum value to loop to.

At design time, you can add items directly to your list box by typing them into the
List property in the Properties window. Selecting the List property displays a
drop-down list (which is appropriate considering you�re filling a list box), and you can
type item after item into the list box that way.

At runtime, you can either use the indexed List property as detailed previously, or the
AddItem() method this way:

Private Sub Form_Load()

 List1.AddItem (�Item 1�)

 List1.AddItem (�Item 2�)

 List1.AddItem (�Item 3�)

 List1.AddItem (�Item 4�)

End Sub

Running this code gives us the list box in Figure 8.2.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\254-257.html (1 of 4) [3/14/2001 1:38:22 AM]

javascript:displayWindow('images/08-02.jpg',317,221%20)

Figure 8.2 Placing items in a list box.

We should note that when you place items in a list box, they are stored by index, and
you can refer to them by their index with the List property. See the next topic for
more details.

Referring To Items In A List Box By Index

When you add items to a list box, each item is given an index, and you can refer to the
item in the list box using this index (for example, you can get the item�s text by using
the List property: List(index)). The first item added to a list box gets the index 0, the
next index 1, and so on.

When the user selects an item in a list box, you can get the selected item�s index with
the list box�s ListIndex property. Let�s see an example to make this clear. Here, we
might just add four items, Item 0 to Item 3, to a list box this way with AddItem():

Private Sub Form_Load()

 List1.AddItem ("Item 0")

 List1.AddItem ("Item 1")

 List1.AddItem ("Item 2")

 List1.AddItem ("Item 3")

End Sub

This code places the four items into the list box with indexes 0 through 3 like this:

List(0) = "Item 0"

List(1) = "Item 1"

List(2) = "Item 2"

List(3) = "Item 3"

Now we can refer to the items in the list box by index using the List property as
List(0), List(1), and so on. When the user clicks the list, causing a Click event, we
can display the item number the user clicked with the ListIndex property, which
holds the index of the currently selected item:

Private Sub List1_Click()

 MsgBox "You clicked item " & Str(List1.ListIndex)

End Sub

You can also change an item�s index with its Index property like this:

List(index).Index = 3

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\254-257.html (2 of 4) [3/14/2001 1:38:22 AM]

javascript:displayWindow('images/08-02.jpg',317,221)

In addition, you can sort items in a list box�see �Sorting A List Box� later in this
chapter.

Responding To List Box Events

Now you�ve created your new list box, and it�s a beauty. The boss is very pleased with
it when you show your new program at the company�s expo. The boss clicks the list
box with the mouse�and nothing happens. The boss asks, Didn�t you connect that list
box to code? Oh, you think.

Click And DblClick

You use two main events with list boxes: Click and DblClick. How you actually use
them is up to you, because different programs have different needs. For example, if a
list box sets a new font that doesn�t become active until a font chooser dialog box is
closed, it�s fine to respond to the Click event to display a sample of the font the user
has selected in a text box. On the other hand, if you display the names of programs to
launch in a text box, you should probably launch a program only after a user
double-clicks it in the list box to avoid mistakes.

You use the Click event just as you use the Click event in a button, with a Click
event handler. Here, we display the item in the list box the user has clicked, using the
ListIndex property (you can get the selected item�s text with List1.List(ListIndex) or
with List1.Text):

Private Sub List1_Click()

 MsgBox "You clicked item " & Str(List1.ListIndex)

End Sub

And displaying the selected item is the same for DblClick�you just add a DblClick
handler with the code you want:

Private Sub List1_DblClick()

 MsgBox "You clicked item " & Str(List1.ListIndex)

End Sub

Note, by the way, that a DblClick event also triggers the Click event, because to
double-click an item, you must first click it.

Multiselect List Boxes

List boxes can also be multiselect list boxes (see �Using Multiselect List Boxes� later
in this chapter), which means the user can select a number of items in the list box. If
your list box is a multiselect box, you can determine which items the user has selected
by using the Selected property this way:

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\254-257.html (3 of 4) [3/14/2001 1:38:22 AM]

For intLoopIndex = 0 To List1.ListCount - 1

 If List1.Selected(intLoopIndex) Then

...

 End If

Next intLoopIndex

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\254-257.html (4 of 4) [3/14/2001 1:38:22 AM]

Removing Items From A List Box

The Testing Department is calling again�how about letting the users customize your
program? You ask, what do you mean? Well, they say, let�s give the user some way of
removing the 50 fine French cooking tips from the list box.

You can remove items from a list box at design time simply by deleting them in the List
property. At runtime, you use the RemoveItem() method. Here�s an example; in this case,
we add four items, Items 0 through 3 to a list box:

Private Sub Form_Load()

 List1.AddItem ("Item 0")

 List1.AddItem ("Item 1")

 List1.AddItem ("Item 2")

 List1.AddItem ("Item 3")

End Sub

Item 0 has index 0 in the list box, Item 1 has index 1, and so on. To remove, say, Item 1
when the user clicks a command button, we can use RemoveItem and pass it the item�s
index:

Private Sub Command1_Click()

 List1.RemoveItem 1

End Sub

Running the program and clicking the button gives the result shown in Figure 8.3. Now we
�re able to remove items from a list box.

Figure 8.3 Removing an item from a list box.

TIP: You should note that removing an item from a list box changes the indexes of the
remaining items. After you remove Item 1 in the preceding example, Item 2 now gets
index 1 and Item 3 gets index 2. If you want to change those indexes back to their original
values, set the items� Index properties.

Sorting A List Box

You�re very proud of your new program�s list box, which lists all the classical music

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\257-260.html (1 of 4) [3/14/2001 1:38:35 AM]

javascript:displayWindow('images/08-03.jpg',317,221%20)
javascript:displayWindow('images/08-03.jpg',317,221)

recordings available for the last 40 years. But the Testing Department isn�t so happy. They
ask, Can�t you alphabetize that list?

You can alphabetize the items in a list box by setting its Sorted property to True (it�s False
by default) at design time or runtime. That�s all it takes. (In fact, I�ve known lazy
programmers who sorted arrays of text by placing the text into a hidden list box and then
read it back to save writing the code for the string comparisons!)

TIP: You should know, however, that sorting a list box can change the indexes of the
items in that list box (unless they were already in alphabetical order). After the sorting is
finished, the first item in the newly sorted list has index 0, the next index 1, and so on. If
you want to change the indexes of the items back to their original values, you can set their
Index properties.

Determining How Many Items Are In A List Box

You want to loop over the items in your list box to find out if a particular item is in the list,
but you need to know how many items are in the list box in order to set up the loop. How
can you set up the loop?

You can use the ListCount property to determine how many items are in a list box. When
setting up loops over the items in a list box, you should note that ListCount is the total
number of items in a list, whereas index values start at 0, not 1. This means that if you�re
looping over indices, you should loop to ListCount � 1, not ListCount.

Let�s see an example. Here, we�ll search a list box to see if it has an item whose caption is
�Item 1�. First, we set up the loop over the indexes of the items in the list box:

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To List1.ListCount - 1

...

 Next intLoopIndex

End Sub

Then we check the caption of each item, checking for the caption �Item 1�, and report if we
find that item:

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To List1.ListCount - 1

 If List1.List(intLoopIndex) = "Item 1" Then

 MsgBox "Found item 1!"

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\257-260.html (2 of 4) [3/14/2001 1:38:35 AM]

 End If

 Next intLoopIndex

End Sub

Determining If A List Box Item Is Selected

The big point of list boxes is to let the user make selections, of course, and there are a
number of properties to handle that process. Here�s an overview.

You get the index of the selected item in a list box with the ListIndex property. If no item
is selected, ListIndex will be �1.

You can get the text of a list�s selected item as List1.Text or List1.List(List1.ListIndex).

You can use a list box�s Selected array to determine if individual items in the list box are
selected or not. Let�s see an example to see how that works; in this case, we�ll loop over
the elements in the list box until we find the selected one.

We start by loading items into the list box when the form loads:

Private Sub Form_Load ()

 List1.AddItem ("Item 0")

 List1.AddItem ("Item 1")

 List1.AddItem ("Item 2")

 List1.AddItem ("Item 3")

 List1.AddItem ("Item 4")

 List1.AddItem ("Item 5")

 List1.AddItem ("Item 6")

 List1.AddItem ("Item 7")

End Sub

When the user clicks a command button, we can indicate which item is selected in the list
box by displaying that item�s caption in a message box. We just loop over all the items in
the list box:

Private Sub Command1_Click ()

 Dim intLoopIndex

 For intLoopIndex = 0 To List1.ListCount - 1

...

 Next intLoopIndex

End Sub

And we check the Selected array for each item to find the selected item:

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\257-260.html (3 of 4) [3/14/2001 1:38:35 AM]

Private Sub Command1_Click ()

 Dim intLoopIndex

 For intLoopIndex = 0 To List1.ListCount - 1

 If List1.Selected(intLoopIndex) Then

 MsgBox "You selected " & List1.List(intLoopIndex)

 End If

 Next intLoopIndex

End Sub

Note that list boxes can support multiple selections if you set their MultiSelect property to
True. See the next topic in this chapter to see how to handle selections in multiselect list
boxes.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\257-260.html (4 of 4) [3/14/2001 1:38:35 AM]

Using Multiselect List Boxes

Everyone�s very pleased with your new program to sell classical music CDs�except for
the Sales Department. Why, they want to know, can the user only buy one CD at a
time? Well, you explain, the program uses a list box to display the list of CDs, and
when the user makes a selection, the program orders that CD. They ask, How about
using a multiselect list box? So what�s that?

A multiselect list box allows the user to select a number of items at one time. You
make a list box into a multiselect list box with the MultiSelect property. The user can
then select multiple items using the Shift and Ctrl keys. Here are the possible settings
for MultiSelect:

" 0�Multiple selection isn�t allowed (this is the default).

" 1�Simple multiple selection. A mouse click or pressing the spacebar selects or
deselects an item in the list. (Arrow keys move the focus.)

" 2�Extended multiple selection. Pressing the Shift key and clicking the mouse or
pressing the Shift key and one of the arrow keys extends the selection from the
previously selected item to the current item. Pressing the Ctrl key and clicking the
mouse selects or deselects an item in the list.

TIP: The DblClick event isn�t very useful with multiselect list boxes, because when
you click the list box a second time, every item but the one you�ve clicked is
deselected. In addition, a Click event is generated each time the user selects a new
item, and you might want to wait until all selections are made before taking action.
This is why you often use a command button to initiate action after a user selects
items in a multiselect list box. Take a look at the following example to see how this
works.

Let�s see an example of a multiselect list box at work. In this case, we�ll have two list
boxes, List1 and List2, as well as a command button displaying an arrow (here, we�ll
just give a button the caption ��>� to display the arrow). Set List1�s MultiSelect
property to 1. When the user selects a number of items in List1 and clicks the button
with an arrow, we�ll copy the selected items in List1 to List2, as in Figure 8.4.

Figure 8.4 Selecting multiple items in a multiselect list box.

We start by loading items into List1 when the form loads:

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\261-264.html (1 of 4) [3/14/2001 1:38:47 AM]

javascript:displayWindow('images/08-04.jpg',317,196%20)
javascript:displayWindow('images/08-04.jpg',317,196)

Private Sub Form_Load ()

 List1.AddItem ("Item 0")

 List1.AddItem ("Item 1")

 List1.AddItem ("Item 2")

 List1.AddItem ("Item 3")

 List1.AddItem ("Item 4")

 List1.AddItem ("Item 5")

 List1.AddItem ("Item 6")

 List1.AddItem ("Item 7")

End Sub

Next, when the user clicks the command button to indicate he has made all the
selections he wants, we loop over the list this way:

Private Sub Command1_Click ()

 Dim intLoopIndex

 For intLoopIndex = 0 To List1.ListCount - 1

...

 Next intLoopIndex

End Sub

In the loop, we see which items were selected and move them to the other list box,
List2:

Private Sub Command1_Click ()

 Dim intLoopIndex

 For intLoopIndex = 0 To List1.ListCount - 1

 If List1.Selected(intLoopIndex) Then

 List2.AddItem List1.List(intLoopIndex)

 End If

 Next intLoopIndex

End Sub

The result appears in Figure 8.4, where we�re letting the user make multiple selections
using the mouse, Shift, and Ctrl keys.

Note that we looped over every item in the list box to see if it was selected or not�is
this necessary? Aren�t there SelStart and SelLength properties for the list box as
there are for text boxes? Those properties don�t exist for list boxes, because the
selected items in a multiselect list box may not be contiguous, which also means that
we do indeed have to loop over all items in the list box, checking each one

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\261-264.html (2 of 4) [3/14/2001 1:38:47 AM]

individually to see if it�s been selected.

Making List Boxes Scroll Horizontally

It�s a pity that there�s so little vertical space for the list box in your new program�s
layout�the user can only view 4 of the more than 40 items in the list box at once. Can�t
you make a list box work horizontally instead of vertically?

Yes you can, if you break up the list into columns using the Columns property. When
that property is set to 0, the default, the list box presents just a vertical list to the user.
When you set the Columns property to another value, the list box displays its items in
that number of columns instead.

Let�s see an example�can multiselect list boxes also be multicolumn list boxes? They
sure can; take a look at Figure 8.5.

Figure 8.5 A multiselect multicolumn list box.

In this example, we�ve just set List1�s Columns property to 2 and used the same code
we developed for our multiselect example, which transfers selected items from List1
to List2 when the user clicks the command button (if you�ve made List1 large, you
might have to make it smaller before it will display the items in a number of columns
rather than one large column):

Private Sub Command1_Click ()

 Dim intLoopIndex

 For intLoopIndex = 0 To List1.ListCount - 1

 If List1.Selected(intLoopIndex) Then

 List2.AddItem List1.List(intLoopIndex)

 End If

 Next intLoopIndex

End Sub

Now the user can select multiple items from the columns in List1 and transfer them to
List2 at the click of a button.

Using Checkmarks In A List Box

The Aesthetic Design Department has sent you a memo. People are so tired, they
write, of standard list boxes. Can�t you punch them up a little in your program,
SuperDuperTextPro? Suppressing your immediate response, which is to tell the
Aesthetic Design Department just what you think of them in rather direct terms, you
give the problem a little thought. Well, you decide, I could use those new checkmark
list boxes.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\261-264.html (3 of 4) [3/14/2001 1:38:47 AM]

javascript:displayWindow('images/08-05.jpg',317,196%20)
javascript:displayWindow('images/08-05.jpg',317,196)

When you use checkmark list boxes, selected items appear with a checkmark in front
of them. You can make a list box into a checkmark list box with its Style property,
which can take these values:

" 0�Standard list box (the default)

" 1�Checkmark list box

For example, the list box in Figure 8.6 has its Style property set to 1, making it a
checkmark list box.

Figure 8.6 Using checkmark list boxes.

TIP: By default, checkmark list boxes can support multiple selections; the
MultiSelect property of these list boxes must be set to 0.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\261-264.html (4 of 4) [3/14/2001 1:38:47 AM]

javascript:displayWindow('images/08-06.jpg',317,237%20)
javascript:displayWindow('images/08-06.jpg',317,237)

Clearing A List Box

It�s time to load new items into a list box�do you really have to clear the old items out
one at a time with RemoveItem?

You can use the Clear method to clear a list box. Nothing could be easier (so be
careful�there�s no �undelete� function here!). You just use clear like this: List.Clear.

Here�s how that looks in code; in this case, we�re clearing a list box, List1, when the
user clicks a command button:

Private Sub Command1_Click()

 List1.Clear

End Sub

Creating Simple Combo Boxes, Drop-Down Combo Boxes, And
Drop-Down List Combo Boxes

Combo boxes are those controls that usually display a text box and a drop-down list.
In fact, you might think there is only one kind of combo box, but there are really three
types, and you select which type you want with the combo box�s Style property. The
default type of combo box is probably what you think of when you think of combo
boxes, because, as mentioned, it is made up of a text box and a drop-down list.
However, you can also have combo boxes where the list doesn�t drop down (the list is
always open, and you have to make sure to provide space for it when you add the
combo box to your form) and combo boxes where the user can only select from the
list.

Here are the settings for the combo box Style property:

" VbComboDropDown�0; drop-down combo box. Includes a drop-down list and a
text box. The user can select from the list or type in the text box. (This the default.)

" VbComboSimple�1; simple combo box. Includes a text box and a list, which doesn
�t drop down. The user can select from the list or type in the text box. The size of a
simple combo box includes both the edit and list portions. By default, a simple combo
box is sized so that none of the list is displayed. Increase the Height property to
display more of the list.

" VbComboDrop-DownList�2; drop-down list. This style allows a selection only
from the drop-down list. This is a good one to keep in mind when you want to restrict
the user�s input; however, if you want to use this one, you should also consider simple
list boxes. The selected item appears in the (read-only) text box.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\264-267.html (1 of 3) [3/14/2001 1:38:51 AM]

Adding Items To A Combo Box

You�ve added a new combo box to your program, and it looks great. When you run it,
however, all you see is �Combo1� in it. How do you add items to your combo box?

A combo box is a combination of a text box and a list box, so at design time, you can
change the text in the text box part by changing the Text property. You change the
items in the list box part with the List property (this item opens a drop-down list when
you click it in the Properties window) at design time.

At runtime, you can add items to a combo box using the AddItem() method, which
adds items to the list box part. You can also add items to the list box using the List
property, which is an indexed array of items in the list box. If you want to set text in
the text box, set the combo box�s Text property.

Here�s an example; in this case, we add four items to a combo box�s list:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

You can also add items to the list with the List property. Here we create a fifth item
and give it a caption this way:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

 Combo1.List(4) = "Item 4"

End Sub

That�s it�the result appears in Figure 8.7.

Figure 8.7 A newly filled combo box.

Responding To Combo Box Selections

So you�ve installed a new combo box in your program, SuperDuperTextPro, to let the

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\264-267.html (2 of 3) [3/14/2001 1:38:51 AM]

javascript:displayWindow('images/08-07.jpg',317,237%20)
javascript:displayWindow('images/08-07.jpg',317,237)

user select new text font sizes, and the combo box is staring at you�just a blank box.
How do you connect it to your code?

Combo boxes are combinations of text boxes and list boxes, and that combination
means that there are two sets of input events: Change events when the user types into
the text box and Click or DblClick when the user uses the mouse. Note that, unlike
standard list boxes, you cannot make multiple selections in a combo box�s list box.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\264-267.html (3 of 3) [3/14/2001 1:38:51 AM]

Change Events

When the user changes the text in a combo box, a Change event occurs, just as it does
when the user types in a standard text box. You can read the new text in the text box with
the Text property. For example, here�s how we display the new text in the combo box
every time the user changes that text by typing:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Private Sub Combo1_Change()

 MsgBox "New text is: " & Combo1.Text

End Sub

TIP: Here�s a fact that takes many programmers by surprise: no Change event occurs
when you use the mouse to select an item in a combo box�s list, even if doing so changes
the text in the combo�s text box. The only event that occurs is Click (or DblClick) when
the user uses the mouse.

Click Events

You can also get Click events when the user makes a selection in the list box using the
mouse. You can determine which item the user clicked using the combo�s ListIndex
property (which holds the index of the clicked item) or get that item�s text using the Text
property, because when you click an item, it is made the new selected item in the text box.
Here�s an example using the ListIndex property; in this case, we report to the user which
item in the combo box he has clicked:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\267-271.html (1 of 4) [3/14/2001 1:39:04 AM]

Private Sub Combo1_Click()

 MsgBox "You clicked item " & Str(Combo1.ListIndex)

End Sub

DblClick Events

You might expect that where there are Click events there are DblClick events, and that�s
true�but for simple combo boxes only (Style = VbComboSimple, where
VbComboSimple is a Visual Basic constant that equals 1). When you click an item in the
list part of a combo box once, the list closes, so it�s impossible to double-click an item
�except in simple combo boxes, where the list stays open at all times.

For simple combo boxes, then, we can support the DblClick event this way:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Private Sub Combo1_DblClick()

 MsgBox "You double clicked item " & Str(Combo1.ListIndex)

End Sub

Removing Items From A Combo Box

Just as with list boxes, you can remove items from combo boxes using the RemoveItem()
method. You just pass the index of the item you want to remove from the combo box�s list
to RemoveItem().

Here�s an example. In this case, we can add four items to a combo box, Items 0 through 3,
when the combo box�s form loads:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\267-271.html (2 of 4) [3/14/2001 1:39:04 AM]

Next, we remove Item 1 in the list this way:

Private Sub Command1_Click()

 Combo1.RemoveItem 1

End Sub

And that�s it�now Item 1 is gone (see Figure 8.8).

Figure 8.8 Removing an item from a combo box.

TIP: You should note that removing an item from a combo box changes the indexes of the
remaining items. After you remove Item 1 in the preceding example, Item 2 now gets
Index 1 and Item 3 gets Index 2. If you want to change those indexes back to their original
values, set the items� Index properties.

Getting The Current Selection In A Combo Box

When you make a selection in a combo box, that new selection appears in the combo box�s
text box, so it�s easy to get the current selection�you just use the combo box�s Text
property.

For example, say we�ve added these items to a combo box:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Then, when the user clicks a command button, we can get the text of the current selection
in the combo box this way, using the Text property.

Private Sub Command1_Click()

 MsgBox "New text is: " & Combo1.Text

End Sub

That�s the way to do it�when you need to know what the current selection in a combo box
is, you can use the Text property.

You can also get the currently selected item�s index in the combo box�s list using the

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\267-271.html (3 of 4) [3/14/2001 1:39:04 AM]

javascript:displayWindow('images/08-08.jpg',317,237%20)
javascript:displayWindow('images/08-08.jpg',317,237)

ListIndex property. If no selection is made (for instance, when the form first loads and the
combo�s text box is empty), this property will return �1. If the user has altered the selection
by typing into the text box (in other words, so the selected item no longer matches the item
the combo box�s list), ListIndex will also be �1. And if the user opens the combo box�s list
and then clicks outside that list without making a selection, ListIndex is set to �1.

Here�s an example in which we display the index of the currently selected item using
ListIndex. First, we fill the combo box with items:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Then we can display the index of the current selection when the user clicks a command
button using ListIndex this way:

Private Sub Command1_Click()

 MsgBox Str(Combo1.ListIndex)

End Sub

TIP: If you want to restrict the user�s input to items from the combo box�s list, set the
combo box�s Style property to VbComboDrop-DownList, a predefined Visual Basic
constant whose value is 2. In this style of combo boxes, the user cannot type into the text
part of the control.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\267-271.html (4 of 4) [3/14/2001 1:39:04 AM]

Sorting A Combo Box

You�ve been newly commissioned to write the guidebook to the local zoo with Visual
Basic, and everything looks great�except for one thing. The program features a combo
box with a list of animals that the user can select to learn more about each animal, and
it would be great if you could make that list appear in alphabetical order. The zoo,
however, keeps adding and trading animals all the time. Still, it�s no problem, because
you can leave the work up to the combo box itself if you set its Sorted property to
True (the default is False).

For example, say we set the Sorted property to True for a combo box, Combo1. Now
it doesn�t matter in what order you add items to that combo box

Private Sub Form_Load()

 Combo1.AddItem ("zebra")

 Combo1.AddItem ("tiger")

 Combo1.AddItem ("hamster")

 Combo1.AddItem ("aardvark")

End Sub

because all the items will be sorted automatically. The sorted combo box appears in
Figure 8.9. Now you�ll be able to handle the animals from aardvark to zebra
automatically.

Figure 8.9 Sorting the items in a combo box.

TIP: You should know, however, that sorting a combo box can change the indexes of
the items in that combo box (unless they were already in alphabetical order). After the
sorting is finished, the first item in the newly sorted combo list has Index 0, the next
Index 1, and so on. If you want to change the indexes of the items back to their
original values, you can set their Index properties.

Clearing A Combo Box

It�s time to put new items into a combo box�but does that mean you have to delete all
the current items there one by one with RemoveItem()?

No, you can clear a whole combo box at once with the Clear() method. Here�s an
example. First, we add items to a combo box:

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\271-273.html (1 of 3) [3/14/2001 1:39:12 AM]

javascript:displayWindow('images/08-09.jpg',317,237%20)
javascript:displayWindow('images/08-09.jpg',317,237)

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

Then we can clear the combo box when the user clicks a command button:

Private Sub Command1_Click()

 Combo1.Clear

End Sub

Note that there is no �unclear� method! Once you remove the items from a combo box,
they�re gone until you expressly add them again.

Locking A Combo Box

You can lock a combo box by setting its Locked property to True. When locked, the
user cannot enter text in the combo�s text box and cannot make selections from the
combo�s list (although if the list is drop-down, it will still open). However, when
programmers think of �locking� a combo box, it�s not usually the Locked property that
they want.

The more common operation is to restrict the user�s ability to enter text in a combo
box so that he must instead select one of the items in the combo�s list. You can make
sure that the user can�t enter text in the combo box�s text box by setting the combo
box�s Style property to VbComboDrop-DownList. Here are the settings for the
combo box Style property:

" VbComboDropDown�0; drop-down combo box. Includes a drop-down list and a
text box. The user can select from the list or type in the text box. (This is the default.)

" VbComboSimple�1; simple combo box. Includes a text box and a list, which doesn
�t drop down. The user can select from the list or type in the text box. The size of a
simple combo box includes both the edit and list portions. By default, a simple combo
box is sized so that none of the list is displayed; size the combo box to display more of
the list.

" VbComboDrop-DownList�2; drop-down list. This style allows a selection only
from the drop-down list. This is a good one to keep in mind when you want to restrict
the user�s input, but if you want to use this one, you should also consider simple list
boxes.

Besides locking or setting the Style property of a combo box, you can also disable a

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\271-273.html (2 of 3) [3/14/2001 1:39:12 AM]

combo box, of course, by setting its Enabled property to False; however, this grays
out the control and makes it completely inaccessible. Another option is to make the
combo box disappear by setting its Visible property to False (setting the Visible
property to True makes the combo box reappear).

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\271-273.html (3 of 3) [3/14/2001 1:39:12 AM]

Getting The Number Of Items In A Combo Box

You�re trying to bend over backwards to make your program user-friendly and have
let the user add items to the main combo box. But now you need to see if he has added
a particular item to the combo box. How do you find out how many items there are in
the combo box currently so you can set up your loop?

You can use a combo box�s ListCount property to determine how many items are in
the combo box�s list. Let�s see how to use ListCount in an example. Here, we�ll
search the items in a combo box for one particular item with the caption �Item 1�, and
if we find it, we�ll display a message box.

We start by setting up our loop over the indexes of all the items in the combo box this
way (note that we subtract 1 from ListCount because indices are zero-based):

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To Combo1.ListCount - 1

...

 Next intLoopIndex

End Sub

Then we search the indexed List property for the item we want and, if we find it,
report that fact to the user:

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To Combo1.ListCount - 1

 If Combo1.List(intLoopIndex) = "Item 1" Then

 MsgBox "Found item 1!"

 End If

 Next intLoopIndex

End Sub

Setting The Topmost Item In A List Box Or Combo Box

One of the properties of list and combo boxes, the TopIndex property, has fooled a
lot of programmers, because according to Microsoft, this property lets you set the
topmost item in a list box or combo box�s list. However, what that seems to mean is
not exactly how it works.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\273-277.html (1 of 4) [3/14/2001 1:39:14 AM]

When you set a list box or combo box�s TopIndex property to some value, the items
in the list are not reordered (if you want to reorder them, use the items� Index
properties or the control�s Sorted property). What TopIndex does is to set the
topmost visible item in the list in those cases where not all items in the list are visible
(in other words, if the list has scroll bars on the side).

Let�s see an example. Here we place some items into a simple combo box (in other
words, a simple combo box has its list permanently open and its Style property is set
to VbComboSimple, whose value is 1):

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

End Sub

When the user clicks a command button, we can make Item 2 topmost in the visible
portion of the list:

Private Sub Command1_Click()

 Combo1.TopIndex = 2

End Sub

The result appears in Figure 8.10. When you click the button, the list scrolls
automatically so Item 2 is the topmost visible item (note that this scrolling operation
only occurs if not all items in the list are visible at once).

Figure 8.10 Making an item topmost.

TIP: The reason for TopIndex�s existence is to make life easier for users when they
are working with long lists. Each time they reopen a list, it�s a pain to have to scroll
down to the former location just to be able to select the following item. For this
reason, programs often �remember� the last-selected item in a list and make that
topmost when the list is opened again.

Adding Numeric Data To Items In A List Box Or Combo Box

You�ve been asked to write the employee phone directory program and place a combo
box with all the employee�s names in the middle of a form. Now how do you connect
phone numbers to the names?

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\273-277.html (2 of 4) [3/14/2001 1:39:14 AM]

javascript:displayWindow('images/08-10.jpg',317,237%20)
javascript:displayWindow('images/08-10.jpg',317,237)

You can use a list box�s or combo box�s ItemData array to hold Long integers,
because that array is indexed in the same way as the control�s items themselves are
indexed. That is, you can store numeric data for Item 5 in the list or combo box in
ItemData(5).

Let�s see an example to make this easier. Here, we add four items to a combo box
when its form loads:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

...

Next, we add numeric data to each item in the combo box:

Private Sub Form_Load()

 Combo1.AddItem ("Item 0")

 Combo1.AddItem ("Item 1")

 Combo1.AddItem ("Item 2")

 Combo1.AddItem ("Item 3")

 Combo1.ItemData(0) = 0

 Combo1.ItemData(1) = 111

 Combo1.ItemData(2) = 222

 Combo1.ItemData(3) = 333

End Sub

Now when the user clicks an item in the combo box, we can indicate what that item�s
numeric data is with a message box:

Private Sub Combo1_Click()

 MsgBox "Data for the clicked item is: " & _

 Str(Combo1.ItemData(Combo1.ListIndex))

End Sub

In this way, you�re able to store more than just text for list or combo box items.

TIP: Associating simple numbers with your list or combo box items isn�t enough?

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\273-277.html (3 of 4) [3/14/2001 1:39:14 AM]

What if you have more data? Try using the ItemData value as an index into an array
of data structures instead.

Determining Where An Item Was Added In A Sorted List Box Or Combo
Box

You�re letting the user customize a combo box by adding items to the combo box, and
in code, you place data into the ItemData array for this item after it�s been added. But
there�s a problem�this is a sorted combo box (or list box), which means you don�t
know the item�s actual index when it�s added, and you therefore don�t know its index
in the ItemData array. How can you find out where the item was placed in the sorted
combo box?

You can use the control�s NewIndex property to determine the index of the most
recently added item to the control. For example, let�s say that the user can add items to
a sorted combo box by placing the text of the new item in a text box and clicking a
command button:

Private Sub Command1_Click()

 Combo1.AddItem (Text1.Text)

End Sub

The index of the new item in the sorted list is now in the NewIndex property, so we
can add data to the new item�s entry in the ItemData array (if you don�t know what
this array does, see the previous topic) and display that data in a message box this
way:

Private Sub Command2_Click()

 Combo1.ItemData(Combo1.NewIndex) = 10000

 MsgBox "Data for the new item is: " & _

 Str(Combo1.ItemData(Combo1.NewIndex))

End Sub

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\273-277.html (4 of 4) [3/14/2001 1:39:14 AM]

Using Images In Combo Boxes

We�ve seen in this book that you can add images to menus and to buttons. Can you
add images to combo boxes? Yes, you can, using image combo boxes.

Image combo boxes are one of the Windows common controls, so you have to add
those controls to your project. Here�s how you install image combo boxes
step-by-step:

1. Select the Project|Components menu item.

2. Select the Controls tab in the Components box that opens.

3. Click the Microsoft Windows Common Controls item in the Components box now,
and click on OK to close the Components box, adding the common controls to the
toolbox.

4. Draw a new image combo box in your program.

5. To store the images for the image combo box, you�ll need an image list control
(another of the Windows common controls), so add one of those to your program as
well by drawing it on your form (the control will not appear at runtime).

6. Right-click the image list control now, and select Properties in the menu that
appears in order to open the property pages, as shown in Figure 8.11.

Figure 8.11 The Images tab of the image list property pages.

7. Click the Images tab in the image list�s property pages now, and use the Insert
Picture button to insert all the images you want to use in the image list, as also shown
in Figure 8.11 (where we�re using solid colors for each image).

8. Close the image list property page by on clicking OK.

9. Right-click the image combo control now and select the Properties item in the
menu that opens.

10. We need to connect the image list, ImageList1, to the image combo box, so click
the General tab in the image combo property pages and select ImageList1 in the
ImageList box, as shown in Figure 8.12.

Figure 8.12 The General tab of the image combo property pages.

11. Close the image combo property pages by clicking on OK.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\277-280.html (1 of 2) [3/14/2001 1:39:24 AM]

javascript:displayWindow('images/08-11.jpg',416,312%20)
javascript:displayWindow('images/08-11.jpg',416,312)
javascript:displayWindow('images/08-12.jpg',428,353%20)
javascript:displayWindow('images/08-12.jpg',428,353)

12. Now add the items to the image combo, ImageCombo1, in code. To add those
items to the image combo box, you actually add ComboItem objects to that control.
To do that, you can use the image combo�s ComboItems collection�s Add method.
This method takes the index of the item to add, a key (which is a unique text string
that identifies the item), the caption of the item if any, and the index of the item�s
picture in the associated image list control:

Private Sub Form_Load()

 ImageCombo1.ComboItems.Add 1, "key1", "Item 1", 1

 ImageCombo1.ComboItems.Add 2, "key2", "Item 2", 2

 ImageCombo1.ComboItems.Add 3, "key3", "Item 3", 3

End Sub

And that�s it. Now when you run the program, the combo box displays images, as
shown in Figure 8.13. Now we�re using images in combo boxes.

Figure 8.13 A combo box displaying images.

Visual Basic 6 Black Book:List Boxes And Combo Boxes

http://24.19.55.56:8080/temp/ch08\277-280.html (2 of 2) [3/14/2001 1:39:24 AM]

javascript:displayWindow('images/08-13.jpg',317,237%20)
javascript:displayWindow('images/08-13.jpg',317,237)

Chapter 9
Scroll Bars And Sliders
If you need an immediate solution to:

Adding Horizontal Or Vertical Scroll Bars To A Form

Setting Scroll Bars� Minimum And Maximum Values

Setting Up Scroll Bar Clicks (Large Changes)

Setting Up Scroll Bar Arrow Clicks (Small Changes)

Getting A Scroll Bar�s Current Value

Handling Scroll Bar Events

Handling Continuous Scroll Bar Events

Showing And Hiding Scroll Bars

Coordinating Scroll Bar Pairs

Adding Scroll Bars To Text Boxes

Creating And Using Flat Scroll Bars

Customizing Flat Scroll Bar Arrows

Creating Slider Controls

Setting A Slider�s Orientation

Setting A Slider�s Range

Setting Up Slider Groove Clicks

Adding Ticks To A Slider

Setting A Slider�s Tick Style

Getting A Slider�s Current Value

Handling Slider Events

Handling Continuous Slider Events

Handling Slider Selections

Clearing A Selection In A Slider

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\281-287.html (1 of 4) [3/14/2001 1:39:37 AM]

Creating An Updown Control

Setting An Updown Control�s Minimum And Maximum

Handling Updown Events

In Depth

In this chapter, we�re going to take a look at those controls that scroll and slide in
Visual Basic. The controls we�ll cover here are scroll bars, sliders, flat scroll bars, and
updown controls, shown in Figure 9.1. Every Windows user is familiar with scroll
bars. If computers had wall-sized displays, we might not need scroll bars, but as it is,
scroll bars help control what parts of your program�s data are visible at any one time.
For example, you can place a large document in a text box, only part of which is
visible at once. Using scroll bars, you can manipulate the document, moving through
it as you like. You manipulate that document by dragging the small box in the scroll
bar, which is called the scroll bar�s thumb. A relatively new control is the flat scroll
bar, which functions just like a normal scroll bar, except that it can appear flat, rather
than three-dimensional.

Figure 9.1 Scroll bars, a flat scroll bar, a slider, and an updown control.

A new control for some Windows user is the slider control, which appears at the
bottom of Figure 9.1. Using the mouse, you can drag the knob in a slider control much
the way you�d work the volume control on a stereo. You use slider controls to let the
user make a selection from a range of values in a convenient way. For example, you
may use a slider control to resize an image rather than asking the user to type in twip
values.

The updown control is also new to many users. This control consists of two buttons,
one pointing up and one pointing down, as you see at right in Figure 9.1. Updowns
actually work much like the arrow buttons in scroll bars, because each time you click
them, the setting of the control changes. You use updowns to let the user increment or
decrement a setting.

Adding Scroll Bars And Sliders To A Program

Standard scroll bars are intrinsic controls in Visual Basic, which means that they
appear in the toolbox as soon as you start Visual Basic. You�ll find both the Vertical
and the Horizontal Scroll Bar tools in the toolbox; to add those controls to a form, just
paint them as you need them in that form.

You add the other controls in this chapter with the Project|Components menu item
(click the Controls tab in the Components box that opens). To add flat scroll bars, you
select the Microsoft Flat Scrollbar Control item; to add sliders, you select the
Microsoft Windows Common Controls item; and to add the updown control, you click

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\281-287.html (2 of 4) [3/14/2001 1:39:37 AM]

javascript:displayWindow('images/09-01.jpg',679,523%20)
javascript:displayWindow('images/09-01.jpg',679,523)

the Microsoft Windows Common Controls-2 item.

The toolbox tools for these controls appear in Figure 9.2. The Horizontal Scroll Bar
tool is fourth down in the middle, the Vertical Scroll Bar tool is fourth down on the
right. The Updown tool is eighth down in the middle, the Slider tool is eleventh down
on the right, and the Flat Scroll Bar tool is twelfth down in the middle.

Figure 9.2 The Horizontal Scroll Bar, Vertical Scroll Bar, Updown, Slider, and Flat
Scroll Bar tools.

In overview, these controls work in more or less the same way: you add them to a
form, use Min and Max properties to set the possible range of values the user can set,
then read the Value property to get the control�s setting in a Change event handler to
interpret actions undertaken by the user.

Change events occur after the user is finished changing the control�s setting; you can
also use the Scroll event to handle events as the user works with the control, as we�ll
see in this chapter. In fact, we�ll see how all this works and more in the Immediate
Solutions, and we�ll turn to that now.

Immediate Solutions

Adding Horizontal Or Vertical Scroll Bars To A Form

Many programmers think that there is one Scroll Bar tool that you add to a form and
then set its orientation�vertical or horizontal. In fact, those are two different controls,
as you see in the toolbox in Figure 9.2. To add a horizontal scroll bar to a form, you
use the Horizontal Scroll Bar tool, and to add a vertical scroll bar, you use the Vertical
Scroll Bar tool. A horizontal scroll bar, HScroll1, and a vertical scroll bar, VScroll1,
appear in Figure 9.3.

Figure 9.3 A horizontal and a vertical scroll bar.

Setting Scroll Bars� Minimum And Maximum Values

The Testing Department is calling again. The Field Testing Unit loves the new
program you�ve written to help them record in-the-field performance of the company�s
products, but there�s just one problem: performance is measured on a scale of 1 to
100, and the scroll bars in your program seem to go from 0 to 32767. It�s been very
hard for the users of your program to operate with only 1/32 of the whole scroll bar.
Can you rescale it?

Yes, you can. After you place a scroll bar in a program, the first thing to do is to set its
range of possible values, which by default is 0 to 32767. The minimum value a scroll

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\281-287.html (3 of 4) [3/14/2001 1:39:37 AM]

javascript:displayWindow('images/09-02.jpg',540,623%20)
javascript:displayWindow('images/09-02.jpg',540,623)
javascript:displayWindow('images/09-03.jpg',317,216%20)
javascript:displayWindow('images/09-03.jpg',317,216)

bar can be set to is stored in its Min property, and the maximum value in the Max
property. You can set the Min and Max properties for scroll bars at design time or at
runtime; here�s how we change those properties in a vertical scroll bar:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

End Sub

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\281-287.html (4 of 4) [3/14/2001 1:39:37 AM]

Setting Up Scroll Bar Clicks (Large Changes)

The Testing Department is calling again. The scroll bars you�ve added to your
program, SuperDuperTextPro, look terrific. But why doesn�t anything happen when
the user clicks the scroll bar itself, in the area between the thumb (the scroll box) and
an arrow button? You ask, should something happen? They say, yes.

When the user clicks the scroll bar itself, not the thumb and not an arrow button, the
thumb should move in that direction by the amount set by the scroll bar�s
LargeChange property (see also the next topic, which deals with the SmallChange
property). For example, if you�ve set the scroll bar�s range to be 1 to 100, a reasonable
LargeChange setting would be 10. You can set the LargeChange property at design
time or at runtime.

Here�s an example where we set the LargeChange property for two scroll bars, a
horizontal one and a vertical one:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

 VScroll1.LargeChange = 10

 HScroll1.Min = 1

 HScroll1.Max = 100

 HScroll1.LargeChange = 10

End Sub

Now when the user clicks the scroll bar between the thumb and arrow buttons, the
scroll bar�s value will increase or decrease by 10.

Note that on some occasions, you should change the LargeChange property while a
program is running. For example, if you let the user scroll through a document with
this property, setting it to 1, and the user loads in a 30,000-line document, it might be
wise to change the value of this property, such as making the large change, say, 5
percent of the total, or 1,500 lines.

Setting Up Scroll Bar Arrow Clicks (Small Changes)

As far as the user is concerned, there are three ways to change the setting of a scroll
bar: by moving the thumb (the scroll box), by clicking the area of the scroll bar
between the thumb and an arrow button, and by clicking an arrow button. When the
user clicks an arrow button, the thumb moves by an amount stored in the

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\287-289.html (1 of 3) [3/14/2001 1:39:44 AM]

SmallChange property (see also the previous topic, which deals with the
LargeChange property).

I�ve known someone who thought the SmallChange property was a joke because its
name can be interpreted humorously, but it exists all right. When the user clicks a
scroll bar�s arrow, the setting of the scroll bar is incremented or decremented
(depending on which arrow was clicked) by the value in the SmallChange property.

You can set a scroll bar�s SmallChange property at design time or at runtime. Here
we set the SmallChange property for two scroll bars, a horizontal one and a vertical
one:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

 VScroll1.SmallChange = 1

 HScroll1.Min = 1

 HScroll1.Max = 100

 HScroll1.SmallChange = 1

End Sub

Now when the user clicks the arrow buttons, the setting of the scroll bar will change
by 1.

Note that on some occasions, you should change the SmallChange property while a
program is running. For example, if you let the user scroll through a document with
this property, setting it to 1, and the user loads in a 30,000-line document, it might be
wise to change the value of this property to, say, something like 1 percent of the total,
or 300 lines.

TIP: This is one of those values that you should test yourself, because it�s part of
your program�s feel. I know of a graphics program that scrolls exactly one pixel at a
time when you click the arrow buttons in the scroll bars next to an image. Such a thing
is annoying and gives users the impression that your program is unresponsive and
hard to use.

Getting A Scroll Bar�s Current Value

You�ve added the scroll bars you need to a program and set their Min, Max,
SmallChange, and LargeChange properties, but you�d like to add one more touch.
When your program first displays the scroll bars, you�d like them to display a default
value, which is right in the middle of their range. How do you set the setting of a

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\287-289.html (2 of 3) [3/14/2001 1:39:44 AM]

scroll bar?

You use the Value property to set a scroll bar�s setting. You can set this value at either
design time or runtime, and you can set it to read a scroll bar�s setting while the
program is running. The Value property holds values that can be in the range spanned
by the values in the Min and Max properties.

Here�s an example. In this case, we�re setting up two scroll bars, a horizontal one and
a vertical one, and placing the thumb of each scroll bar in the center of the range when
the scroll bar first appears by setting the Value properties this way:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

 VScroll1.LargeChange = 10

 VScroll1.SmallChange = 1

 VScroll1.Value = 50

 HScroll1.Min = 1

 HScroll1.Max = 100

 HScroll1.LargeChange = 10

 HScroll1.SmallChange = 1

 HScroll1.Value = 50

End Sub

When the user makes a change in a scroll bar, you get the new setting from the Value
property when the Change event is triggered (see the next topic).

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\287-289.html (3 of 3) [3/14/2001 1:39:44 AM]

Handling Scroll Bar Events

You�ve added the scroll bars the Testing Department wanted. You�ve set the scroll bars�
Min, Max, SmallChange, and LargeChange properties. Now how do you add the scroll
bars to your program�s code?

When the user changes the setting in a scroll bar, a Change event occurs, and you can
react to those changes with an event handler attached to that event. For example, you may
use scroll bars to move other controls around on the form (using those controls� Move
method), and when the user changes a scroll bar�s setting, you�ll be informed of the new
value in the Change event handler.

Let�s look at an example. We start by adding two scroll bars�a horizontal scroll bar,
HScroll1, and a vertical scroll bar, VScroll1�to a form. We set those controls� Min, Max,
SmallChange, LargeChange, and Value properties when the form loads:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

 VScroll1.LargeChange = 10

 VScroll1.SmallChange = 1

 VScroll1.Value = 50

 HScroll1.Min = 1

 HScroll1.Max = 100

 HScroll1.LargeChange = 10

 HScroll1.SmallChange = 1

 HScroll1.Value = 50

End Sub

Now when the user changes the setting in a scroll bar, we can report the new setting in a
text box, Text1, simply by using the new setting in the Value property. This looks like the
following code. Now we�re handling scroll bar events, as shown in Figure 9.4.

Figure 9.4 Working with scroll bars.

Private Sub HScroll1_Change()

 Text1.Text = "Horizontal setting: " & Str(HScroll1.Value)

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\289-292.html (1 of 4) [3/14/2001 1:39:53 AM]

javascript:displayWindow('images/09-04.jpg',317,216%20)
javascript:displayWindow('images/09-04.jpg',317,216)

End Sub

Private Sub VScroll1_Change()

 Text1.Text = "Vertical setting: " & Str(VScroll1.Value)

End Sub

Handling Continuous Scroll Bar Events

You can use the Change event to catch the user�s scrolling actions, but there�s another one
that�s a lot better for many uses: the Scroll event. When you use the Change event,
nothing happens until users are done with their scrolling actions. After the action is
completed, the Change event is triggered, and you find out what happened. With the
Scroll event, on the other hand, you get continuous updates as the action is happening.
This means that you can update the screen immediately to show users the results of their
scrolling actions. It�s very useful to be able to update the screen as the user scrolls,
especially in cases where you�re scrolling a long document. Imagine trying to scroll 25
pages at a time, only to have to stop scrolling before the screen was updated.

Here�s an example showing how to use the Scroll event; fundamentally, using this event is
the same as using the Change event (unless you have an action that should only be
performed after the user is done scrolling, in which case you should stick to the Change
event). We start the example by adding two scroll bars, a horizontal scroll bar (HScroll1)
and a vertical scroll bar (VScroll1), to a form. We set those controls� Min, Max,
SmallChange, LargeChange, and Value properties when the form loads:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

 VScroll1.LargeChange = 10

 VScroll1.SmallChange = 1

 VScroll1.Value = 50

 HScroll1.Min = 1

 HScroll1.Max = 100

 HScroll1.LargeChange = 10

 HScroll1.SmallChange = 1

 HScroll1.Value = 50

End Sub

Next, we just add code to the two scroll bar�s Scroll events to display the new setting in a
text box, Text1:

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\289-292.html (2 of 4) [3/14/2001 1:39:53 AM]

Private Sub HScroll1_Scroll()

 Text1.Text = "Horizontal setting: " & Str(HScroll1.Value)

End Sub

Private Sub VScroll1_Scroll()

 Text1.Text = "Vertical setting: " & Str(VScroll1.Value)

End Sub

With this code, the text box is continuously updated with the setting of the scroll bars as
users manipulate them. This is in sharp contrast to using the Change event, which only
occurs when users are finished with their scrolling actions.

Showing And Hiding Scroll Bars

Unlike other controls, there are well-defined times when scroll bars should disappear from
your program. If the object you�re scrolling can be entirely visible, there is no need for
scroll bars, and you should remove them. (Another option is to disable them by setting
their Enabled property to False. Disabled scroll bars appear gray and don�t display a
thumb.)

You can make a scroll bar disappear by setting its Visible property to False, and you can
make it reappear by setting that property to True. Here�s an example. In this case, we add
two scroll bars to a form�a horizontal scroll bar and a vertical scroll bar�and initialize them
when the form loads:

Private Sub Form_Load()

 VScroll1.Min = 1

 VScroll1.Max = 100

 VScroll1.LargeChange = 10

 VScroll1.SmallChange = 1

 VScroll1.Value = 50

 HScroll1.Min = 1

 HScroll1.Max = 100

 HScroll1.LargeChange = 10

 HScroll1.SmallChange = 1

 HScroll1.Value = 50

End Sub

When the user clicks a command button, we can hide both scroll bars simply by setting
their Visible properties to False:

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\289-292.html (3 of 4) [3/14/2001 1:39:53 AM]

Private Sub Command1_Click()

 HScroll1.Visible = False

 VScroll1.Visible = False

End Sub

And that�s it�now we can hide and show scroll bars at will. As mentioned, you usually hide
scroll bars (or disable them) when the object they scroll is entirely visible and the scroll
bars are no longer needed.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\289-292.html (4 of 4) [3/14/2001 1:39:53 AM]

Coordinating Scroll Bar Pairs

The Testing Department is calling again. The two scroll bars you�ve added to your
SuperDuperWinBigCasino game look great, but there�s one problem: A pair of scroll
bars straddle the user�s view of the roulette table in SuperDuperWinBigCasino, but
when you scroll one, the other doesn�t move to match it. Can you fix that?

It�s common to have two scroll bars that perform the same scrolling action�one on
either side of an image you�re scrolling, for example. The user should be able to scroll
either scroll bar and have the other one match.

Keeping scroll bars coordinated is easy. All you have to do is make sure that when
one scroll bar has a Change event, you update the other scroll bar�s Value property.
For example, say we have two vertical scroll bars, VScroll1 and VScroll2, that
straddle an object they�re in charge of scrolling. You can update VScroll2 when
VScroll1 changes this way:

Private Sub VScroll1_Change()

 VScroll2.Value = VScroll1.Value

End Sub

And you can update VScroll1 when VScroll2 changes:

Private Sub VScroll2_Change()

 VScroll1.Value = VScroll2.Value

End Sub

That�s all there is to it. Now the scroll bars are coordinated.

Adding Scroll Bars To Text Boxes

How do you add scroll bars to text boxes? You use the text box�s ScrollBars property
instead of using actual scroll bar controls, but we include this topic here anyway
because this is a natural chapter to turn to with this question.

First, make sure you set the text box�s MultiLine property to True, because only
multiline text boxes support scroll bars. Next, decide what kind of scroll bars you
want on the text box: horizontal, vertical, or both, and set the ScrollBars property to
match. That property can take these values:

" VbSBNone�0; no scroll bars (the default)

" VbHorizontal�1; horizontal

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\293-296.html (1 of 3) [3/14/2001 1:39:58 AM]

" VbVertical�2; vertical

" VbBoth�3; both vertical and horizontal

For example, we�ve added both horizontal and vertical scroll bars to the text box in
Figure 9.5.

Figure 9.5 Adding scroll bars to a text box.

Creating And Using Flat Scroll Bars

A relatively new control is the flat scroll bar control. This control can function just
like any other scroll bar, except that it appears flat, not 3D.

To add flat scroll bars to a form, follow these steps:

1. Select the Project|Components menu item, and click the Controls tab in the
Components box that opens.

2. Select the Microsoft Flat Scrollbar Control item.

3. Close the Components box by clicking on OK.

4. The Flat Scroll Bar tool appears in the toolbox at this point. Add a flat scroll bar to
your form in the usual way.

5. Set the flat scroll bar�s Min, Max, SmallChange, and LargeChange values as you
want them.

6. Add the code you want to the scroll bar event you want, Change or Scroll. For
example, here we add code to a flat scroll bar�s Change event, updating a text box
with the setting of the scroll bar when the user is finished scrolling it:

Private Sub FlatScrollBar1_Change()

 Text1.Text = "Scroll bar�s value: " & _

 Str(FlatScrollBar1.Value)

End Sub

Run the program now, as shown in Figure 9.6. As you can see in that figure, the flat
scroll bar does indeed appear flat, but it functions like any other scroll bar when the
user scrolls it.

Figure 9.6 Adding a flat scroll bar to a program.

Unlike standard scroll bars, you can change the orientation of a flat scroll bar with its

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\293-296.html (2 of 3) [3/14/2001 1:39:58 AM]

javascript:displayWindow('images/09-05.jpg',271,167%20)
javascript:displayWindow('images/09-05.jpg',271,167)
javascript:displayWindow('images/09-06.jpg',272,159%20)
javascript:displayWindow('images/09-06.jpg',272,159)

Orientation property. The Orientation property can take these values:

" fsbVertical�0; vertical scroll bar

" fsbHorizontal�1; horizontal scroll bar

TIP: You can actually make a flat scroll bar appear 3D by setting its Appearance
property. This property can take these values: fsb3D (whose value is 0), fsbFlat
(value 1), and fsbTrack3D (value 2).

Customizing Flat Scroll Bar Arrows

Flat scroll bars have one advantage over standard scroll bars: you can disable either
arrow button selectively in a flat scroll bar using the Arrows property. You set the
Arrows property to one of these values:

" fsbBoth�0; enable both arrows

" fsbLeftUp�1; enable left/up arrow

" fsbRightDown�2; enable right/down arrow

For example, we set the flat scroll bar�s Arrows property to fsbLeftUp at design time
in Figure 9.7, which means the right button is disabled.

Figure 9.7 Disabling the right arrow button in a flat scroll bar.

You can also work with the Arrows property in code like this, where we enable both
arrow buttons:

Private Sub Command2_Click()

 FlatScrollBar1.Arrows = fsbBoth

End Sub

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\293-296.html (3 of 3) [3/14/2001 1:39:58 AM]

javascript:displayWindow('images/09-07.jpg',272,159%20)
javascript:displayWindow('images/09-07.jpg',272,159)

Creating Slider Controls

The Aesthetic Design Department is on the phone again. They�ve heard about slider
controls in Visual Basic and like their look. Is there any way you can add them to your
program, SuperDuperTextPro?

Adding a slider to a program is easy; just follow these steps:

1. Select the Project|Components menu item, and click the Controls tab in the
Components box that opens.

2. Select the Microsoft Windows Common Controls item.

3. Close the Components box by clicking on OK.

4. The Slider tool appears in the toolbox at this point. Add a slider to your form in the
usual way.

5. Set the slider�s Orientation property to ccOrientationHorizontal (value 0, the
default) or ccOrientationVertical (value 1) to specify the orientation you want.

6. Set the slider�s Min, Max, SmallChange, and LargeChange values as you want
them.

7. Set the slider�s TickFrequency property to the number of units between tics on the
slider�s scale.

8. Add the code you want to the slider event you want, Change or Scroll. For
example, here we add code to a slider�s Change event, setting the blue color of a text
box, Text1, to match the slider�s setting, using the Visual Basic RGB function:

Private Sub Form_Load()

 Slider1.Max = 255

 Slider1.Min = 0

End Sub

Private Sub Slider1_Click()

 Text1.BackColor = RGB(0, 0, Slider1.Value)

End Sub

Running this program yields the result you see in Figure 9.8. Now we�re using sliders
in Visual Basic.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\296-299.html (1 of 3) [3/14/2001 1:40:10 AM]

javascript:displayWindow('images/09-08.jpg',272,170%20)

Figure 9.8 Adding a slider to a program.

Setting A Slider�s Orientation

Like scroll bars, sliders can be horizontal or vertical, but unlike scroll bars, horizontal
and vertical sliders are not two different controls. Instead, you set a slider�s
Orientation property to make it horizontal or vertical.

You can set the Orientation at design time or run-time; this property takes these
values:

" ccOrientationHorizontal (value 0, the default) orients the slider horizontally.

" ccOrientationVertical (value 1) orients the slider vertically.

Can you change a slider�s orientation in code? You certainly can. In this example, we
make a slider�s orientation vertical when the user clicks a button:

Private Sub Command1_Click()

 Slider1.Orientation = ccOrientationVertical

End Sub

TIP: Besides reorienting sliders, you can move them around a form using their Move
method.

Setting A Slider�s Range

You�ve added a new slider to your environment control program to let users set the
temperature they want in their homes, but now they have a complaint. Why does the
slider return values of up to 32,767 degrees?

It�s time to reset the slider�s range of possible values, and you use the Min (default
value 0) and Max (default value 10) properties to do that. You can set a slider�s range
at design time or runtime.

For example, here�s how we set a slider�s range to a more reasonable span of
temperatures:

Private Sub Form_Load()

 Slider1.Max = 90

 Slider1.Min = 50

End Sub

After setting the Min and Max properties, you�ll probably want to set the slider�s tick
frequency so the ticks on the slider�s scale look appropriate for the new range (see

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\296-299.html (2 of 3) [3/14/2001 1:40:10 AM]

javascript:displayWindow('images/09-08.jpg',272,170)

�Adding Ticks to a Slider� in this chapter).

Setting Up Slider Groove Clicks

Besides dragging the knob along the groove in a slider, you can click the groove itself
to move the knob (just as you can click the area of a scroll bar between the thumb and
arrow buttons). The amount the knob moves each time the user clicks the groove is set
with the slider�s LargeChange property (just as it is in scroll bars). The default value
for this property is 5.

You can set the LargeChange property at design time or runtime. For example, here�s
how we set a slider�s LargeChange property to 5 when the form containing the slider
first loads:

Private Sub Form_Load()

 Slider1.Max = 255

 Slider1.Min = 0

 Slider1.LargeChange = 5

End Sub

If you change a slider�s range of possible values (in other words, the Min and Max
properties), keep in mind that you might also have to change the LargeChange
property as well. For example, if you change the possible range of slider values from
0 to 32767 to 1 to 100 but leave LargeChange at 4096, there�s going to be a problem
when the user clicks the slider�s groove.

TIP: Sliders also have a SmallChange property, but this seems to be one of the
mystery properties you run across occasionally in Visual Basic, because there just is
no way to use it in a slider. (Even looking it up in the Visual Basic documentation
reveals nothing�it�s undocumented, although it appears in the Properties window.)
When you click a slider�s groove, the slider moves by the LargeChange amount, but
there aren�t any arrow buttons in sliders to cause SmallChange events.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\296-299.html (3 of 3) [3/14/2001 1:40:10 AM]

Adding Ticks To A Slider

The Aesthetic Design Department is on the phone. The slider you�ve added to the
program looks good, but what�s that thick black bar underneath it? You explain that
sliders use tick marks to make it easier to move the knob to the approximate position
that the user wants. In this case, the slider�s possible values extend from 0 to 32767, and
you�ve just added a tick mark for each unit on that scale. That would give you 32,767
tick marks, they say. Right, you say. Maybe it�s time to reset the TickFrequency
property.

To set the number of tick marks in a slider�s scale, you actually set the distance between
ticks with the TickFrequency property. For example, if your slider�s scale goes from 0
to 100, a good value for the slider�s TickFrequency might be 10 (although this depends
on the slider�s width or height, of course�a TickFrequency of 5 might be better for a
long slider).

You can set this property at design time or runtime. For example, here�s how we set the
tick frequency in a slider to 10 units:

Private Sub Form_Load()

 Slider1.Max = 255

 Slider1.Min = 0

 Slider1.TickFrequency = 10

End Sub

The result of this code appears in Figure 9.9.

Figure 9.9 Setting tick frequency in a slider control.

TIP: To make the tick marks come out evenly spaced, you should set the
TickFrequency value so that the equation (Max - Min) / TickFrequency comes out to
be a whole number with no remainder. To find out how many ticks there are in a slider,
use its GetNumTicks() method.

Setting A Slider�s Tick Style

The Aesthetic Design Department is on the phone again. Your multimedia program is
great, but wouldn�t it be better if the sliders had tick marks on both sides? Well, you
think, is that possible?

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\299-303.html (1 of 5) [3/14/2001 1:40:30 AM]

javascript:displayWindow('images/09-09.jpg',272,170%20)
javascript:displayWindow('images/09-09.jpg',272,170)

It is. You can set a slider�s TickStyle property to sldBoth to place tick marks on both
sides of a slider. In fact, you can place ticks on one side, both sides, or no sides of a
slider. Here are the possible values of the TickStyle property:

" sldBottomRight�0; ticks on bottom or right only

" sldTopLeft�1; ticks on top or left only

" sldBoth�2; ticks on both sides

" sldNoTicks�3; no ticks

For example, we�ve set TickStyle to sldBoth in the slider that appears in Figure 9.10.

Figure 9.10 A slider with ticks on both sides.

You can also set the TickStyle property in code. Here, we set TickStyle to sldNoTicks
when a slider loads:

Private Sub Form_Load()

 Slider1.Max = 100

 Slider1.Min = 0

 Slider1.LargeChange = 5

 Slider1.TickFrequency = 10

 Slider1.TickStyle = sldNoTicks

End Sub

Getting A Slider�s Current Value

Now that you�ve added a new slider control to your program, how exactly can you
determine that control�s setting? As with scroll bars, you use the slider�s Value
property.

The Value property is the slider�s fundamental property. You can get or set the Value
property at design time or runtime. For example, here�s how we set a slider to a value of
125, halfway through its range of 0 to 250 (when you set a slider�s Value in code, the
knob in the slider moves to match):

Private Sub Form_Load()

 Slider1.Max = 250

 Slider1.Min = 0

 Slider1.LargeChange = 5

 Slider1.TickFrequency = 25

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\299-303.html (2 of 5) [3/14/2001 1:40:30 AM]

javascript:displayWindow('images/09-10.jpg',272,170%20)
javascript:displayWindow('images/09-10.jpg',272,170)

 Slider1.Value = 125

End Sub

To work with the Value property when the user moves the slider�s knob, see the next
two topics.

Handling Slider Events

You�ve added the new slider to your program, and it looks fine. But how do you
connect it to your code? How can you make sure that the slider events are handled
properly when the user uses it?

Like scroll bars, sliders have a Change event (and like scroll bars, they also have a
Scroll event to handle continuous changes�see the next topic in this chapter). You make
use of the Change event to catch the user�s slider actions.

An example will make this clearer; here, we set up a slider when the form loads, setting
its Min, Max, and other properties:

Private Sub Form_Load()

 Slider1.Max = 250

 Slider1.Min = 0

 Slider1.LargeChange = 5

 Slider1.TickFrequency = 25

End Sub

When the user is done moving the slider�s knob, a Change event occurs, which you can
catch in a Change event handler:

Private Sub Slider1_Change()

End Sub

For example, we can display the current setting of the slider in a text box this way,
using the slider�s Value property:

Private Sub Slider1_Change()

 Text1.Text = "Slider�s position: " & Str(Slider1.Value)

End Sub

The result of this code appears in Figure 9.11. When the user moves the slider�s knob,
the slider�s new setting appears in the text box. Now you�re handling slider events.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\299-303.html (3 of 5) [3/14/2001 1:40:30 AM]

Figure 9.11 Handling slider events.

Handling Continuous Slider Events

Although sliders have a Change event, the Scroll event might be a better choice when
working with a slider. The Change event only occurs when users complete their slider
actions, but Scroll events occur as users move the slider�s knob. In other words, the
Change event lets you know what happened, whereas the Scroll event lets you know
what�s happening.

Here�s an example. We set up a slider, Slider1, when the form containing that slider
loads, like this:

Private Sub Form_Load()

 Slider1.Max = 250

 Slider1.Min = 0

 Slider1.LargeChange = 5

 Slider1.TickFrequency = 25

End Sub

Then we can catch slider actions by setting up an event handler for the Scroll event:

Private Sub Slider1_Scroll()

End Sub

In this case, we�ll just display the slider�s new setting in a text box, Text1:

Private Sub Slider1_Scroll()

 Text1.Text = "Slider�s position: " & Str(Slider1.Value)

End Sub

Note that unlike code using the Change event, this code updates the text box with the
slider�s new setting as the slider moves.

TIP: Of course, the Scroll event is not appropriate for all cases. For example, if you
have an action that needs a firm setting before getting started, it might be better to use
the Change event. However, providing visual feedback to users as they move a slider
using Scroll can prove very useful.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\299-303.html (4 of 5) [3/14/2001 1:40:30 AM]

javascript:displayWindow('images/09-11.jpg',272,170%20)
javascript:displayWindow('images/09-11.jpg',272,170)

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\299-303.html (5 of 5) [3/14/2001 1:40:30 AM]

Handling Slider Selections

Using the Shift key, you can select a range of values in a slider. From the users� point of view, the
process goes like this: they move the slider�s knob to the beginning of the selection they want to
make in a slider and press the Shift key. Then they move the knob to the end of the range they
want to select and release the Shift key. When the Shift key is released, the selection appears in
the slider as a blue band.

This capability of sliders is useful when you want to specify a range�for example, you might want
to set the tolerable level of music volume to a certain range. To let a slider select a range, you
must first set the SelectRange property to True (when it�s False, the slider will not support range
selection). Here are the two properties you use when selecting ranges in sliders:

" SelLength returns or sets the length of a selected range in a slider control.

" SelStart returns or sets the start of a selected range in a slider control.

However, setting the range when the user uses the Shift key is up to you. Let�s see how that can
work in a simple example. We�ll need some way of determining if the Shift key is up or down in
this example, so we set up a form-wide Boolean variable, blnShiftUp, in the (General)
declarations area of the form:

Dim blnShiftUp As Boolean

And we set that variable to True when the form loads:

Private Sub Form_Load()

 Slider1.Max = 250

 Slider1.Min = 0

 Slider1.LargeChange = 5

 Slider1.TickFrequency = 25

 blnShiftUp = True

End Sub

When users move the knob to the beginning of the range they want to select and press the Shift
key, we can catch that in the KeyDown event handler for the slider; here, we check if the Shift
argument is 1, which means the Shift key is down:

Private Sub Slider1_KeyDown(KeyCode As Integer, Shift As Integer)

 If Shift = 1 And blnShiftUp Then

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\303-307.html (1 of 4) [3/14/2001 1:40:38 AM]

...

 End If

End Sub

(The Shift argument in KeyUp and KeyDown event handlers is a bit field, with the
least-significant bits corresponding to the Shift key [bit 0], the Ctrl key [bit 1], and the Alt key [bit
2]. These bits correspond to the values 1, 2, and 4, respectively.)

If the Shift key is down, we set the flag blnShiftUp to False; we set the start of the selection,
SelStart, to the current slider position; and we set the length of the selection, SelLength, to 0.
(Note that it�s necessary to set the length of the selection to 0 in case the user starts further
selections after finishing with the current one):

Private Sub Slider1_KeyDown(KeyCode As Integer, Shift As Integer)

 If Shift = 1 And blnShiftUp Then

 blnShiftUp = False

 Slider1.SelStart = Slider1.Value

 Slider1.SelLength = 0

 End If

End Sub

Now when a key goes up, we check to make sure the Shift key is up in the KeyUp event handler:

Private Sub Slider1_KeyUp(KeyCode As Integer, Shift As Integer)

 If Shift = 0 Then

...

 End If

End Sub

If the Shift key is indeed up, we set the Boolean flag blnShiftUp to True, place the selection
length in SelLength (note that we use the Visual Basic absolute value, Abs(), function here to find
the selection length, because the user may have moved the slider�s knob to a lower, not higher,
setting), and set the SelStart property to the current value of the slider if that value is less than the
current SelStart:

Private Sub Slider1_KeyUp(KeyCode As Integer, Shift As Integer)

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\303-307.html (2 of 4) [3/14/2001 1:40:38 AM]

 If Shift = 0 Then

 blnShiftUp = True

 Slider1.SelLength = Abs(Slider1.Value - Slider1.SelStart)

 If Slider1.Value < Slider1.SelStart Then

 Slider1.SelStart = Slider1.Value

 End If

...

Finally, we can display the length of the new selection in a text box this way:

Private Sub Slider1_KeyUp(KeyCode As Integer, Shift As Integer)

 If Shift = 0 Then

 blnShiftUp = True

 Slider1.SelLength = Abs(Slider1.Value - Slider1.SelStart)

 If Slider1.Value < Slider1.SelStart Then

 Slider1.SelStart = Slider1.Value

 End If

 Text1.Text = "Selection length: " & Str(Slider1.SelLength)

 End If

End Sub

And that�s it. When you run this program and make a selection with the slider, the length of that
selection appears in the text box, as in Figure 9.12.

Figure 9.12 Selecting a range in a slider.

Clearing A Selection In A Slider

Besides setting selections in sliders, you can also clear them with the ClearSel method. For
example, here�s how we might set up a selection in a slider when the form holding that slider
loads:

Private Sub Form_Load()

 Slider1.Max = 250

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\303-307.html (3 of 4) [3/14/2001 1:40:38 AM]

javascript:displayWindow('images/09-12.jpg',272,170%20)
javascript:displayWindow('images/09-12.jpg',272,170)

 Slider1.Min = 0

 Slider1.LargeChange = 5

 Slider1.TickFrequency = 25

 Slider1.SelStart = 30

 Slider1.SelLength = 10

End Sub

And here�s how we can clear that selection when the user clicks a command button:

Private Sub Command1_Click()

 Slider1.ClearSel

End Sub

That�s all there is to it.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\303-307.html (4 of 4) [3/14/2001 1:40:38 AM]

Creating An Updown Control

The testing department is on the phone again, with an issue about the Print dialog box
in your program, SuperDuperTextPro. Why is there a scroll bar next to the Number
Of Copies To Print box in the Print dialog box? Well, you say, that�s in case the user
wants to increment or decrement the number of copies to print. There�s a better
control than a scroll bar for that, they say�what about using an updown control?

What�s an updown control? It�s a control made up of two buttons next to each other,
and each button holds an arrow (each pointing away from the other button). You can
use an updown when values should be incremented and decremented, and you want to
give the user an easy way to do that.

Adding an updown control to a program is easy; just follow these steps:

1. Select the Project|Components menu item, and click the Controls tab in the
Components box that opens.

2. Select the Microsoft Windows Common Controls-2 item.

3. Close the Components box by clicking on OK.

4. The Updown tool appears in the toolbox at this point. Add an updown to your form
in the usual way.

5. Set the updown�s Orientation property as you want it: cc2OrientationVertical
(the default) or cc2OrientationHorizontal.

6. Set the updown�s Min and Max values as you want them.

7. Add the code you want to the updown�s event you want to work with (Change,
UpClick, or DownClick). For example, here we add code to report the setting of the
updown control in a text box when the user changes it in the updown�s Change event:

 Private Sub UpDown1_Change()

 Text1.Text = 'New setting: " & Str(UpDown1.Value)

 End Sub

The result of this code appears in Figure 9.13.

Figure 9.13 Using an updown control.

TIP: Updown controls can have buddy controls that are clicked when you click the

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\307-310.html (1 of 3) [3/14/2001 1:40:46 AM]

javascript:displayWindow('images/09-13.jpg',265,139%20)
javascript:displayWindow('images/09-13.jpg',265,139)

updown. To make a control an updown�s �buddy,� place that control�s name in the
updown�s BuddyControl property, and set the updown�s SyncBuddy property to
True. This will align the updown next to the buddy property; for example, if you make
an updown the buddy of a command button, that command button is clicked each time
the user clicks the updown�s up/right arrow. Or, you can increment or decrement a
value in a text box by making an updown the buddy of the text box, setting the
updown�s SyncBuddy property to True, and setting the updown�s Min and Max
properties to the minimum and maximum value you want the user to be able to
increment and decrement to in the text box.

Setting An Updown Control�s Minimum And Maximum

The default maximum value for an updown control is 10, and the default minimum is
0. How can you change those?

Just set the updown�s Max and Min properties as you want them. For example, here�s
how we set those properties in an updown when it loads:

Private Sub Form_Load()

 UpDown1.Min = 0

 UpDown1.Max = 100

End Sub

That�s all there is to it. To handle the updown control�s events, take a look at the next
topic.

Handling Updown Events

You�ve added an updown control to your program�but how do you connect it to your
code? There are three main events you can use: the Change event, the UpClick event,
and the DownClick event.

The Change event occurs when the user clicks either of the two buttons in the
updown. Here�s an example; we can report the new setting of an updown when the
user clicks a button by catching that action in a Change event handler:

Private Sub UpDown1_Change()

...

End Sub

We can display the updown�s new value in a text box, Text1, this way, using the
updown�s Value property:

Private Sub UpDown1_Change()

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\307-310.html (2 of 3) [3/14/2001 1:40:46 AM]

 Text1.Text = "New setting: " & Str(UpDown1.Value)

End Sub

Besides the Change event, you can also attach event handlers to the updown�s
UpClick and DownClick events to handle Up/Right button clicks and Down/Left
button clicks. Being able to work with the individual buttons this way makes the
updown a more versatile control.

Visual Basic 6 Black Book:Scroll Bars And Sliders

http://24.19.55.56:8080/temp/ch09\307-310.html (3 of 3) [3/14/2001 1:40:46 AM]

Chapter 10
Picture Boxes And Image Controls
If you need an immediate solution to:

Adding A Picture Box To A Form

Setting Or Getting The Picture In A Picture Box

Adjusting Picture Box Size To Contents

Aligning A Picture Box In A Form

Handling Picture Box Events (And Creating Image Maps)

Picture Box Animation

Grouping Other Controls In A Picture Box

Using A Picture Box In An MDI Form

Drawing Lines And Circles In A Picture Box

Using Image Lists With Picture Boxes

Adding Text To A Picture Box

Formatting Text In A Picture Box

Clearing A Picture Box

Accessing Individual Pixels In A Picture Box

Copying Pictures To And Pasting Pictures From The Clipboard

Stretching And Flipping Images In A Picture Box

Printing A Picture

Using Picture Box Handles

Setting Measurement Scales In A Picture Box

Saving Pictures To Disk

Adding An Image Control To A Form

Stretching An Image In An Image Control

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\311-316.html (1 of 4) [3/14/2001 1:41:14 AM]

In Depth

In this chapter, we�re going to take an in-depth look at two popular Visual Basic
controls: image controls and picture boxes. In fact, this will be our introduction to a
very popular Visual Basic topic, working with graphics, because picture boxes let you
do far more with images than just display them.

The two controls we�ll work with in this chapter appear in Figure 10.1. We�ll take a
closer look at these two controls now.

Figure 10.1 A picture box and an image control.

Image Controls

You use image controls to do just what the name implies: display images. This control
is a very simple one that doesn�t take up many program resources: it�s just there to
display (and stretch, if you wish) images. If that�s all you want to do, use an image
control. You load a picture into an image control�s Picture property (either at design
time or using LoadPicture() at runtime).

TIP: You should also know that if you just want to display a picture as a sort of
backdrop for your program, Form objects themselves have a Picture property that you
can load images into without the need for image controls or picture boxes.

Image controls are very accommodating�they resize themselves automatically to fit
the image you�re placing in them. On the other hand, if you don�t want the image
control to change size, set its Stretch property to True. Doing so means that the
image, not the control, will be resized when loaded to fit the control. Another
advantage of the image control over the picture box is that it repaints itself faster than
picture boxes. Image boxes can�t do a lot of things that picture boxes can do, however,
such as act as containers for other controls.

Both image controls and picture boxes are intrinsic controls in Visual Basic, which
means they appear in the toolbox when you start the program. The Image Control tool
is tenth down on the left in the toolbox in Figure 10.2.

Figure 10.2 The Image Control tool.

Picture Boxes

Picture boxes are more complete controls than image controls. Just as the rich text
control provides a sort of word-processor-in-a-control, so the picture box does for

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\311-316.html (2 of 4) [3/14/2001 1:41:14 AM]

javascript:displayWindow('images/10-01.jpg',317,237%20)
javascript:displayWindow('images/10-01.jpg',317,237)
javascript:displayWindow('images/10-02.jpg',376,561%20)
javascript:displayWindow('images/10-02.jpg',376,561)

graphics in Visual Basic. You can load images into a picture box, save images to disk,
draw with some rudimentary graphics methods, print images, work pixel-by-pixel, set
an image�s scale, and more. Besides graphics handling, the picture box can also act as
a container for other controls�and besides toolbars and status bars, it�s the only control
that can appear by itself in an MDI form.

As with image controls, you load pictures into a picture box�s Picture property, and
you can do that at design time or runtime (at runtime you use the LoadPicture()
method). When you load an image into a picture box, the picture box does not resize
itself by default to fit that image as the image control does�but it will if you set its
AutoSize property to True. The picture box has a 3D border by default, so it doesn�t
look like an image control�unless you set its BorderStyle property to 0 for no border
(instead of 1, the default). In other words, you can make a picture box look and
behave just like an image control if you wish, but keep in mind that picture boxes use
a lot more memory and processor time, so if you just want to display an image, stick
with image controls.

Like image controls, picture boxes are intrinsic controls in Visual Basic; the Picture
Box tool is at right in the first row of tools in Figure 10.3.

Figure 10.3 The Picture Box tool.

That�s all the overview we need for these two popular controls. It�s time to start
working with them directly in the Immediate Solutions.

Immediate Solutions

Adding A Picture Box To A Form

You�ve decided that you need a picture box in your program. How do you add one?
Adding a picture box is simple; just follow these steps:

1. Select the Picture Box tool in the toolbox, and double-click it to add a picture box
to your form, or click it once and draw the picture box where you want it on the form.

2. If you want the picture box to resize itself to fit the picture you�ll load into it, set its
AutoSize property to True. If you don�t want a border on the control, set its
BorderStyle property to None (0).

3. If you want the picture box�s contents to be refreshed when needed (for example,
in case another window obscuring the picture box is removed), set its AutoRedraw
property to True.

4. Load the image you want to display into the picture box using its Picture property.
Click that property in the Properties window and click the button with an ellipsis (...)
in it to open the Load Picture dialog box. At runtime, you can load a picture using
LoadPicture() like this:

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\311-316.html (3 of 4) [3/14/2001 1:41:14 AM]

javascript:displayWindow('images/10-03.jpg',376,561%20)
javascript:displayWindow('images/10-03.jpg',376,561)

Private Sub Command1_Click()

 Picture1.Picture = LoadPicture _

 ("c:\vbbb\picturesandimages\image.bmp")

End Sub

We�ve loaded an image into the picture box in Figure 10.4 following the preceding
steps. Now the picture box is ready to go. That�s all there is to it.

Figure 10.4 A picture box in a form.

Setting Or Getting The Picture In A Picture Box

You�ve added a new picture box to your form, and it looks fine�except for one thing: it
�s completely blank. How do you add images to a picture box again?

You use the Picture property. A picture box is very versatile and can display images
from bitmap (.bmp), icon (.ico), metafile (.wmf), JPEG (.jpg), or GIF (.gif) files�just
load the file�s name into the Picture property.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\311-316.html (4 of 4) [3/14/2001 1:41:14 AM]

javascript:displayWindow('images/10-04.jpg',317,202%20)
javascript:displayWindow('images/10-04.jpg',317,202)

At design time, click that property in the Properties window and click the button with an ellipsis (...) in it to
open the Load Picture dialog box. Specify the file you want to load into the picture box, and click on OK.

At runtime, you can use LoadPicture() to load in a picture like this, where we load in an image when the
user clicks a command button:

Private Sub Command1_Click()

 Picture1.Picture = LoadPicture("c:\vbbb\picturesandimages\image.bmp")

End Sub

TIP: Besides LoadPicture(), Visual Basic also supports LoadResPicture(), which lets you load pictures
from resource files. Using LoadResPicture() is useful for localizing a Visual Basic application�the resources
are isolated in one resource file, and there is no need to access the source code or recompile the application.

If you want to get the picture in a picture box, you also use the Picture property. For example, here we copy
the picture from Picture1 to Picture2 when the user clicks a command button:

Private Sub Command1_Click()

 Picture2.Picture = Picture1.Picture

End Sub

The Picture property is very useful in Visual Basic because it provides such an easy way of handling
images, as you can see in the preceding two code snippets. With the Picture property, you can store images
and transfer them between controls.

Besides the Picture property, picture boxes also have an Image property. The Image property is actually the
handle to the image�s bitmap in the picture box and as such is very useful when working with Windows calls
directly. You can also assign images from an Image property to a Picture property like this:

Private Sub Command1_Click()

 Picture2.Picture = Picture1.Image

End Sub

Adjusting Picture Box Size To Contents

You�ve displayed the image of the company�s Illustrious Founder in a picture box in your new program�but
the picture box was a little small, and you can only see most of the I.F.�s forehead. There�s some email
waiting for you from the president�s office, and you think you know what it says. How can you make sure
picture boxes readjust themselves to fit the picture they�re displaying?

When you load a picture into a picture control, it does not readjust itself to fit the picture (although image
controls do)�at least, not by default. Picture boxes will resize themselves to fit their contents if you set their

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\316-319.html (1 of 3) [3/14/2001 1:41:24 AM]

AutoSize properties to True. If AutoSize is set to True, you don�t have to worry about resizing the picture
box, even if you load images into the picture box at runtime. This saves a lot of fiddling with the picture box
�s Left, Top, Width, and Height properties.

Aligning A Picture Box In A Form

Picture boxes are special controls in that they can contain other controls (in Visual Basic terms, picture
boxes are container controls). In fact, if you place option buttons inside a picture box (just draw them inside
the picture box), those option buttons act together as a group.

Besides grouping option buttons together, the original idea here was to provide Visual Basic programmers a
(rather rudimentary) way of creating toolbars and status bars in their programs. That�s been superceded now
by the toolbar and status bar controls, of course.

To let you create toolbars or status bars, picture boxes have an Align property. You use this property to place
the picture box at top, bottom, or on a side of a form. Here are the possible values for Align:

" 0�Align none

" 2�Align bottom

" 3�Align left

" 4�Align right

For example, we�ve aligned the picture box in Figure 10.5 to the top of the form, giving it a few buttons, and
we�ve set its BackColor property to deep blue to make a rudimentary toolbar.

Figure 10.5 Creating a toolbar with an aligned picture box.

Handling Picture Box Events (And Creating Image Maps)

The New Products Department is on the phone; they want you to design a program to welcome new
employees to the company. The program should display a picture of the main plant, and when the new
employee clicks part of that image, �it should sort of zoom in on it.� Can you do something like that in Visual
Basic?

Responding to targeted mouse clicks in an image means creating an image map, and you can create one with
a picture box. Picture boxes have Click events (and even DblClick events), of course, but Click event
handlers only tell you that the picture box was clicked, not where it was clicked:

Private Sub Picture1_Click()

End Sub

The Click event is useful if you want to use picture boxes as sort of image-bearing buttons (although buttons
can also display images now). However, if you want to know where in a picture box the user clicked the
mouse, use MouseDown. (Besides the full range of mouse events, picture boxes also support key events like

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\316-319.html (2 of 3) [3/14/2001 1:41:24 AM]

javascript:displayWindow('images/10-05.jpg',346,202%20)
javascript:displayWindow('images/10-05.jpg',346,202)

KeyDown, KeyPress, and so on.)

Creating An Image Map

Here�s an example where we create an image map. We�ll need to know the exact locations of the various
hotspots in the image that do something when clicked, and it�s easy to find their dimensions and location by
using a simple graphics program like the Windows Paint program.

Note, however, that programs like Windows Paint will measure your image in pixels, and if you want to use
pixel measurements, not twips, you must set the picture box�s ScaleMode property to vbPixels, like this:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

End Sub

We�ll use the image you see in the picture box in Figure 10.6 as our image map and report to users when they
click either word, �Picture� or �Box�.

Figure 10.6 Creating an image map with a picture box.

In the MouseDown event handler, we�re passed the location of the mouse click as (X, Y), and we check to
see if the mouse went down on either word in the image:

Private Sub Picture1_MouseDown(Button As Integer, Shift As Integer, _

 X As Single, Y As Single)

 If X>16 And X<83 And Y>11 And Y<36 Then

...

 End If

 If X>83 And X<125 And Y>11 And Y<36 Then

...

 End If

End Sub

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\316-319.html (3 of 3) [3/14/2001 1:41:24 AM]

javascript:displayWindow('images/10-06.jpg',362,322%20)
javascript:displayWindow('images/10-06.jpg',362,322)

If the user did click one or the other word, we can report that to the user this way:

Private Sub Picture1_MouseDown(Button As Integer, Shift As Integer, _

 X As Single, Y As Single)

 If X>16 And X<83 And Y>11 And Y<36 Then

 MsgBox "You clicked the word ""Picture"""

 End If

 If X>83 And X<125 And Y>11 And Y<36 Then

 MsgBox "You clicked the word ""Box"""

 End If

End Sub

The result appears in Figure 10.6�now we�re creating image maps in Visual Basic.

One more note here�image controls also have MouseDown events, so if you�re just creating an image
map, you should consider an image control because they use far fewer system resources.

TIP: Other picture box events that can be useful include the Resize, Change, and Paint events.

Picture Box Animation

One easy way to support graphics animation in Visual Basic is to use a picture box. For example, you
may have a control array of picture boxes, only one of which is visible at any one time. You can then
make the others appear (at the same location) by setting the first picture box�s Visible property to
False, the next one�s Visible property to True, and so on, cycling through the picture boxes.

That method is very wasteful of memory, however; if you�re going to use picture boxes to support
animation, a better idea is to use one picture box and keep changing its Picture property to display
successive frames of an animation. You can store the images themselves in an image list control.

To add an image list control, follow these steps:

1. Select the Project|Components menu item.

2. Select the Controls tab in the Components box.

3. Select the Microsoft Windows Common Controls item in the Components box and click on OK to
close that box.

4. Add a new image list control to your program using the Image List tool in the toolbox.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\319-323.html (1 of 4) [3/14/2001 1:41:34 AM]

5. Right-click the new image list control and select the Properties item in the menu that opens.

6. Click the Images tab in the Property Pages box that opens, and load the images you want to use in
the image list using the Insert Picture button.

7. Close the Property Pages box by clicking on OK.

All that remains is to add the code you need. For example, here we�ve added a timer control, Timer1,
to the program, set its Enabled property to False, and set its Interval property to 1000 (the Interval
property is measured in milliseconds, 1/1000s of a second), which means the Timer1_Timer() event
handler will be called once a second.

For the purposes of this example, we will just switch back and forth between two images in the picture
box. These two images are the first two images in an image list, ImageList1. To switch back and forth,
we use a static Boolean flag named blnImage1 like this (for more information on using image lists, see
Chapter 16):

Private Sub Timer1_Timer()

 Static blnImage1 As Boolean

 If blnImage1 Then

 Picture1.Picture = ImageList1.ListImages(1).Picture

 Else

 Picture1.Picture = ImageList1.ListImages(2).Picture

 End If

...

At the end of Timer1_Timer(), we toggle the blnImage1 flag this way:

Private Sub Timer1_Timer()

 Static blnImage1 As Boolean

 If blnImage1 Then

 Picture1.Picture = ImageList1.ListImages(1).Picture

 Else

 Picture1.Picture = ImageList1.ListImages(2).Picture

 End If

 blnImage1 = Not blnImage1

End Sub

And that�s all we need�now we�re supporting a rudimentary animation using picture boxes.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\319-323.html (2 of 4) [3/14/2001 1:41:34 AM]

Grouping Other Controls In A Picture Box

The Aesthetic Design Department is on the phone again. They like the new option buttons you�ve
added to your program, but wouldn�t it be nice if you could display pictures behind each group of
option buttons?

You can do that with picture boxes. Picture boxes are container controls, which means they can contain
other controls. You usually use this capability to group option buttons together, because those controls
work as a group (you can also group option buttons together by form or frame control).

The important thing here is to make sure that you paint the option buttons in the target picture box; don
�t just double-click the Option Button tool. Only when an option button is drawn entirely inside a
picture box from the start is it associated with that picture box.

For example, we�ve added nine option buttons to two picture boxes in the form in Figure 10.7. As you
can see in that figure, we can click option buttons in the two groups independently�they function as
separate groups.

Figure 10.7 Grouping option buttons with picture boxes.

Picture boxes can also contain other controls, of course, like command buttons (see �Aligning A
Picture Box In A Form� earlier in this chapter to see how to create rudimentary toolbars and status bars
this way) or checkboxes.

Using A Picture Box In An MDI Form

Another special use of picture boxes is to draw toolbars or status bars in an MDI form. This method
has been superceded by the toolbar and status bar controls, but it used to be the way you could add
those items to MDI forms.

For example, to add a Picture Box toolbar to an MDI form (only controls that support the Align
property may be added to MDI forms), you just draw that control in the MDI form. Visual Basic will
align the picture box with the top of the client area of the MDI form by default, but you can align it at
bottom or on either side as well. Here are the possible values for the picture box�s Align property:

" 0�Align none

" 1�Align top

" 2�Align bottom

" 3�Align left

" 4�Align right

As an example, we�ve added a picture box to the MDI form in Figure 10.8 and placed a few command
buttons in that picture box to create a rudimentary toolbar. As you can see in that figure, the MDI form
draws a border at the bottom of the new toolbar automatically.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\319-323.html (3 of 4) [3/14/2001 1:41:34 AM]

javascript:displayWindow('images/10-07.jpg',336,203%20)
javascript:displayWindow('images/10-07.jpg',336,203)

Figure 10.8 Using a picture box to create a toolbar in an MDI form.

Although this used to be the way to create toolbars and status bars in MDI forms, it�s now better to use
the controls specifically designed for this purpose, the toolbar and status bar controls.

Drawing Lines And Circles In A Picture Box

The Testing Department is on the phone again. The new picture box-based image map you�ve put in
your program is terrific, but can you draw a box around the hotspots in the map as the user clicks
them? That would make things much clearer.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\319-323.html (4 of 4) [3/14/2001 1:41:34 AM]

javascript:displayWindow('images/10-08.jpg',317,237%20)
javascript:displayWindow('images/10-08.jpg',317,237)

Visual Basic can help out here because picture boxes give you some rudimentary graphics-drawing
capabilities that you can make use of in code. In particular, you can draw lines and circles, and set points
to particular colors in picture boxes using the following methods (note, by the way, that you can also use
all the following methods with forms as well as picture boxes).

Some of the following methods make use of CurrentX and CurrentY; these are properties that you can
set in a picture box. For example, if you omit the first set of coordinates when using the Line() method,
Visual Basic draws the line from the location (CurrentX, CurrentY).

You may want to specify measurements to the graphics methods using pixels, not the default twips, and
you can change the measurements in a picture box to pixels by setting its ScaleMode property this way:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

End Sub

We�ll start working with the drawing methods of picture boxes now, starting with the Circle() method.

Drawing Circles

You use the Circle() method to draw circles:

PictureBox.Circle [Step] (x, y), radius, [color, start, end, aspect]

Here are the arguments you pass to Circle():

" Step�Keyword specifying that the center of the circle, ellipse, or arc is relative to the current
coordinates given by the CurrentX and CurrentY properties of object.

" x, y�Single values indicating the coordinates for the center point of the circle, ellipse, or arc. The
ScaleMode property of object determines the units of measure used.

" radius�Single value indicating the radius of the circle, ellipse, or arc. The ScaleMode property of
object determines the unit of measure used.

" color�Long integer value indicating the RGB color of the circle�s outline. If omitted, the value of the
ForeColor property is used. You can use the RGB function or QBColor function to specify the color.

" start, end�Single-precision values. When an arc or a partial circle or ellipse is drawn, start and end
specify (in radians) the beginning and end positions of the arc. The range for both is �2 pi radians to 2 pi
radians. The default value for start is 0 radians; the default for end is 2 * pi radians.

" aspect�Single-precision value indicating the aspect ratio of the circle. The default value is 1.0, which
yields a perfect (nonelliptical) circle on any screen.

As an example, we draw a circle in a picture box with this code:

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\323-326.html (1 of 3) [3/14/2001 1:41:46 AM]

Private Sub Command1_Click()

 Picture1.Circle (80, 70), 50

End Sub

The result of this code appears in Figure 10.9. If there were an image already in the picture box, the
circle would appear drawn on top of it.

Figure 10.9 Drawing a circle in a picture box.

Drawing Lines

You use the Line() method to draw lines:

PictureBox.Line [Step] (x1, y 1) [Step] (x2, y2), [color], [B][F]

Here are the arguments you pass to Line():

" Step�Keyword specifying that the starting point coordinates are relative to the current graphics
position given by the CurrentX and CurrentY properties.

" x1, y1�Single values indicating the coordinates of the starting point for the line or rectangle. The
ScaleMode property determines the unit of measure used. If omitted, the line begins at the position
indicated by CurrentX and CurrentY.

" Step�Keyword specifying that the end-point coordinates are relative to the line starting point.

" x2, y2�Single values indicating the coordinates of the end point for the line being drawn.

" color�Long integer value indicating the RGB color used to draw the line. If omitted, the ForeColor
property setting is used. You can use the RGB function or QBColor function to specify the color.

" B�If included, causes a box to be drawn using the coordinates to specify opposite corners of the box.

" F�If the B option is used, the F option specifies that the box is filled with the same color used to draw
the box. You cannot use F without B. If B is used without F, the box is filled with the current FillColor
and FillStyle. The default value for FillStyle is transparent.

Setting Points

You use PSet() to set points in a picture box:

PictureBox.PSet [Step] (x, y), [color]

Here are the arguments you pass to PSet():

" Step�Keyword specifying that the coordinates are relative to the current graphics position given by
the CurrentX and CurrentY properties.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\323-326.html (2 of 3) [3/14/2001 1:41:46 AM]

javascript:displayWindow('images/10-09.jpg',336,223%20)
javascript:displayWindow('images/10-09.jpg',336,223)

" x, y�Single values indicating the horizontal (x-axis) and vertical (y-axis) coordinates of the point to
set.

" color�Long integer value indicating the RGB color specified for point. If omitted, the current
ForeColor property setting is used. You can use the RGB function or QBColor function to specify the
color.

TIP: In a picture box, you set the color of figures with the ForeColor property and the fill color with
the FillColor property.

TIP: If you want your images to persist (in other words, be redrawn automatically when needed), set
the picture box�s AutoRedraw property to True.

Using Image Lists With Picture Boxes

When handling images, it�s often useful to use image lists. An image list is an invisible control whose
only purpose is to hold images. A common thing to do is to load images into an image list and then
when they�re all loaded (and stored in memory, not on the disk), place them rapidly into picture boxes as
needed.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\323-326.html (3 of 3) [3/14/2001 1:41:46 AM]

We�ll see how to use an image list with picture boxes here. To add an image list control to a program, just
follow these steps:

1. Select the Project|Components menu item.

2. Select the Controls tab in the Components box.

3. Select the Microsoft Windows Common Controls item in the Components box and click on OK to close that
box.

4. Add a new image list control to your program using the Image List tool in the toolbox.

5. Right-click the new image list control, and select the Properties item in the menu that opens.

6. Click the Images tab in the Property Pages box that opens, and load the images you want to use in the image
list using the Insert Picture button.

7. Close the Property Pages box by clicking on OK.

Now you�re free to load images from the image list into a picture box. To reach the actual images, you can use
the image lists� ListImages array of ImageList objects; there�s one such object for each image in the image list,
and you can reach it with the image list�s Picture property.

For example, here�s how we load Image 1 (image lists are 1-based, not 0-based) into Picture1 when the user
clicks Command1, Image 2 when the user clicks Command2, and Image 3 when the user clicks Command3:

Private Sub Command1_Click()

 Picture1.Picture = ImageList1.ListImages(1).Picture

End Sub

Private Sub Command2_Click()

 Picture1.Picture = ImageList1.ListImages(2).Picture

End Sub

Private Sub Command3_Click()

 Picture1.Picture = ImageList1.ListImages(3).Picture

End Sub

Loading all your images into memory and storing them with an image list can be a valuable asset when working
with multiple images and picture boxes this way.

Adding Text To A Picture Box

Besides drawing figures, picture boxes support drawing text as well. This can come in very handy to label the
parts of a figure in a picture box.

You draw text in a picture box with its Print method, passing that method the text you want to print. Where
does that text appear? It appears at the location set by the picture box�s CurrentX and CurrentY properties�that
is, at (CurrentX, CurrentY) in the picture box (with respect to the upper left corner of the picture box).

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\326-331.html (1 of 4) [3/14/2001 1:41:56 AM]

Keep in mind that picture boxes use twips (1/1440s of an inch) as their default measurement unit. You can
change that to, say, pixels by setting the picture box�s ScaleMode property to vbPixels:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

...

Then we can specify an absolute location at which to display text:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

 Picture1.CurrentX = 25

 Picture1.CurrentY = 20

...

Finally, we print the text in the picture box with the Print method; here, we just print the text �Text in a picture
box!�:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

 Picture1.CurrentX = 25

 Picture1.CurrentY = 20

 Picture1.Print ("Text in a picture box!")

End Sub

Make sure the picture box�s AutoRedraw property is set to True, which it needs to be for the picture box to
display text. The results of the preceding code appear in Figure 10.10. Now we�re displaying text in picture
boxes.

Figure 10.10 Printing text in a picture box.

Formatting Text In A Picture Box

The Aesthetic Design Department is calling. The text your program uses to label images in picture boxes is fine,
but how about making it, say, bold and italic to emphasize what�s going on? You think, can you do that?

Yes, you can. You can format text in a picture box using the FontBold, FontItalic, FontStrikethru, and
FontUnderline properties. Each of those properties does just what it says: when you set a property to True, that
property applies the next time you use the Print method in the picture box.

You can also format the placement of text using the CurrentX and CurrentY properties; setting these
properties sets the location where text will next appear when you use the Print method. In addition, you can
determine the height and width of a string of text with the TextHeight and TextWidth methods.

Here�s an example. First, set the picture box�s AutoRedraw property to True, which you need to display text.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\326-331.html (2 of 4) [3/14/2001 1:41:56 AM]

javascript:displayWindow('images/10-10.jpg',317,197%20)
javascript:displayWindow('images/10-10.jpg',317,197)

Next, we set the measurement units in a picture box to pixels, set the CurrentX and CurrentY properties, and
print a plain string of text:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

 Picture1.CurrentX = 25

 Picture1.CurrentY = 20

 Picture1.Print ("Text in a picture box!")

...

Next, we skip to the next line using TextHeight(), set FontUnderline to True, and print some underlined text:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

 Picture1.CurrentX = 25

 Picture1.CurrentY = 20

 Picture1.Print ("Text in a picture box!")

 Picture1.CurrentX = 25

 Picture1.CurrentY = Picture1.CurrentY + Picture1.TextHeight("ABCDEFG")

 Picture1.FontUnderline = True

 Picture1.Print ("Underlined text.")

...

Finally, we set FontBold to True as well, skip to the next line, and print bold underlined text:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

 Picture1.CurrentX = 25

 Picture1.CurrentY = 20

 Picture1.Print ("Text in a picture box!")

 Picture1.CurrentX = 25

 Picture1.CurrentY = Picture1.CurrentY + Picture1.TextHeight("ABCDEFG")

 Picture1.FontUnderline = True

 Picture1.Print ("Underlined text.")

 Picture1.CurrentX = 25

 Picture1.CurrentY = Picture1.CurrentY + Picture1.TextHeight("ABCDEFG")

 Picture1.FontBold = True

 Picture1.Print ("Bold underlined text.")

End Sub

Running this code yields the result shown in Figure 10.11, where the picture box displays formatted text. It�s no

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\326-331.html (3 of 4) [3/14/2001 1:41:56 AM]

rich text box, but you can use the text capabilities of a picture box to display labels and call-outs for graphics.

Figure 10.11 Formatting text in a picture box.

Clearing A Picture Box

How can you clear the current image in a picture box and start over? You use the Cls method. Here�s an
example that clears a picture box when the user clicks a command button:

Private Sub Command1_Click()

 Picture1.Cls

End Sub

TIP: The name Cls comes from the original DOS days, when it stood for �clear screen.� That command was
adopted in Microsoft Basic, and from there became a part of Visual Basic, even though it�s no longer intended
to clear the screen.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\326-331.html (4 of 4) [3/14/2001 1:41:56 AM]

javascript:displayWindow('images/10-11.jpg',317,197%20)
javascript:displayWindow('images/10-11.jpg',317,197)

Accessing Individual Pixels In A Picture Box

The Testing Department is calling. Wouldn�t it be better to let users select new colors in your
SuperDuperTextPro program by just clicking the new color they want in a picture box instead of asking
them to type in new color values? Hmm, you think, how do you do that?

You can use the Point method to determine the color of a pixel in a picture box. This method returns the
red, green, and blue colors in one Long integer.

Let�s see an example to make this clear. Here, we�ll let the user click one picture box, Picture1, to set the
color in another, Picture2, using the MouseDown event:

Private Sub Picture1_MouseDown(Button As Integer, Shift As Integer, _

 X As Single, Y As Single)

End Sub

When the user clicks a pixel in Picture1, we�ll set the background color of Picture2 to the same color,
and we get that color using the Point method:

Private Sub Picture1_MouseDown(Button As Integer, Shift As Integer, _

 X As Single, Y As Single)

 Picture2.BackColor = Picture1.Point(X, Y)

End Sub

The result of this code appears in Figure 10.12. When the user clicks a point in the top picture box, the
program sets the background color of the bottom picture box to the same color.

Figure 10.12 Using the Point method to get a point�s color.

TIP: Besides getting a pixel with the Point method, you can also set individual pixels with the PSet
method. See �Drawing Lines And Circles In A Picture Box� earlier in this chapter.

Copying Pictures To And Pasting Pictures From The Clipboard

The users love your new graphics program, SuperDuperGraphics4U, but would like to export the images
they create to other programs. How can you do that?

You can copy the images to the Clipboard, letting the user paste them into other programs. To place data

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\331-334.html (1 of 3) [3/14/2001 1:42:12 AM]

javascript:displayWindow('images/10-12.jpg',317,197%20)
javascript:displayWindow('images/10-12.jpg',317,197)

in the Clipboard, you use SetData(), and to retrieve data from the Clipboard, you use GetData().

An example will make this clearer. Here, we�ll paste a picture from Picture1 to Picture2 using two
buttons: Command1 and Command2. When users click Command1, we�ll copy the picture from
Picture1 to the Clipboard; when they click Command2, we�ll paste the picture to Picture2.

To place the image in Picture1 into the Clipboard, we use SetData():

Clipboard.SetData data, [format]

Here are the possible values for the format parameter for images:

" vbCFBitmap�2; bitmap (.bmp) file

" vbCFMetafile�3; metafile (.wmf) file

" vbCFDIB�8; device-independent bitmap (.dib) file

" vbCFPalette�9; color palette

If you omit the format parameter, Visual Basic will determine the correct format, so we�ll just copy the
picture from Picture1.Picture to the Clipboard this way:

Private Sub Command1_Click()

 Clipboard.SetData Picture1.Picture

End Sub

To paste the picture, use GetData():

Clipboard.GetData ([format])

The format parameter here is the same as for SetData(), and as before, if you don�t specify the format,
Visual Basic will determine it. So when the user clicks the second button, we paste the image into
Picture2 this way:

Private Sub Command2_Click()

 Picture2.Picture = Clipboard.GetData()

End Sub

That�s all it takes. When you run the program and click the Copy and then the Paste button, the image is
copied to the Clipboard and then pasted into the second picture box, as shown in Figure 10.13. The
program is a success. Now we�re using the Clipboard with picture boxes.

Figure 10.13 Copying a picture to and pasting it from the Clipboard.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\331-334.html (2 of 3) [3/14/2001 1:42:12 AM]

javascript:displayWindow('images/10-13.jpg',317,197%20)
javascript:displayWindow('images/10-13.jpg',317,197)

Stretching And Flipping Images In A Picture Box

You can gain a lot more control over how images are displayed in picture boxes using the PaintPicture
method:

PictureBox.PaintPicture picture, x1, y1, [width1, height1, [x2, y2, _

 [width2, height2, [opcode]]]]

Using this method, you can stretch or flip images in a picture box. Here�s what the arguments passed to
PaintPicture mean:

" picture�The source of the graphic to be drawn onto the object; should be a Picture property.

" x1, y1�Single-precision values indicating the destination coordinates (x-axis and y-axis) on the object
for the picture to be drawn. The ScaleMode property of the object determines the unit of measure used.

" width1�Single-precision value indicating the destination width of the picture. The ScaleMode property
of the object determines the unit of measure used. If the destination width is larger or smaller than the
source width (width2), the picture is stretched or compressed to fit. If omitted, the source width is used.

" height1�Single-precision value indicating the destination height of the picture. The ScaleMode property
of the object determines the unit of measure used. If the destination height is larger or smaller than the
source height (height2), the picture is stretched or compressed to fit. If omitted, the source height is used.

" x2, y2�Single-precision values indicating the coordinates (x-axis and y-axis) of a clipping region within
the picture. The ScaleMode property of the object determines the unit of measure used. If omitted, 0 is
assumed.

" width2�Single-precision value indicating the source width of a clipping region within the picture. The
ScaleMode property of the object determines the unit of measure used. If omitted, the entire source width
is used.

" height2�Single-precision value indicating the source height of a clipping region within the picture. The
ScaleMode property of the object determines the unit of measure used. If omitted, the entire source height
is used.

" opcode�Long value or code that is used only with bitmaps. It defines a bit-wise operation (such as
vbMergeCopy) that is performed on the picture as it is drawn on the object.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\331-334.html (3 of 3) [3/14/2001 1:42:12 AM]

You can flip a bitmap horizontally or vertically by using negative values for the destination height
(height1) and/or the destination width (width1). For example, here�s how we flip the image in Picture1
horizontally and display it in Picture2 (keep in mind that to draw from the Form_Load event, you
have to set the form�s AutoRedraw property to True):

Private Sub Form_Load()

 Picture2.PaintPicture Picture1.Picture, Picture1.ScaleWidth, 0, _

 -1 * Picture1.ScaleWidth, Picture1.ScaleHeight

 Picture2.Height = Picture1.Height

End Sub

The results of the preceding code appear in Figure 10.14. Now we�re flipping images in picture boxes.

Figure 10.14 Flipping an image in a picture box.

Printing A Picture

Can you print the image in a picture box out on the printer? You sure can, using the PaintPicture
method. To print on the printer, you just use the Visual Basic Printer object this way with
PaintPicture:

Printer.PaintPicture picture, x1, y1, [width1, height1, [x2, y2, _

 [width2, height2, [opcode]]]]

Here�s what the arguments passed to PaintPicture mean:

" picture�The source of the graphic to be drawn onto the object (for example, Picture1.Picture).

" x1, y1�Single-precision values indicating the destination coordinates (x-axis and y-axis) on the
object for the picture to be drawn. The ScaleMode property of the object determines the unit of
measure used.

" width1�Single-precision value indicating the destination width of the picture. The ScaleMode
property of the object determines the unit of measure used. If the destination width is larger or smaller
than the source width (width2), the picture is stretched or compressed to fit. If omitted, the source
width is used.

" height1�Single-precision value indicating the destination height of the picture. The ScaleMode
property of the object determines the unit of measure used. If the destination height is larger or smaller
than the source height (height2), the picture is stretched or compressed to fit. If omitted, the source
height is used.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\334-337.html (1 of 4) [3/14/2001 1:42:23 AM]

javascript:displayWindow('images/10-14.jpg',317,197%20)
javascript:displayWindow('images/10-14.jpg',317,197)

" x2, y2�Single-precision values indicating the coordinates (x-axis and y-axis) of a clipping region
within the picture (drawing operations outside the clipping region are ignored). The ScaleMode
property of the object determines the unit of measure used. If omitted, 0 is assumed.

" width2�Single-precision value indicating the source width of a clipping region within the picture.
The ScaleMode property of the object determines the unit of measure used. If omitted, the entire
source width is used.

" height2�Single-precision value indicating the source height of a clipping region within the picture.
The ScaleMode property of the object determines the unit of measure used. If omitted, the entire
source height is used.

" opcode�Long value or code that is used only with bitmaps. It defines a bit-wise operation (such as
vbMergeCopy) that is performed on the picture as it is drawn on the object.

For example, here�s how to print the picture in Picture1 on the printer:

Private Sub Command1_Click()

 Printer.PaintPicture Picture1.Picture, 0, 0

End Sub

That�s all there is to it�the PaintPicture method is extraordinarily powerful. Note that before printing a
picture, you may want to display a Print dialog box (see the next chapter).

Using Picture Box Handles

You can gain even more control over what�s going on in a picture box by using the various Windows
handles available for that control together with direct Windows API calls. Here are the picture box
handle properties:

" hDC�Handle to the picture box�s device context

" hWnd�Handle to the picture box�s window

" Image�Handle to the picture box�s bitmap

" Handle�Different handle types depending on the picture�s Type property (for example,
Picture1.Picture.Type) as follows:

" Type = 1�An HBITMAP handle

" Type = 2�An HMETAFILE handle

" Type = 3�An HICON or an HCURSOR handle

" Type = 4�An HENHMETAFILE handle

For example, here we use the hDC property of a picture box to create a compatible bitmap and device
context matching the picture box, using the Windows API functions CreateCompatibleDC() and

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\334-337.html (2 of 4) [3/14/2001 1:42:23 AM]

CreateCompatibleBitmap() (these and all Windows API functions must also be declared in the
program, as we�ll see in Chapter 23):

Private Sub Form_Load()

 Picture1.Picture = LoadPicture("image.bmp")

 Dim dcMemory As Long

 Dim hMemoryBitmap As Long

 dcMemory = CreateCompatibleDC(Picture1.hdc)

 hMemoryBitmap = CreateCompatibleBitmap(Picture1.hdc, 60, 30)

End Sub

Setting Measurement Scales In A Picture Box

Picture boxes have a number of scale properties, and perhaps the most popular one is ScaleMode,
which sets the units of measurement in a picture box. Here are the possible values for ScaleMode (note
that when you set the scale mode of a picture box, all measurements are in those new units, including
coordinates passed to your program, like mouse-down locations):

" vbUser�0; indicates that one or more of the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties are set to custom values

" vbTwips�1(the default); Twip (1440 twips per logical inch; 567 twips per logical centimeter)

" vbPoints�2; point (72 points per logical inch)

" vbPixels�3; pixel (smallest unit of monitor or printer resolution)

" vbCharacters�4; character (horizontal equals 120 twips per unit; vertical equals 240 twips per unit)

" vbInches�5; inch

" vbMillimeters�6; millimeter

" vbCentimeters�7; centimeter

" vbHimetric�8; hiMetric

" vbContainerPosition�9; units used by the control�s container to determine the control�s position

" vbContainerSize�10; units used by the control�s container to determine the control�s size

For example, in our image map example, we set the scale mode to pixels:

Private Sub Form_Load()

 Picture1.ScaleMode = vbPixels

End Sub

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\334-337.html (3 of 4) [3/14/2001 1:42:23 AM]

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\334-337.html (4 of 4) [3/14/2001 1:42:23 AM]

Then we could use pixel dimensions in the MouseDown event:

Private Sub Picture1_MouseDown(Button As Integer, Shift As Integer, X As _

 Single, Y As Single)

 If X > 16 And X < 83 And Y > 11 And Y < 36 Then

 MsgBox "You clicked the word ""Picture"""

 End If

 If X > 83 And X < 125 And Y > 11 And Y < 36 Then

 MsgBox "You clicked the word ""Box"""

 End If

End Sub

If you set the scale mode to vbUser, you can define your own units by setting the dimensions of the picture
box using the ScaleLeft, ScaleTop, ScaleWidth, and ScaleHeight properties. This can be very useful if you
�re plotting points and want to use a picture box as a graph.

TIP: The ScaleWidth and ScaleHeight properties of a picture box hold the image�s actual dimensions (in
units determined by the ScaleMode property), not the Width and Height properties, which hold the control�s
width and height (including the border).

Saving Pictures To Disk

We already know you can load pictures into a picture box with the LoadPicture function. Can you save them
to disk?

Yes, you can, using SavePicture. Here�s how that statement works:

SavePicture picture, stringexpression

Here�s what the parameters for SavePicture mean:

" picture�Picture or image control from which the graphics file is to be created

" stringexpression�File name of the graphics file to save

SavePicture only saves images in BMP, WMF, and ICO formats (depending on the file type the image came
from originally); if the image came from a GIF or JPEG file, it�s saved in BMP format. Graphics in an Image
property are always saved as bitmap (.bmp) files no matter what their original format.

Here�s an example where we save the image from Picture1 to a file, C:\image.bmp, when the user clicks a
button:

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\337-340.html (1 of 3) [3/14/2001 1:42:34 AM]

Private Sub Command1_Click()

 SavePicture Picture1.Picture, "c:\image.bmp"

End Sub

Adding An Image Control To A Form

You�ve got 200 picture boxes in your program, and suddenly the Testing Department is on the line: your
program is causing users� computers to run out of memory. No problem here, you say. They say, that�s
because not everyone has 128MB of RAM like you do�it�s time to decrease your program�s memory
consumption.

One way of using fewer system resources is to use fewer picture boxes. As we�ve seen in this chapter, picture
boxes are powerful controls�and with that power comes lots of overhead. If you�re just going to be displaying
images, use image controls instead. The image control uses fewer system resources and repaints faster than a
picture box (however, it supports only a subset of the picture box properties, events, and methods).

To install an image control, just use the Image Control tool in the toolbox. After adding the image control to
your form, just set its Picture property to the image file you want to display. By default, image controls shape
themselves to the image you display; if you want to stretch the image to fit the image control and not the other
way around, set the image control�s Stretch property to True (the default is False).

As an example, we�ve placed an (unstretched) image in the image control in Figure 10.15.

Figure 10.15 Using an image control.

Stretching An Image In An Image Control

You can stretch (or flip) an image in a picture box using the PaintPicture method, but you can�t use
PaintPicture with image controls. Is there still some way of producing interesting graphics effects in an
image control?

You can use the image control�s Stretch property. By default, image controls shape themselves to fit the
images inside them (after all, their primary purpose is to display images), but if you set the Stretch property to
True (the default is False), the image control will stretch the image to fit the control.

As an example, we�re stretching an image in the image control in Figure 10.16.

Figure 10.16 Stretching an image in an image control.

You can also stretch an image in an image control by resizing the control (using its Width and Height
properties) at runtime as long as the control�s Stretch property is True.

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\337-340.html (2 of 3) [3/14/2001 1:42:34 AM]

javascript:displayWindow('images/10-15.jpg',317,158%20)
javascript:displayWindow('images/10-15.jpg',317,158)
javascript:displayWindow('images/10-16.jpg',317,158%20)
javascript:displayWindow('images/10-16.jpg',317,158)

Visual Basic 6 Black Book:Picture Boxes And Image Controls

http://24.19.55.56:8080/temp/ch10\337-340.html (3 of 3) [3/14/2001 1:42:34 AM]

Chapter 11
Windows Common Dialogs
If you need an immediate solution to:

Creating And Displaying A Windows Common Dialog

Setting A Common Dialog�s Title

Did The User Click OK Or Cancel?

Using A Color Dialog Box

Setting Color Dialog Flags

Using The Open And Save As Dialogs

Setting Open And Save As Flags

Getting The File Name In Open, Save As Dialogs

Setting Maximum File Name Size In Open And Save As Dialog Boxes

Setting Default File Extensions

Set Or Get The Initial Directory

Setting File Types (Filters) In Open, Save As Dialogs

Using A Font Dialog Box

Setting Font Dialog Flags

Setting Max And Min Font Sizes

Using The Print Dialog Box

Setting Print Dialog Flags

Setting The Minimum And Maximum Pages To Print

Setting Page Orientation

Showing Windows Help From A Visual Basic Program

In Depth

In this chapter, we�re going to examine the Windows Common Dialogs, which
provide a powerful and professional set of dialog boxes for interacting with the user.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\341-346.html (1 of 4) [3/14/2001 1:42:59 AM]

Microsoft created the Common Dialogs to promote a common user interface across all
Windows programs, and in fact the Common Dialogs do work well�and they make
programming easier for the programmer. Having a common user interface across all
Windows programs is valuable for the user, because it simplifies tasks. For the
programmer, the Common Dialogs means that we have a powerful set of dialog boxes
ready for us to use, without having to create them ourselves. From both ends of the
spectrum, then, the Windows Common Dialogs may be considered a success.

The Common Dialog control can display five different dialog boxes�Open A File,
Save A File, Set A Color, Set A Font, and Print A Document.

The Common Dialog Control

The Common Dialogs are all part of one control: the Common Dialog control. You
add that control to a program with the Visual Basic Project|Components menu item.
Click the Controls tab in the Components box that opens, and select the entry labeled
Microsoft Common Dialog Control, then click on OK to close the Components box.
You add a Common Dialog control to a form in the usual way�just double-click the
Common Dialog tool in the toolbox, or select it and paint the control on the form. The
Common Dialog tool appears as the eleventh tool down on the right in the Visual
Basic toolbox in Figure 11.1. The Common Dialog control will appear as a
nonresizable icon on your form and is not visible at runtime.

Figure 11.1 The Common Dialog tool.

You use the control�s Action property to display a dialog box or, equivalently, these
methods:

" ShowOpen�Show Open dialog box

" ShowSave�Show Save As dialog box

" ShowColor�Show Color dialog box

" ShowFont�Show Font dialog box

" ShowPrinter�Show Print or Print Options dialog box

Besides these dialog boxes, you can also display Windows Help:

" ShowHelp�Invokes the Windows Help engine

The Common Dialog control automatically provides context-sensitive Help on the
interface of the dialog boxes. You invoke context-sensitive Help by clicking the Help
button labeled What�s This in the title bar, then clicking the item for which you want
more information. In addition, you can right-click the item for which you want more
information, then select the What�s This command in the displayed context menu.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\341-346.html (2 of 4) [3/14/2001 1:42:59 AM]

javascript:displayWindow('images/11-01.jpg',857,748%20)
javascript:displayWindow('images/11-01.jpg',857,748)

TIP: We might also note, by the way, that there is no way currently to specify where
a dialog box is displayed; that might change in some future release.

As an example, the Font dialog box appears in Figure 11.2.

Figure 11.2 The Font dialog box.

That�s really all the overview we need. We�re ready to start the Immediate Solutions
now.

Immediate Solutions

Creating And Displaying A Windows Common Dialog

The Testing Department is calling again. Your program, SuperDuperTextPro, is great,
but why is the File Save As dialog box the size of a postage stamp? And why is it
colored purple? Shouldn�t it match the uniform kind of dialog box that other Windows
programs use?

To make your dialog boxes look just like the dialog boxes other programs use (and
add professionalism to your program), you can use the Windows Common Dialogs,
which are wrapped up in the Windows Common Dialog control. The Common Dialog
control can display five different dialog boxes�Open A File, Save A File, Set A Color,
Set A Font, and Print A Document, and you can also display Windows Help.

Adding a Windows Common Dialog control to your program is easy: just follow these
steps:

1. Select the Project|Components menu item.

2. Select the Controls tab in the Components box that opens.

3. Select the entry labeled Microsoft Common Dialog Control, then click on OK to
close the Components box.

4. Add a Common Dialog control to a form in the usual way�just double-click the
Common Dialog tool in the toolbox, or select it and paint the control on the form.
(The Common Dialog tool appears as the eleventh tool down on the right in the Visual
Basic toolbox in Figure 11.1.)

5. Add the code you want to open the dialog box and make use of values the user
sets.

To display various dialog boxes, you use these Common Dialog methods (for
example, CommonDialog1.ShowColor):

" ShowOpen�Show Open dialog box

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\341-346.html (3 of 4) [3/14/2001 1:42:59 AM]

javascript:displayWindow('images/11-02.jpg',401,344%20)
javascript:displayWindow('images/11-02.jpg',401,344)

" ShowSave�Show Save As dialog box

" ShowColor�Show Color dialog box

" ShowFont�Show Font dialog box

" ShowPrinter�Show Print or Print Options dialog box

" ShowHelp�Invokes the Windows Help engine

You can also set the Common Dialog�s Action property to do the same thing (and in
fact, that�s the way you used to display Common Dialogs until recent Visual Basic
releases). Microsoft says that using the preceding methods �adds functionality,� but in
fact, the two ways of displaying dialog boxes are equivalent at this writing (although
using methods like ShowHelp instead of Action = 6 makes code a little clearer). Here
are the values you can place in the Action property:

" 0�No action

" 1�Displays the Open dialog box

" 2�Displays the Save As dialog box

" 3�Displays the Color dialog box

" 4�Displays the Font dialog box

" 5�Displays the Print dialog box

" 6�Runs winhelp32.exe

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\341-346.html (4 of 4) [3/14/2001 1:42:59 AM]

Now that you�ve added a Common Dialog control to your program, refer to the
individual topics in this chapter for the dialog box you want to work with to see how
to retrieve values from the user.

TIP: Before displaying the Font and Help dialog boxes, you need to set the Common
Dialogs control�s Flags property or nothing will appear. See �Setting Color Dialog
Flags,� �Setting Open and Save As Flags,� �Setting Font Dialog Flags,� and �Setting
Print Dialog Flags� later in this chapter.

Setting A Common Dialog�s Title

The Aesthetic Design Department is calling again: can�t you change the text in the
title bar of those dialog boxes? How about changing the title of the Open dialog box
from �Open� to �Select A File To Open�?

Although some programmers may question the wisdom of changing a Common
Dialog�s title, you can do it using the DialogTitle property. As an example, here we�re
changing the title of an Open dialog box to �Select a file to open� (see Figure 11.3):

Figure 11.3 Our dialog box with revised title.

Private Sub Command1_Click()

 CommonDialog1.DialogTitle = "Select a file to open"

 CommonDialog1.ShowOpen

End Sub

WARNING! Note that this property, DialogTitle, does not work for the Color, Font,
and Print dialog boxes.

Did The User Click OK Or Cancel?

You�ve displayed your dialog box, and the user has dismissed it. But did the user click
the OK or the Cancel button? Should you take action or not?

You can check which button the user has selected by examining the various properties
of the dialog box control�for example, when the user clicks Cancel in a File Open
dialog box, the FileName property returns an empty string, ��.

However, Visual Basic provides a more systematic way of checking which button was

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\346-350.html (1 of 4) [3/14/2001 1:43:08 AM]

javascript:displayWindow('images/11-03.jpg',426,285%20)
javascript:displayWindow('images/11-03.jpg',426,285)

clicked. You can set the Common Dialog CancelError property to True to create a
special, nonharmful, and trappable error, error number 32755 (Visual Basic constant
cdlCancel), when the user clicks the Cancel button.

To trap this error if you�ve set the CancelError property to True, use On Error
GoTo, and place the label control at the end of the procedure:

Private Sub Command1_Click()

 On Error GoTo Cancel

...

Cancel:

End Sub

Then you can show the dialog box and take action, assuming the user clicked on OK.
If, on the other hand, the user clicked Cancel, control will go to the end of the
procedure and exit harmlessly:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.ShowColor

 Text1.BackColor = CommonDialog1.Color

Cancel:

End Sub

TIP: If you have enabled other trappable errors in your procedure (the On Error
GoTo statement in the preceding code does not affect code outside the procedure it�s
defined in), check to make sure that the error you�re expecting when the user clicks
Cancel does in fact have the number cdlCancel. You can do this by checking the Err
object�s Number property. Note also that Common Dialog controls can return errors
besides cdlCancel�such as cdlHelp when the Help system failed to work properly, or
cdlFonts if no fonts exist�and you might check for those separately.

Using A Color Dialog Box

The Aesthetic Design Department is calling again. Wouldn�t it be nice if you let the
user select the color of the controls in your program? Yes, you say, but&. Great, they
say, and hang up.

To let the user select colors, you use the Color dialog box, and you display that dialog
box with the Common Dialog method ShowColor. To retrieve the color the user
selected, you use the dialog box�s Color property. There are special flags you can set
for the Color dialog box�see the next topic for more information.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\346-350.html (2 of 4) [3/14/2001 1:43:08 AM]

Let�s see an example. When the user clicks a button, we�ll display a Color dialog box
and let the user select the background color of a text box. Add a Common Dialog
control to a form and set its CancelError property to True so that clicking Cancel
will cause a cdlCancel error. Next, we trap that error this way:

Private Sub Command1_Click()

 On Error GoTo Cancel

...

Cancel:

End Sub

Now we use the Common Dialog control�s ShowColor method to show the color
dialog:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.ShowColor

...

Cancel:

End Sub

When control returns from the dialog box, we use the Color property to set the text
box�s background color to the color the user has selected:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.ShowColor

 Text1.BackColor = CommonDialog1.Color

Cancel:

End Sub

That�s it�when you run the program and click the button, the Color dialog box appears,
as in Figure 11.4.

Figure 11.4 The Color dialog box.

When the user selects a color and clicks on OK, the program sets the text box�s
background color to the newly selected color, as shown in Figure 11.5.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\346-350.html (3 of 4) [3/14/2001 1:43:08 AM]

javascript:displayWindow('images/11-04.jpg',225,324%20)
javascript:displayWindow('images/11-04.jpg',225,324)
javascript:displayWindow('images/11-05.jpg',320,240%20)

Figure 11.5 Setting a control�s color with the Color dialog box.

Now we�re using the Color dialog box. The listing for the preceding program is
located in the colordialog folder on this book�s accompanying CD-ROM.

Setting Color Dialog Flags

There are a number of options you can set before displaying a Color dialog box, and
you set them in the Flags property of the Common Dialog control. Here are the
possible values:

" cdlCCRGBInit�1; sets the initial color value for the dialog box

" cdCClFullOpen�2; entire dialog box is displayed, including the Define Custom
Colors section

" cdlCCPreventFullOpen�4; disables the Define Custom Colors command button and
prevents the user from defining custom colors

" cdlCCHelpButton�8; causes the dialog box to display a Help button

You can set more than one flag for a dialog box using the Or operator. For example:

CommonDialog1.Flags = &H10& Or &H200&

(Note that although this shows what we�re doing numerically, it�s usually better to use
constants to make the code more readable.) Adding the desired constant values
produces the same result.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\346-350.html (4 of 4) [3/14/2001 1:43:08 AM]

javascript:displayWindow('images/11-05.jpg',320,240)

Using The Open And Save As Dialogs

Probably the most common use of the Common Dialog control is to display File Open
and File Save As dialog boxes, and you display those dialog boxes with the Common
Dialog control�s ShowOpen and ShowSave methods. These methods need no
arguments passed to them�to set various options, you set the Common Dialog control�s
Flags property (see the next topic), such as overwriting existing files and so on.

You can also set the Filter property so the dialog box displays only certain types of
files, such as text files. See �Setting File Types (Filters) In Open, Save As Dialogs� a
little later in this chapter.

To find out what file the user wants to work with, you check the Common Dialog�s
FileName property after the user clicks on OK in the dialog box. That property holds
the fully qualified (that is, with path) name of the file to open. If you just want the file
�s name, use the FileTitle property.

Let�s see an example. In this case, we�ll let the user select a file to open, and then
display the file�s name and path in a message box.

Start by adding a Common Dialog control to a form, then set the control�s
CancelError property to True so we can check if the user clicked Cancel. To check
that, we use On Error GoTo:

Private Sub Command1_Click()

 On Error GoTo Cancel

...

Cancel:

End Sub

Then we display the Open dialog box:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.ShowOpen

...

Cancel:

End Sub

Finally, assuming the user clicked on OK, we can display the name of the file they
selected in a message box using the FileName property:

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\350-353.html (1 of 4) [3/14/2001 1:43:18 AM]

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.ShowOpen

 MsgBox "File to open: " & CommonDialog1.FileName

Cancel:

End Sub

When you run this code and click the button, the Open dialog box appears, as in
Figure 11.6.

Figure 11.6 The Open dialog box.

If you make a file selection and click on OK, the Open dialog box closes and the
program displays the name of the file you selected, along with its path, in a message
box. Our program is a success; the code for this program is located in the opendialog
folder on this book�s accompanying CD-ROM.

Setting Open And Save As Flags

You can set a wide variety of options when you display File Open and File Save As
dialog boxes by setting the Common Dialog control�s Flags property. Here are the
possible settings:

" cdlOFNAllowMultiselect�&H200; specifies that the File Name list box allows
multiple selections.

" cdlOFNCreatePrompt�&H2000; the user can select more than one file at runtime
by pressing the Shift key and using the up arrow and down arrow keys to select the
desired files. When this is done, the FileName property returns a string containing the
names of all selected files. The names in the string are delimited by spaces.

" cdlOFNCreatePrompt�&H2000; specifies that the dialog box prompts the user to
create a file that doesn�t currently exist. This flag automatically sets the
cdlOFNPathMustExist and cdlOFNFileMustExist flags.

" cdlOFNExplorer�&H80000; displays the Explorer-like Open A File dialog box
template. Works with Windows 95 and Windows NT 4.

" cdlOFNExtensionDifferent�&H400; indicates that the extension of the returned
file name is different from the extension specified by the DefaultExt property. This
flag isn�t set if the DefaultExt property is Null, if the extensions match, or if the file
has no extension. This flag value can be checked upon closing the dialog box. This
can be useful if you want to track the kind of file the user wants to open.

" cdlOFNFileMustExist�&H1000; specifies that the user can enter only names of
existing files in the File Name text box. If this flag is set and the user enters an invalid

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\350-353.html (2 of 4) [3/14/2001 1:43:18 AM]

javascript:displayWindow('images/11-06.jpg',426,285%20)
javascript:displayWindow('images/11-06.jpg',426,285)

file name, a warning is displayed. This flag automatically sets the
cdlOFNPathMustExist flag.

" cdlOFNHelpButton�&H10; causes the dialog box to display the Help button.

" cdlOFNHideReadOnly�&H4; hides the Read Only checkbox.

" cdlOFNLongNames�&H200000; enables the use of long file names.

" cdlOFNNoChangeDir�&H8; forces the dialog box to set the current directory to
what it was when the dialog box was opened.

" cdlOFNNoDereferenceLinks�&H100000; disables the use of shell links (also
known as shortcuts). By default, choosing a shell link causes it to be interpreted by the
shell.

" cdlOFNNoLongNames�&H40000; disables long file names.

" cdlOFNNoReadOnlyReturn�&H8000; specifies that the returned file won�t have
the Read Only attribute set and won�t be in a write-protected directory.

" cdlOFNNoValidate�&H100; specifies that the Common Dialog allows invalid
characters in the returned file name.

" cdlOFNOverwritePrompt�&H2; causes the Save As dialog box to generate a
message box if the selected file already exists. The user must confirm whether to
overwrite the file.

" cdlOFNPathMustExist�&H800; specifies that the user can enter only valid paths.
If this flag is set and the user enters an invalid path, a warning message is displayed.

" cdlOFNReadOnly�&H1; causes the Read Only checkbox to be initially checked
when the dialog box is created. This flag also indicates the state of the Read Only
checkbox when the dialog box is closed.

" cdlOFNShareAware�&H4000; specifies that sharing violation errors will be
ignored.

You can set more than one flag for a dialog box using the Or operator. For example:

CommonDialog1.Flags = &H10& Or &H200&

(Although this shows what we�re doing numerically, it�s usually better to use
constants to make your code more readable.) Adding the desired constant values
produces the same result.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\350-353.html (3 of 4) [3/14/2001 1:43:18 AM]

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\350-353.html (4 of 4) [3/14/2001 1:43:18 AM]

Getting The File Name In Open, Save As Dialogs

Now that you�ve used the Common Dialog control�s ShowOpen or ShowSave to display an Open
or Save As dialog box, how do you get the file name the user has specified? You do that using one
of two properties after the user clicks on the OK button:

" FileName�Holds the file name the user selected, with the file�s full path.

" FileTitle�Holds just the file�s name, without the path.

Here�s an example where we�ve set a Common Dialog control�s CancelError property to True so
Visual Basic will create a trappable cdlCancel error if the user clicks the Cancel button, show a
File Open dialog box, and display the name and path of the file the user selected in a message box:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.ShowOpen

 MsgBox "File to open: " & CommonDialog1.FileName

Cancel:

End Sub

You can set the Filter property so the dialog box displays only certain types of files, such as text
files. The Flags property can be used to change various elements on the dialog box, as well as to
prompt the user when certain actions may occur, such as overwriting a file. See �Setting File Types
(Filters) In Open, Save As Dialogs� for more on filters. For more on flags, see �Setting Color
Dialog Flags,� �Setting Open and Save As Flags,� �Setting Font Dialog Flags,� and �Setting Print
Dialog Flags� later in this chapter.

Setting Maximum File Name Size In Open And Save As Dialog Boxes

You can use the Common Dialog control�s MaxFileSize property to set�not the maximum file size
you can open, but the maximum file name size. You set this property to a number of bytes as
follows, where we�re restricting the file name and path to fit into 100 bytes:

CommonDialog1.MaxFileSize = 100

This is useful if you�re passing file names to other programs that can�t use names longer than a
certain length.

TIP: When using the cdlOFNAllowMultiselect flag, you may want to increase the value in the
MaxFileSize property to allow enough memory for the selected file names.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\354-358.html (1 of 4) [3/14/2001 1:43:23 AM]

Setting Default File Extensions

Like many Windows programs, you can make your programs set the default extension for the
types of files you want to save (for example, .txt) if the user doesn�t specify one. You specify a
default extension with the Common Dialog control�s DefaultExt property.

An example will make this clearer. Here, we set the default extension of our files to save to �txt� by
setting the DefaultExt property:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.DefaultExt = "txt"

 CommonDialog1.ShowSave

 MsgBox "File to save: " & CommonDialog1.FileName

Cancel:

End Sub

Let�s say the user just types a file name without an extension, such as �phonebook�, in the Save As
dialog box; the dialog box will then report the actual name of the file to save as phonebook.txt. If,
on the other hand, the user specifies a file extension, that extension is preserved.

Set Or Get The Initial Directory

The Testing Department is calling again: users of your program, SuperDuperTextPro, are
complaining. When they want to save many files to their favorite directory,
C:\poetry\roses\are\red\violets\are\blue, they have to open folder after folder each time to get back
to that directory. Can�t you let them set a default directory to save files to?

You can, using the Common Dialog control�s InitDir property. For example, here�s how we set
the initial directory to C:\windows when we open files using the Open dialog box:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.InitDir = "c:\windows"

 CommonDialog1.ShowOpen

 MsgBox "File to open: " & CommonDialog1.FileName

Cancel:

End Sub

Running this code results in the Open dialog box you see in Figure 11.7.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\354-358.html (2 of 4) [3/14/2001 1:43:23 AM]

javascript:displayWindow('images/11-07.jpg',426,285%20)

Figure 11.7 Setting an initial directory.

Setting the initial directory like this can make multiple opens or saves much easier, which is very
considerate to the user (and I know of some Microsoft software that could benefit by doing this).

Setting File Types (Filters) In Open, Save As Dialogs

The Testing Department is calling again. Your program, SuperDuperGraphics4U, only works
with graphics files, but somehow users are trying to open text (.txt) files�and crashing the program.
Is there some way you can clue them in as to allowed file types when they open files?

Yes�you can set the Common Dialog control�s Filter property to indicate the allowed file types
and extensions in a drop-down list box in the Open and Save As dialog boxes. (To see an example
of such a drop-down list box, use Visual Basic�s Save Project As menu item in the File menu; this
list box gives two file extension types: *.vbp and all files, *.*.)

To set up the Filter string, you separate prompts to the user�for example, �Text files (*.txt)��with
upright characters (�|�, also called the pipe symbol) from the file specifications to Visual Basic (
�*.txt�). (Don�t add extra spaces around the uprights, because if you do, they�ll be displayed along
with the rest of the file extension information.)

This is obviously one of those things made easier with an example (in fact, I always forget how to
set up file filter strings unless I can work from an example), so let�s see one now. Here, we�ll let
the user select from three options: text files (*.txt), image files (*.jpg, *.gif), and all files (*.*). We
set the Filter string this way in that case; look closely at the following string and you�ll be able to
see how to set up this string for yourself. (Here we�ve also set the Common Dialog control�s
CancelError property to True to create a trappable error if the user clicks the Cancel button):

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.Filter = "Text files (*.txt)|*.txt|Image files _

 (*.jpg, *.gif)|*.jpg;*.gif|All files (*.*)|*.*"

 CommonDialog1.ShowOpen

 MsgBox "File to open: � & CommonDialog1.FileName

Cancel:

End Sub

Note in particular that when you have two file extensions for one file type�as we do for image files
(*.jpg, *.gif)�you surround the file extensions with a semicolon (;) and enclose them in
parentheses.

The result of this code appears in Figure 11.8. Here, we�re letting the user select from our three
types of files: text files (*.txt), image files (*.jpg, *.gif), and all files (*.*).

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\354-358.html (3 of 4) [3/14/2001 1:43:23 AM]

javascript:displayWindow('images/11-07.jpg',426,285)
javascript:displayWindow('images/11-08.jpg',438,310%20)

Figure 11.8 Setting file extension types in dialog boxes.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\354-358.html (4 of 4) [3/14/2001 1:43:23 AM]

javascript:displayWindow('images/11-08.jpg',438,310)

Using A Font Dialog Box

The Testing Department is calling again. Your new word processor,
SuperDuperTextPro, is great, but why can�t the users select the font they want to use?
You ask, should they be able to do that? The Testing Department says, take a look at
the Font dialog box.

You use the Common Dialog control�s ShowFont method to show a Font dialog box.
Note that before you use the ShowFont method, you must set the Flags property of
the Common Dialog control to one of three constants to indicate if you want to
display screen fonts, printer fonts, or both. The possible values are as follows:

" cdlCFScreenFonts�&H1; show screen fonts

" cdlCFPrinterFonts�&H2; show printer fonts

" cdlCFBoth�&H3; show both types of fonts

If you don�t set one of these in the Flags property, a message box is displayed
advising the user that �There are no fonts installed�, which will probably cause them to
panic. To see more possible settings for the Flags property, take a look at the next
topic in this chapter.

When the user dismisses the Font dialog box by clicking on OK, you can determine
their font selections using these properties of the Common Dialog control:

" Color�The selected color. To use this property, you must first set the Flags property
to cdlCFEffects.

" FontBold�True if bold was selected.

" FontItalic�True if italic was selected.

" FontStrikethru�True if strikethru was selected. To use this property, you must first
set the Flags property to cdlCFEffects.

" FontUnderline�True if underline was selected. To use this property, you must first
set the Flags property to cdlCFEffects.

" FontName�The selected font name.

" FontSize�The selected font size.

Let�s see an example. Here, we�ll let the user set the font, font size, and font styles
(like underline and bold) in a text box. We start by setting the Common Dialog control
�s CancelError property to True so clicking the Cancel button causes a trappable
error:

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\358-361.html (1 of 4) [3/14/2001 1:43:36 AM]

Private Sub Command1_Click()

 On Error GoTo Cancel

...

Cancel:

End Sub

Next, we set the Flags property and show the Font dialog box:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.Flags = cdlCFBoth Or cdlCFEffects

 CommonDialog1.ShowFont

...

Cancel:

End Sub

Finally, we set the text box�s properties to match what the user set in the Font dialog
box:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.Flags = cdlCFBoth Or cdlCFEffects

 CommonDialog1.ShowFont

 Text1.FontName = CommonDialog1.FontName

 Text1.FontBold = CommonDialog1.FontBold

 Text1.FontItalic = CommonDialog1.FontItalic

 Text1.FontUnderline = CommonDialog1.FontUnderline

 Text1.FontSize = CommonDialog1.FontSize

 Text1.FontName = CommonDialog1.FontName

Cancel:

End Sub

Now when you run this program and click the button, the Font dialog box appears, as
in Figure 11.9.

Figure 11.9 The Font dialog box.

When you select the font options you want and click on OK, those options are

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\358-361.html (2 of 4) [3/14/2001 1:43:36 AM]

javascript:displayWindow('images/11-09.jpg',401,344%20)
javascript:displayWindow('images/11-09.jpg',401,344)

installed in the text box, Text1, as shown in Figure 11.10.

Figure 11.10 Setting fonts and font styles with the Font dialog box.

That�s it�now we�re using Font dialog boxes. The listing for this program,
fontdialog.frm, is located in the fontdialog folder on this book�s accompanying
CD-ROM.

Setting Font Dialog Flags

You can set a wide variety of options when using Font dialog boxes by using the
Common Dialog control�s Flags property. Here are the possible values to use with
that property:

" cdlCFANSIOnly�&H400; specifies that the dialog box allows only a selection of
the fonts that use the Windows character set. If this flag is set, the user won�t be able
to select a font that contains only symbols.

" cdlCFApply�&H200; enables the Apply button on the dialog box.

" cdlCFBoth�&H3; causes the dialog box to list the available printer and screen
fonts. The hDC property identifies the device context associated with the printer.

" cdlCFEffects�&H100; specifies that the dialog box enables strikethru, underline,
and color effects.

" cdlCFFixedPitchOnly�&H4000; specifies that the dialog box selects only
fixed-pitch fonts.

" cdlCFForceFontExist�&H10000; specifies that an error message box is displayed
if the user attempts to select a font or style that doesn�t exist.

" cdlCFHelpButton�&H4; causes the dialog box to display a Help button.

" cdlCFLimitSize�&H2000; specifies that the dialog box selects only font sizes
within the range specified by the Min and Max properties.

" cdlCFNoFaceSel�&H80000; no font name was selected.

" cdlCFNoSimulations�&H1000; specifies that the dialog box doesn�t allow graphic
device interface (GDI) font simulations.

" cdlCFNoSizeSel�&H200000; no font size was selected.

" cdlCFNoStyleSel�&H100000; no style was selected.

" cdlCFNoVectorFonts�&H800; specifies that the dialog box doesn�t allow
vector-font selections.

" cdlCFPrinterFonts�&H2; causes the dialog box to list only the fonts supported by

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\358-361.html (3 of 4) [3/14/2001 1:43:36 AM]

javascript:displayWindow('images/11-10.jpg',320,240%20)
javascript:displayWindow('images/11-10.jpg',320,240)

the printer, specified by the hDC property.

" cdlCFScalableOnly�&H20000; specifies that the dialog box allows only the
selection of fonts that can be scaled.

" cdlCFScreenFonts�&H1; causes the dialog box to list only the screen fonts
supported by the system.

" cdlCFTTOnly�&H40000; specifies that the dialog box allows only the selection of
TrueType fonts.

" cdlCFWYSIWYG�&H8000; specifies that the dialog box allows only the selection
of fonts that are available on both the printer and on screen. If this flag is set, the
cdlCFBoth and cdlCFScalableOnly flags should also be set.

You can set more than one flag for a dialog box using the Or operator. For example:

CommonDialog1.Flags = &H10& Or &H200&

Adding the desired constant values produces the same result.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\358-361.html (4 of 4) [3/14/2001 1:43:36 AM]

Setting Max And Min Font Sizes

The Testing Department is calling again. Now users are setting the font size in your
program, SuperDuperTextPro, to 3 points�and then complaining they can�t read what
they�ve typed. Can you limit the allowed font range?

Yes, you can, using the Common Dialog control�s Min and Max properties. When
you want to make these properties active with a Font dialog box, you must first add
the cdlCFLimitSize flag to the Common Dialog control�s Flags property. Then you�re
free to restrict the possible range of font sizes.

Here�s an example. We set the Common Dialog�s CancelError property to True to
catch Cancel button clicks, then set the Flags property of the Common Dialog control
to display both screen fonts and printer fonts, and set the cdlCFLimitSize flag:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.Flags = cdlCFBoth Or cdlCFLimitSize

...

Then we set the minimum and maximum font sizes we want to allow, measured in
points:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.Flags = cdlCFBoth Or cdlCFLimitSize

 CommonDialog1.Min = 12

 CommonDialog1.Max = 24

...

Finally, we show the Font dialog box, and then make use of the newly set font size:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.Flags = cdlCFBoth Or cdlCFLimitSize

 CommonDialog1.Min = 12

 CommonDialog1.Max = 24

 CommonDialog1.ShowFont

 Text1.FontName = CommonDialog1.FontSize

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\361-365.html (1 of 4) [3/14/2001 1:43:49 AM]

Cancel:

End Sub

That�s all we need�the result of this code appears in Figure 11.11, where, as you can
see, we�ve restricted the range of font sizes from 12 to 24 points in the Font dialog
box.

Figure 11.11 Restricting font size range in a Font dialog box.

TIP: Note that because the font size is entered in a combo box in a Font dialog box,
the user can enter a value outside the allowed range in the text box part of the combo.
If they do and click on OK, however, an error message box appears saying the font
size must be in the Min to Max range.

Using The Print Dialog Box

The Testing Department is calling again. The Print button you�ve placed in your word
processor, SuperDuperTextPro, is very nice, but it doesn�t let the user set the number
of copies of a document they want to print. You can�t do that with a button, you
explain. Right, they say�use a Print dialog box.

You show the Print dialog box with the Common Dialog control�s ShowPrinter
method. If you know your document�s length, you can set the minimum and maximum
pages to print in the Common Dialog control�s Min and Max properties; setting these
properties enables the From and To page range text boxes in the Print dialog box (see
�Setting The Minimum And Maximum Pages To Print� later in this chapter). You can
also set the Common Dialog control�s Flags property to select various options here
�see the next topic in this chapter.

This dialog box does not send data to the printer; instead, it lets the user specify how
he wants data printed. Printing is up to you.

How do you print? If you�ve set the PrinterDefault property to True, you can use the
Printer object to print data (the user can change the default printer from the Printer
dialog box, setting a new default printer in the Windows registry or win.ini, but that
new printer automatically becomes the one referred to by the Printer object). For
example, you can print the picture in a picture box using the Printer object this way:
Printer.PaintPicture Picture1.Picture, 0, 0. Otherwise, you must use Windows
functions to print to the device represented by the hDC (a device context handle)
property.

After the user clicks on OK, you can read these properties from the Common Dialog
control to determine what printer options they�ve selected:

" Copies�The number of copies to print

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\361-365.html (2 of 4) [3/14/2001 1:43:49 AM]

javascript:displayWindow('images/11-11.jpg',401,344%20)
javascript:displayWindow('images/11-11.jpg',401,344)

" FromPage�The page to start printing

" ToPage�The page to stop printing

" hDC�The device context for the selected printer

Let�s see an example. In this case, we�ll use the Visual Basic PrintForm method to
print a copy of the current form as many times as the user specifies. We start by
setting the Common Dialog control�s CancelError property to True so we can catch
Cancel button clicks as trappable errors:

Private Sub Command1_Click()

 On Error GoTo Cancel

...

Cancel:

End Sub

Then we set the PrinterDefault property to True and show the Print dialog box:

Private Sub Command1_Click()

 On Error GoTo Cancel

 CommonDialog1.PrinterDefault = True

 CommonDialog1.ShowPrinter

...

Cancel:

End Sub

All that�s left is to loop over the number of copies the user has requested (as returned
in the Copies property) and call PrintForm each time:

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 On Error GoTo Cancel

 CommonDialog1.PrinterDefault = True

 CommonDialog1.ShowPrinter

 For intLoopIndex = 1 To CommonDialog1.Copies

 PrintForm

 Next intLoopIndex

Cancel:

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\361-365.html (3 of 4) [3/14/2001 1:43:49 AM]

End Sub

That�s it�when the user clicks Command1, the program displays the Print dialog box;
the user can set the number of copies to print and when they click on OK, Visual
Basic displays a dialog box with the text �Printing&� momentarily, and the print job
starts.

Our Print dialog box example is a success�the code for this program is located in the
printerdialog folder on this book�s accompanying CD-ROM.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\361-365.html (4 of 4) [3/14/2001 1:43:49 AM]

Setting Print Dialog Flags

You can set a number of options in the Common Dialog control�s Flags property
when working with the Print dialog box:

" cdlPDAllPages�&H0; returns or sets the state of the All Pages option button.

" cdlPDCollate�&H10; returns or sets the state of the Collate checkbox.

" cdlPDDisablePrintToFile�&H80000; disables the Print To File checkbox.

" cdlPDHelpButton�&H800; causes the dialog box to display the Help button.

" cdlPDHidePrintToFile�&H100000; hides the Print To File checkbox.

" cdlPDNoPageNums�&H8; disables the Pages option button and the associated edit
control.

" cdlPDNoSelection�&H4; disables the Selection option button.

" cdlPDNoWarning�&H80; prevents a warning message from being displayed when
there is no default printer.

" cdlPDPageNums�&H2; returns or sets the state of the Pages option button.

" cdlPDPrintSetup�&H40; causes the system to display the Print Setup dialog box
rather than the Print dialog box.

" cdlPDPrintToFile�&H20; returns or sets the state of the Print To File checkbox.

" cdlPDReturnDC�&H100; returns a device context for the printer selection made in
the dialog box. The device context is returned in the dialog box�s hDC property.

" cdlPDReturnDefault�&H400; returns the default printer name.

" cdlPDReturnIC�&H200; returns an information context for the printer selection
made in the dialog box. An information context provides a fast way to get information
about the device without creating a device context. The information context is
returned in the dialog box�s hDC property.

" cdlPDSelection�&H1; returns or sets the state of the Selection option button. If
neither cdlPDPageNums nor cdlPDSelection is specified, the All option button is in
the selected state.

" cdlPDUseDevModeCopies�&H40000; if a printer driver doesn�t support multiple
copies, setting this flag disables the Number Of Copies control in the Print dialog box.
If a driver does support multiple copies, setting this flag indicates that the dialog box
stores the requested number of copies in the Copies property.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\365-368.html (1 of 3) [3/14/2001 1:44:00 AM]

You can set more than one flag for a dialog box using the Or operator. For example:

CommonDialog1.Flags = &H10& Or &H200&

Adding the desired constant values produces the same result.

Setting The Minimum And Maximum Pages To Print

When displaying a Print dialog box, you can set the minimum and maximum allowed
values for the print range (in other words, the From and To pages to print) using the
Min and Max properties of the Common Dialog control. The Min property sets the
smallest number the user can specify in the From text box. The Max property sets the
largest number the user can specify in the To text box. For example, here we restrict
the possible pages to print to a maximum of 10, in the range 0 to 9:

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 On Error GoTo Cancel

 CommonDialog1.PrinterDefault = True

 CommonDialog1.Min = 0

 CommonDialog1.Max = 9

 CommonDialog1.ShowPrinter

 For intLoopIndex = 1 To CommonDialog1.Copies

 PrintForm

 Next intLoopIndex

Cancel:

End Sub

Now when the Print dialog box appears, you can see that in the Print Range box, at
lower left in Figure 11.12, one option button says �All 10 Pages�. That is, we�ve set a
maximum total of 10 pages for our document. The actual page range is from 0 to 9.

Figure 11.12 Setting print range in a Print dialog box.

TIP: If the user enters a number outside the allowed From and To range and clicks
on OK, an error message box will appear letting them know what the allowed range
is.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\365-368.html (2 of 3) [3/14/2001 1:44:00 AM]

javascript:displayWindow('images/11-12.jpg',438,327%20)
javascript:displayWindow('images/11-12.jpg',438,327)

Setting Page Orientation

When printing, you can set the page orientation�portrait (upright) or landscape
(sideways)�with the Common Dialog control�s Orientation property. This setting is
communicated to the printer automatically, but note that not all printers will be able to
set a document�s orientation.

Here are the possible values for the Orientation property:

" cdlPortrait�1; documents are printed with the top at the narrow side of the paper
(the default).

" cdlLandScape�2; documents are printed with the top at the wide side of the paper.

Here�s an example. In this case, we�re setting the printer�s Orientation property to
landscape:

Private Sub Command1_Click()

 Dim intLoopIndex As Integer

 On Error GoTo Cancel

 CommonDialog1.PrinterDefault = True

 CommonDialog1.Orientation = cdlLandscape

 CommonDialog1.ShowPrinter

 For intLoopIndex = 1 To CommonDialog1.Copies

 PrintForm

 Next intLoopIndex

Cancel:

End Sub

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\365-368.html (3 of 3) [3/14/2001 1:44:00 AM]

Showing Windows Help From A Visual Basic Program

You can display a Windows Help file (.hlp) with the Common Dialog control�s
ShowHelp method. To use this method, you first set the Common Dialog control�s
HelpCommand property to one of the following settings, and the HelpFile property
to the actual name of the Help file to open.

Here are the possible settings for HelpCommand:

" cdlHelpCommand�&H102&; executes a Help macro.

" cdlHelpContents�&H3&; displays the Help contents topic as defined by the
Contents option in the [OPTION] section of the HPJ file. This constant doesn�t work
for Help files created with Microsoft Help Workshop Version 4.0X. Instead, you use
the value &HB to get the same effect.

" cdlHelpContext�&H1&; displays Help for a particular context. When using this
setting, you must also specify a context using the HelpContext property.

" cdlHelpContextPopup�&H8&; displays in a pop-up window a particular Help
topic identified by a context number defined in the [MAP] section of the HPJ file.

" cdlHelpForceFile�&H9&; ensures WinHelp displays the correct Help file. If the
correct Help file is currently displayed, no action occurs. If the incorrect Help file is
displayed, WinHelp opens the correct file.

" cdlHelpHelpOnHelp�&H4&; displays Help for using the Help application itself.

" cdlHelpIndex�&H3&; displays the index of the specified Help file. An application
should use this value only for a Help file with a single index.

" cdlHelpKey�&H101&; displays Help for a particular keyword. When using this
setting, you must also specify a keyword using the HelpKey property.

" cdlHelpPartialKey�&H105&; displays the topic found in the keyword list that
matches the keyword passed in the dwData parameter if there is one exact match.

" cdlHelpQuit�&H2&; notifies the Help application that the specified Help file is no
longer in use.

" cdlHelpSetContents�&H5&; determines which contents topic is displayed when a
user presses the F1 key.

" cdlHelpSetIndex�&H5&; sets the context specified by the HelpContext property
as the current index for the Help file specified by the HelpFile property. This index
remains current until the user accesses a different Help file. Use this value only for
Help files with more than one index.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\368-370.html (1 of 2) [3/14/2001 1:44:09 AM]

Often, you want to open a Help file to its contents page, and so you�d set the
HelpCommand property to the cdlHelpContents constant. Be careful, however, that
constant doesn�t work with some Help files (those constructed with the Microsoft Help
Workshop Version 4.0X), so check if ShowHelp works properly before releasing your
program. The cdlHelpContents constant works with fewer Help files than you might
think�in fact, it won�t open the main Windows Help file itself, windows.hlp, correctly.
Instead, you must use a special value, &HB:

Private Sub Command1_Click()

 CommonDialog1.HelpCommand = &HB

 CommonDialog1.HelpFile = "c:\windows\help\windows.hlp"

 CommonDialog1.ShowHelp

End Sub

The result of this code appears in Figure 11.13. Here, we�re opening the Windows
main Help file to its contents page.

Figure 11.13 Opening Windows Help from a Visual Basic program.

Our ShowHelp example is a success. The code for this example is located in the
helpdialog folder on this book�s accompanying CD-ROM.

Visual Basic 6 Black Book:Windows Common Dialogs

http://24.19.55.56:8080/temp/ch11\368-370.html (2 of 2) [3/14/2001 1:44:09 AM]

javascript:displayWindow('images/11-13.jpg',434,428%20)
javascript:displayWindow('images/11-13.jpg',434,428)

Chapter 12
The Chart And Grid Controls
If you need an immediate solution to:

Adding A Chart Control To A Program

Adding Data To A Chart Control

Working With A Multiple Data Series

Setting Chart And Axis Titles And Chart Colors

Creating Pie Charts

Creating 2D And 3D Line Charts

Creating 2D And 3D Area Charts

Creating 2D And 3D Bar Charts

Creating 2D And 3D Step Charts

Creating 2D And 3D Combination Charts

Adding A Flex Grid Control To A Program

Working With Data In A Flex Grid Control

Typing Data Into A Flex Grid

Setting Flex Grid Grid Lines And Border Styles

Labeling Rows And Columns In A Flex Grid

Formatting Flex Grid Cells

Sorting A Flex Grid Control

Dragging Columns In A Flex Grid Control

Connecting A Flex Grid To A Database

In Depth

In this chapter, we�re going to work with two types of Visual Basic controls: chart and
grid controls. You use these controls to display data�for example, a chart of a data set
can make it come alive in a unique way. Like most Visual Basic controls, both of

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\371-374.html (1 of 3) [3/14/2001 1:44:16 AM]

these control types can be filled with data in two ways: under program control or from
a database. In this chapter, we�ll get familiar with charts and grids and placing data in
them ourselves; when we discuss the Visual Basic�s data-bound controls later in this
book, we�ll see how to make the connection to databases.

The Chart Control

The Visual Basic chart control takes a little getting used to�and it�s changed
significantly over time�but when you get the hang of it, you can create dramatic
effects. For making your data visible, there�s little better than an effective graph. Here
are the types of charts you can create using the Visual Basic chart control:

" 2D or 3D bar chart

" 2D or 3D line chart

" 2D or 3D area chart

" 2D or 3D step chart

" 2D or 3D combination chart

" 2D pie chart

" 2D XY chart

As we�ll see, there are several ways of working with the data in a chart control; that
data is stored in a data grid, and we�re responsible for filling that grid. To create a
simple graph, such as a line chart showing wheat production over time, you fill the
data grid with a one-dimensional array. If you want to display a graph of a series of
data sets in the same chart, such as a line chart with three lines showing wheat,
soybean, and rye production over time, you use a two-dimensional array (with three
columns in this case). We�ll see how this works in the Immediate Solutions.

To add a chart control to your program, open the Components dialog box by selecting
Project[vbar]Components, click the Controls tab, select the Microsoft Chart Control
entry, and click on OK to close the Components dialog box. The Chart Control tool
appears as the eleventh tool down on the right in Figure 12.1.

Figure 12.1 The Chart Control tool.

The chart control takes care of many programming concerns automatically�such as
scaling the axes or setting colors�although you can override those settings if you wish.

Grid Controls

Grid controls display data in a table-like form, with rows and columns of cells. In fact,
you can use grids to do just that: display tables of data. You can also use them to

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\371-374.html (2 of 3) [3/14/2001 1:44:16 AM]

javascript:displayWindow('images/12-01.jpg',433,561%20)
javascript:displayWindow('images/12-01.jpg',433,561)

display spreadsheets.

Visual Basic has a number of grid controls: the data grid control, the flex grid control,
and the hierarchical flex grid control. We�ll take a look at the flex grid control here
and save the data grid control for our discussion of data-bound controls (in fact, flex
grids can connect to databases just as data grid controls can, but they present the
database�s data in read-only format).

Like charts, grids give you a way of displaying data. Whereas charts present data in
graphical format, grids appear like spreadsheets (and, in fact, if you want to create a
spreadsheet in Visual Basic, you use a grid). A grid presents the user with a
two-dimensional array of individual cells. You can make the cells in the grid active
just as you�d expect in a spreadsheet; for example, you can keep a running sum at the
bottom of columns of data.

One thing that takes many Visual Basic programmers by surprise is that there�s no
automatic way for users to enter data in a grid control (that is, it doesn�t function as a
grid of text boxes). When you display a grid, it seems that users should be able to just
type the data they want into the grid, but that�s not the way it works.

Grid controls can hold data in each cell when you put it there, but the user can�t
simply enter that data�you have to add the code to do that. We�ll see how to fix this
with a moveable text box in this chapter�when the user types into a cell, we�ll move
the text box to that cell and make it appear that the user is typing directly into the cell.

The flex grid control is often used to display database data in read-only format. It also
features the ability to rearrange its columns under user control, as we�ll see, as well as
the ability to display images in each cell instead of just text. Each cell supports word
wrap and formatting.

To add a flex grid control to your program, open the Components dialog box by
selecting Project[vbar]Components, click the Controls tab, select the Microsoft
FlexGrid Control entry, then click on OK to close the Components dialog box. The
Flex Grid Control tool is the twelfth tool down on the left in Figure 12.2.

Figure 12.2 The Flex Grid Control tool.

That�s it for our overview of charts and grids�it�s time to turn to the Immediate
Solutions.

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\371-374.html (3 of 3) [3/14/2001 1:44:16 AM]

javascript:displayWindow('images/12-02.jpg',478,561%20)
javascript:displayWindow('images/12-02.jpg',478,561)

Immediate Solutions

Adding A Chart Control To A Program

The Testing Department is calling again. Your new program,
SuperDuperDataCrunch, is great, but why does it display the data as a long stream of
numbers in a text box? Well, you ask, what else would you suggest? They say, how
about a chart?

It�s time to add a Microsoft chart control to your program, and doing that is easy�just
follow these steps:

1. Select the Project[vbar]Components menu item.

2. Select the Controls tab in the Components box that opens.

3. Select the Microsoft Chart Control entry in the Components box, and click on OK
to close the Components box.

4. Draw a new chart control on your form.

To select the type of chart you want, you set the chart control�s ChartType property.
Here are the possible settings for that property:

" VtChChartType3dBar�3D bar chart

" VtChChartType2dBar�2D bar chart

" VtChChartType3dLine�3D line chart

" VtChChartType2dLine�2D line chart

" VtChChartType3dArea�3D area chart

" VtChChartType2dArea�2D area chart

" VtChChartType3dStep�3D step chart

" VtChChartType2dStep�2D step chart

" VtChChartType3dCombination�3D combination chart

" VtChChartType2dCombination�2D combination chart

" VtChChartType2dPie�2D pie chart

" VtChChartType2dXY�2D XY chart

TIP: Note that the ChartType property actually appears with a small initial letter,

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\375-378.html (1 of 4) [3/14/2001 1:44:24 AM]

chartType, in the current build of Visual Basic, although when you check the Visual
Basic documentation, it has a large initial letter, ChartType. Because Visual Basic
corrects capitalization automatically, you can type this property in either way, but it�s
an oddity you might note.

Now that you�ve added a new chart control to your program, it�s time to fill it with
data. There are several ways of doing so, and they can get pretty involved. See the
next topic in this chapter for the details.

Adding Data To A Chart Control

You�ve added a chart control to your form, and it�s displaying data�but it�s not your
data. How do you fix that?

When you add a chart control to a form, it displays random data (which is good if you
want to change chart types and see what the possibilities look like). That�s fine as far
as it goes, but now it�s time to enter your own data in that chart. There are several
ways of doing so, and we�ll look at them here.

Using The ChartData Property

As mentioned in this chapter�s overview, the data in a chart control is stored in an
internal data grid (in fact, it�s stored in a Visual Basic data grid control, one of the
data-bound controls, inside the chart control). Probably the quickest way of filling a
chart control is by filling that data grid directly, and we can access the data grid
directly with the chart control�s ChartData property.

You can either get or set the data grid in a chart control with this property, because it
refers directly to an array of variants. Let�s take a look at an example. Here, we�ll just
create a simple bar chart (ChartType = VtChChartType2dBar, the default).

Start by adding a new chart control, MSChart1 (that�s the default name Visual Basic
will give it) to your program. Next, we declare an array of variants to hold our data:

Private Sub Form_Load()

 Dim X(1 To 5) As Variant

...

The first entry in the array is a label that will appear on the x-axis; we�ll just label it
�Data�:

Private Sub Form_Load()

 Dim X(1 To 5) As Variant

 X(1) = "Data"

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\375-378.html (2 of 4) [3/14/2001 1:44:24 AM]

...

Next, we add the data itself we want to display:

Private Sub Form_Load()

 Dim X(1 To 5) As Variant

 X(1) = "Data"

 X(2) = 1

 X(3) = 2

 X(4) = 3

 X(5) = 4

...

Finally, we install the array in MSChart1 using the ChartData property:

Private Sub Form_Load()

 Dim X(1 To 5) As Variant

 X(1) = "Data"

 X(2) = 1

 X(3) = 2

 X(4) = 3

 X(5) = 4

 MSChart1.ChartData = X

End Sub

That�s it. Now run the program as you see in Figure 12.3. We�ve created our first
simple chart.

The code for this program is located in the chart folder on this book�s accompanying
CD-ROM.

Another way of installing data in a chart is to use the Data property.

Using The Data Property

You can also use the chart control�s Data property to enter data. To use the Data
property to fill the chart control�s data grid, you set the row and column you want to
place data in using the chart control�s Row and Column properties, and then you just

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\375-378.html (3 of 4) [3/14/2001 1:44:24 AM]

set the Data property to the value you want at that location, like this: MSChart1.Data
= 5. Note that because we�re not passing an array to the chart control here, you must
give that control the proper dimensions of the array you�re setting up, which means
you must set the RowCount and ColumnCount properties.

If you�re just entering sequential data points, you can set the chart control�s
AutoIncrement property to True, and then enter the sequential points into the Data
property, one after another:

Private Sub Form_Load()

 MSChart1.Data = 1

 MSChart1.Data = 2

 MSChart1.Data = 3

 MSChart1.Data = 4

...

The Data property can only take numeric data, so to set the text that will appear on
the x-axis for our data, we use the RowLabel property to label row 1 like this:

Private Sub Form_Load()

 MSChart1.Data = 1

 MSChart1.Data = 2

 MSChart1.Data = 3

 MSChart1.Data = 4

 MSChart1.Row = 1

 MSChart1.RowLabel = "Data"

End Sub

And that�s it�this code produces the same result you see in Figure 12.3.

Figure 12.3 Creating a simple chart.

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\375-378.html (4 of 4) [3/14/2001 1:44:24 AM]

javascript:displayWindow('images/12-03.jpg',372,299%20)
javascript:displayWindow('images/12-03.jpg',372,299)

Using The SetData Method

You can use the data grid SetData method to place data in the chart control. Here�s
how you use SetData :

DataGrid.SetData (row, column, dataPoint, nullFlag)

Here�s what the various arguments you pass to SetData mean:

" row�Identifies the row containing the data point value

" column�Identifies the column containing the data point value

" dataPoint�Holds the data value (a Double value)

" nullFlag�Indicates whether or not the data point value is a null

All the data in our simple chart is in the same row, so we fill the data grid in the chart
control using SetData this way (note that we access the data grid with the chart
control�s DataGrid property here):

Private Sub Form_Load()

MSChart1.DataGrid.SetData 1, 1, 1, False

MSChart1.DataGrid.SetData 1, 2, 2, False

MSChart1.DataGrid.SetData 1, 3, 3, False

MSChart1.DataGrid.SetData 1, 4, 4, False

MSChart1.Row = 1

MSChart1.RowLabel = "Data"

End Sub

This code produces the same result as before, shown in Figure 12.3.

Working With A Multiple Data Series

The Testing Department is calling again. Your graph of total imported wheat by
month looks very nice, but now that the company has diversified, you need to show
the imports of rice, corn, wheat, lentils, and rye all on the same chart. Can you do
that?

You certainly can, using a data series. When you fill the chart control�s data grid, you

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\379-383.html (1 of 5) [3/14/2001 1:45:06 AM]

just add a new column for each crop, and a new line will appear in your graph. How
does that work? Let�s see an example.

Here, we�ll graph rice, corn, wheat, lentils, and rye imports for the months of January
and February. Each set of data, rice, corn, wheat, lentils, and rye makes up a series,
and each column in the data grid will hold the data for one series. We add a new row
to make a new x-axis point for each item in the series. In this example, we�ll have two
rows, one for January and one for February, and five columns, one each for rice, corn,
wheat, lentils, and rye.

In fact, we add one row to hold row labels and one column to hold column labels. The
row labels (January and February) will appear on the x-axis, and the column labels
(rice, corn, wheat, lentils, and rye) will appear in the chart�s legend so the user can
figure out what all the different-color lines (the data series) in the chart mean. Here�s
the way the data grid will be set up when we�re done:

 Rice Corn Lentils Wheat Rye

January 2 3 4 5 6

February 4 6 8 10 12

Here�s how that looks in code:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

X(2, 2) = 2

X(2, 3) = 3

X(2, 4) = 4

X(2, 5) = 5

X(2, 6) = 6

X(3, 1) = "February"

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\379-383.html (2 of 5) [3/14/2001 1:45:06 AM]

X(3, 2) = 4

X(3, 3) = 6

X(3, 4) = 8

X(3, 5) = 10

X(3, 6) = 12

MSChart1.ChartData = X

End Sub

When you set the chart control�s ChartType property to VtChChartType2dLine and
the ShowLegend property to True so the legend is displayed, the result appears as
shown in Figure 12.4. You can see the various data series represented there, and the
legend at right explains what each line means.

Figure 12.4 A 2D line chart with a data series.

You can also use a data series with 3D graphs�setting ChartType to
VtChChartType3dStep creates the 3D step chart in Figure 12.5.

Figure 12.5 A 3D step chart with a data series.

The code for this example is located in the chartseries folder on this book�s
accompanying CD-ROM.

TIP: To draw the sum of various series in a chart, you can open the chart control�s
property pages, click the Chart tab, and in the Chart Options box, click the Stack
Series item. This will stack the series one on top of the other, which can be convenient
if you want to look at a sum of various series.

Setting Chart And Axis Titles And Chart Colors

In the previous topic, we�ve seen how to create row labels and use a legend in a chart.
However, there�s much more here�you can also set a chart�s title, as well as give titles
to the entire x- and y-axes.

To set a chart�s titles, you can open the chart control�s property pages, and you do that
at design time by right-clicking the chart control and selecting Properties in the menu
that appears. You can then click the Text tab in the property pages and set the text for
the chart�s title, as well as the titles of the two axes. If you click the Fonts tab, you can

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\379-383.html (3 of 5) [3/14/2001 1:45:06 AM]

javascript:displayWindow('images/12-04.jpg',435,341%20)
javascript:displayWindow('images/12-04.jpg',435,341)
javascript:displayWindow('images/12-05.jpg',435,358%20)
javascript:displayWindow('images/12-05.jpg',435,358)

set the fonts used in those titles.

As an example, we�ve added axis titles to the chart in Figure 12.6.

Figure 12.6 Setting axis titles.

You can also set the colors used in a series in a chart in the property pages�just click
the Series Color tab in the property pages, and you can set the color used for each
series (that is, each column in the data grid).

Creating Pie Charts

The Testing Department is calling again: bar charts are nice, but how about some pie
charts in your new program, SuperDuperDataCrunch? You think, How do you do
that?

You set the chart control�s ChartType property to VtChChartType2dPie. The chart
control will display as many pie charts as you set up rows in the data grid (minus one
row for the use of labels). For example, we�ll set up two pie charts here, January and
February, each with five pie slices, rice, corn, lentils, wheat, and rye:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

X(2, 2) = 2

X(2, 3) = 3

X(2, 4) = 4

X(2, 5) = 5

X(2, 6) = 6

X(3, 1) = "February"

X(3, 2) = 4

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\379-383.html (4 of 5) [3/14/2001 1:45:06 AM]

javascript:displayWindow('images/12-06.jpg',404,297%20)
javascript:displayWindow('images/12-06.jpg',404,297)

X(3, 3) = 6

X(3, 4) = 8

X(3, 5) = 10

X(3, 6) = 12

MSChart1.ChartData = X

End Sub

The result appears in Figure 12.7. Now we�re creating pie charts in Visual Basic.

Figure 12.7 Two pie charts in Visual Basic.

TIP: You can also select a pie slice to make it stand out.

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\379-383.html (5 of 5) [3/14/2001 1:45:06 AM]

javascript:displayWindow('images/12-07.jpg',435,358%20)
javascript:displayWindow('images/12-07.jpg',435,358)

Creating 2D And 3D Line Charts

How can you create a 2D or a 3D line chart? You set the Microsoft chart control�s
ChartType property to VtChChartType2dLine or VtChChartType3dLine.

Here�s an example where we create a 2D line chart in the chart control MSChart1 and
a 3D line chart in MSChart2. First, we set up the data we�ll use in the chart controls�
data grids:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

X(2, 2) = 6

X(2, 3) = 5

X(2, 4) = 4

X(2, 5) = 3

X(2, 6) = 2

X(3, 1) = "February"

X(3, 2) = 12

X(3, 3) = 10

X(3, 4) = 8

X(3, 5) = 6

X(3, 6) = 4

MSChart1.ChartData = X

MSChart2.ChartData = X

...

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (1 of 8) [3/14/2001 1:45:56 AM]

Then we set the ChartType property:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

...

MSChart1.ChartData = X

MSChart2.ChartData = X

MSChart1.chartType = VtChChartType2dLine

MSChart2.chartType = VtChChartType3dLine

End Sub

And that�s it�the result of this code appears in Figure 12.8.

Figure 12.8 A 2D and 3D line chart.

Creating 2D And 3D Area Charts

An area chart displays data in a series as areas. How can you create a 2D or a 3D area
chart? You set the Microsoft chart control�s ChartType property to
VtChChartType2dArea or VtChChartType3dArea.

Here�s an example where we create a 2D area chart in the chart control MSChart1
and a 3D area chart in MSChart2. First, we set up the data we�ll use in the chart
controls� data grids:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (2 of 8) [3/14/2001 1:45:56 AM]

javascript:displayWindow('images/12-08.jpg',435,453%20)
javascript:displayWindow('images/12-08.jpg',435,453)

X(2, 2) = 2

X(2, 3) = 3

X(2, 4) = 4

X(2, 5) = 5

X(2, 6) = 6

X(3, 1) = "February"

X(3, 2) = 4

X(3, 3) = 6

X(3, 4) = 8

X(3, 5) = 10

X(3, 6) = 12

MSChart1.ChartData = X

MSChart2.ChartData = X

...

Then we set the ChartType property:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

...

MSChart1.ChartData = X

MSChart2.ChartData = X

MSChart1.chartType = VtChChartType2dArea

MSChart2.chartType = VtChChartType3dArea

End Sub

And that�s it�the result of this code appears in Figure 12.9. Now we�re drawing 2D and
3D area charts.

Figure 12.9 A 2D and 3D area chart in Visual Basic.

Creating 2D And 3D Bar Charts

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (3 of 8) [3/14/2001 1:45:56 AM]

javascript:displayWindow('images/12-09.jpg',435,453%20)
javascript:displayWindow('images/12-09.jpg',435,453)

Bar charts, also called histograms, just present their data using bars that match the
respective data values. How can you create a 2D or a 3D bar chart? You set the
Microsoft chart control�s ChartType property to VtChChartType2dBar or
VtChChartType3dBar.

Here�s an example where we create a 2D bar chart in the chart control MSChart1 and
a 3D bar chart in MSChart2. First, we set up the data we�ll use in the chart controls�
data grids:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

X(2, 2) = 4

X(2, 3) = 6

X(2, 4) = 8

X(2, 5) = 10

X(2, 6) = 12

X(3, 1) = "February"

X(3, 2) = 2

X(3, 3) = 3

X(3, 4) = 4

X(3, 5) = 5

X(3, 6) = 6

MSChart1.ChartData = X

MSChart2.ChartData = X

...

Then we set the ChartType property:

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (4 of 8) [3/14/2001 1:45:56 AM]

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

...

MSChart1.ChartData = X

MSChart2.ChartData = X

MSChart1.chartType = VtChChartType2dBar

MSChart2.chartType = VtChChartType3dBar

End Sub

And that�s it�the result of this code appears in Figure 12.10. Note that the data rows in
the 2D chart�s series are presented side by side.

Figure 12.10 A 2D and a 3D bar chart in Visual Basic.

Creating 2D And 3D Step Charts

Step charts present their data using bars as a series of steps. How can you create a 2D
or a 3D step chart? You set the Microsoft chart control�s ChartType property to
VtChChartType2dStep or VtChChartType3dStep.

Here�s an example where we create a 2D step chart in the chart control MSChart1
and a 3D step chart in MSChart2. First, we set up the data we�ll use in the chart
controls� data grids:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (5 of 8) [3/14/2001 1:45:56 AM]

javascript:displayWindow('images/12-10.jpg',435,453%20)
javascript:displayWindow('images/12-10.jpg',435,453)

X(2, 2) = 4

X(2, 3) = 6

X(2, 4) = 8

X(2, 5) = 10

X(2, 6) = 12

X(3, 1) = "February"

X(3, 2) = 2

X(3, 3) = 3

X(3, 4) = 4

X(3, 5) = 5

X(3, 6) = 6

MSChart1.ChartData = X

MSChart2.ChartData = X

...

Then we set the ChartType property:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

...

MSChart1.ChartData = X

MSChart2.ChartData = X

MSChart1.chartType = VtChChartType2dStep

MSChart2.chartType = VtChChartType3dStep

End Sub

And that�s it�the result of this code appears in Figure 12.11. Note that the data rows in
the 2D chart�s series are presented side by side.

Figure 12.11 A 2D and a 3D step chart in Visual Basic.

Creating 2D And 3D Combination Charts

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (6 of 8) [3/14/2001 1:45:56 AM]

javascript:displayWindow('images/12-11.jpg',435,453%20)
javascript:displayWindow('images/12-11.jpg',435,453)

Combination charts present their data as bars whose height matches relative data
values. How can you create a 2D or a 3D combination chart? You set the Microsoft
chart control�s ChartType property to VtChChartType2dCombination or
VtChChartType3dCombination.

Here�s an example where we create a 2D combination chart in the chart control
MSChart1 and a 3D combination chart in MSChart2. First, we set up the data we�ll
use in the chart controls� data grids:

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

X(1, 2) = "Rice"

X(1, 3) = "Corn"

X(1, 4) = "Lentils"

X(1, 5) = "Wheat"

X(1, 6) = "Rye"

X(2, 1) = "January"

X(2, 2) = 4

X(2, 3) = 6

X(2, 4) = 8

X(2, 5) = 10

X(2, 6) = 12

X(3, 1) = "February"

X(3, 2) = 2

X(3, 3) = 3

X(3, 4) = 4

X(3, 5) = 5

X(3, 6) = 6

MSChart1.ChartData = X

MSChart2.ChartData = X

...

Then we set the ChartType property:

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (7 of 8) [3/14/2001 1:45:56 AM]

Private Sub Form_Load()

Dim X(1 To 3, 1 To 6) As Variant

...

MSChart1.ChartData = X

MSChart2.ChartData = X

MSChart1.chartType = VtChChartType2dCombination

MSChart2.chartType = VtChChartType3dCombination

End Sub

And that�s it�the result of this code appears in Figure 12.12. Note that the data rows in
the 2D chart�s series are presented side by side.

Figure 12.12 A 2D and a 3D combination chart in Visual Basic.

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\384-392.html (8 of 8) [3/14/2001 1:45:56 AM]

javascript:displayWindow('images/12-12.jpg',435,453%20)
javascript:displayWindow('images/12-12.jpg',435,453)

Adding A Flex Grid Control To A Program

The Program Design Department is calling. Can you whip up a program to display a few
tables of data? No problem, you say, I�ll use the Microsoft flex grid control. They ask,
and how about spreadsheets? You say, no problem�flex grids can handle that too.

You can add a flex grid to a Visual Basic project easily; just follow these steps:

1. Select the Project[vbar]Components menu item.

2. Click the Controls tab in the Components dialog box.

3. Select the Microsoft FlexGrid Control entry in the Components dialog box.

4. Close the Components dialog box by clicking on OK. This displays the Flex Grid
Control tool in the toolbox.

5. Add a flex grid control to your form in the usual way for Visual Basic controls, using
the Flex Grid Control tool.

6. Set the flex grid�s Rows and Cols properties to the number of rows and columns you
want in your flex grid. You can also customize your flex grid by setting such properties
as BorderStyle, ForeColor, BackColor, and so on.

This gives you a blank flex grid control in your program; the next step is to fill it with
data. To start doing that, take a look at the next topic in this chapter.

TIP: When you insert a flex grid, you can also connect it to a database. To do this, you
create a new data control (it�s an intrinsic Visual Basic control and appears in the toolbox
when you start Visual Basic), connect that control to the database (by setting its
DatabaseName and RecordSource properties), then set the flex grid�s DataSource
property to the name of the data control. We�ll see more about connecting to a database
when we discuss the data-bound Visual Basic controls. (See �Connecting A Flex Grid To
A Database� later in this chapter.)

Working With Data In A Flex Grid Control

You�re writing your new program, SuperDuperDataCrunch, and it�s time to write the
code for the spreadsheet part. You can use a flex grid control here�but how do you insert
and work with the data in a flex grid? To see how this works, we�ll build a small
spreadsheet example program that adds a column of numbers. This will show how to
insert and access data in a flex grid, as well as how to handle text insertion direct from
the user in a rudimentary way (we�ll see a better method in the next topic in this chapter).
Several flex grid properties will help us here:

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\392-395.html (1 of 3) [3/14/2001 1:46:06 AM]

" Row�The current row in a flex grid

" Col�The current column in a flex grid

" Rows�The total number of rows

" Cols�The total number of columns

" Text�The text in the cell at (Row, Col)

We start by adding a flex grid to a form; give it 7 rows in the Rows property and 7
columns in the Cols property. We�ll begin by labeling the column heads with letters and
the row heads with numbers, just as you would see in any spreadsheet program.

Flex grids have FixedCols and FixedRows properties, which set the header columns and
rows in the flex grid. These columns and rows are meant to label the other columns and
rows, and they appear in gray by default (the other cells are white by default). Both
FixedCols and FixedRows are set to 1 by default.

We�ll add a column of numbers here, so we can also place labels in the first column of
cells, �Item 1� to �Item 6�, and a label at the bottom, �Total�, to indicate that the bottom
row holds the total of the six above. These labels are not necessary, of course, but we�ll
add them to show that you can use text as well as numbers in a flex grid. These labels
will appear in column 1 of the flex grid, and users can place the data they want to add in
column 2. The running sum appears at the bottom of column 2, as shown in Figure 12.13.

Figure 12.13 Designing a spreadsheet.

To set text in a flex grid cell, you set the Row and Col properties to that location and then
place the text in the flex grid�s Text property. Here�s how we set up the row and column
labels in MSFlexGrid1 when the form loads:

Sub Form_Load()

 Dim Items(6) As String

 Dim intLoopIndex As Integer

 Items(1) = "Item 1"

 Items(2) = "Item 2"

 Items(3) = "Item 3"

 Items(4) = "Item 4"

 Items(5) = "Item 5"

 Items(6) = "Total"

 For intLoopIndex = 1 To MSFlexGrid1.Rows � 1

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\392-395.html (2 of 3) [3/14/2001 1:46:06 AM]

javascript:displayWindow('images/12-13.jpg',500,268%20)
javascript:displayWindow('images/12-13.jpg',500,268)

 MSFlexGrid1.Col = 0

 MSFlexGrid1.Row = intLoopIndex

 MSFlexGrid1.Text = Str(intLoopIndex)

 MSFlexGrid1.Col = 1

 MSFlexGrid1.Text = Items(intLoopIndex)

 Next intLoopIndex

 MSFlexGrid1.Row = 0

 For intLoopIndex = 1 To MSFlexGrid1.Cols � 1

 MSFlexGrid1.Col = intLoopIndex

 MSFlexGrid1.Text = Chr(Asc("A&") � 1 + intLoopIndex)

 Next intLoopIndex

 MSFlexGrid1.Row = 1

 MSFlexGrid1.Col = 1

End Sub

The rows and labels appear as in Figure 12.14.

Figure 12.14 The flex grid spreadsheet program.

We�ve set up the labels as we want them�but what about reading data when the user types
it? We can use the flex grid�s KeyPress event for that:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

End Sub

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\392-395.html (3 of 3) [3/14/2001 1:46:06 AM]

javascript:displayWindow('images/12-14.jpg',303,188%20)
javascript:displayWindow('images/12-14.jpg',303,188)

If the user enters numbers in the cells of column 2, we�ll add those values together in a running sum that
appears at the bottom of that column, just as in a real spreadsheet program. To enter a number in a cell, the
user can click the flex grid, which sets the grid�s Row and Col properties. Then, when the user types, we can
add that text to the cell:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

 MSFlexGrid1.Text = MSFlexGrid1.Text + Chr$(KeyAscii)

...

End Sub

This represents one way of letting the user enter text into a grid, but notice that we�d have to handle all the
editing and deleting functions ourselves this way; see the next topic in this chapter to see how to use a text box
together with a flex grid for data entry.

Now that the user has changed the data in the spreadsheet, we add the numbers in column 2 this way:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

 Dim intRowIndex As Integer

 Dim Sum As Integer

 MSFlexGrid1.Text = MSFlexGrid1.Text + Chr$(KeyAscii)

 MSFlexGrid1.Col = 2

 Sum = 0

 For intRowIndex = 1 To MSFlexGrid1.Rows � 2

 MSFlexGrid1.Row = intRowIndex

 Sum = Sum + Val(MSFlexGrid1.Text)

 Next intRowIndex

...

Note that each time you set the Row and Col properties to a new cell, that cell gets the focus. Because we
want to place the sum of column 2 at the bottom of that column, that�s a problem. When we place the sum
there, as users type the digits of the current number they�re entering, the focus would keep moving to the
bottom of the column. To avoid that, we save the current row and column and restore them when we�re done
displaying the sum:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

 Dim intRowIndex As Integer

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\395-399.html (1 of 4) [3/14/2001 1:46:14 AM]

 Dim Sum As Integer

 MSFlexGrid1.Text = MSFlexGrid1.Text + Chr$(KeyAscii)

 OldRow = MSFlexGrid1.Row

 OldCol = MSFlexGrid1.Col

 MSFlexGrid1.Col = 2

 Sum = 0

 For intRowIndex = 1 To MSFlexGrid1.Rows � 2

 MSFlexGrid1.Row = intRowIndex

 Sum = Sum + Val(MSFlexGrid1.Text)

 Next intRowIndex

 MSFlexGrid1.Row = MSFlexGrid1.Rows � 1

 MSFlexGrid1.Text = Str(Sum)

 MSFlexGrid1.Row = OldRow

 MSFlexGrid1.Col = OldCol

End Sub

And that�s it. Now the user can type numbers into the spreadsheet, and we�ll display the running sum, as
shown in Figure 12.15. We�ve created a spreadsheet program using a flex grid control.

Figure 12.15 Adding numbers in the flex grid spreadsheet program.

The code for this example is located in the spreadsheet folder on this book�s accompanying CD-ROM. Note
that in this case we had to handle text entry ourselves, and we didn�t let the user delete characters or perform
other edits like cut and paste. We can do that if we use a text box for character entry, and we�ll see how to do
that in the next topic.

Typing Data Into A Flex Grid

In the previous topic, we saw how to work with data in a flex grid and how to use the KeyPress event to
support rudimentary text entry. Microsoft, however, suggests you use a text box for text entry in a flex grid�but
how are you supposed to do that?

The way you do it is to keep the text box invisible until the user selects a cell, then move the text box to that
cell, size it to match the cell, and make it appear. When the user is done typing and clicks another cell, you
transfer the text to the current cell and make the text box disappear.

Why Microsoft didn�t build this into flex grids is anybody�s guess�perhaps because many flex grids are not
supposed to support text entry, and that functionality would just take up memory. However, we can do it
ourselves.

To see how this works, add a text box to a form, and set its Visible property to False so it starts off hidden.

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\395-399.html (2 of 4) [3/14/2001 1:46:14 AM]

javascript:displayWindow('images/12-15.jpg',303,188%20)
javascript:displayWindow('images/12-15.jpg',303,188)

Then add a flex grid to the form and give it, say, 10 columns and 10 rows. We can label the columns with
letters and the rows with numbers, as is standard in spreadsheets (note that we use the Visual Basic Chr and
Asc functions to set up the letters, and that we enter the text directly into the flex grid using its TextArray
property):

Sub Form_Load()

 Dim intLoopIndex As Integer

 For intLoopIndex = MSFlexGrid1.FixedRows To MSFlexGrid1.Rows � 1

 MSFlexGrid1.TextArray(MSFlexGrid1.Cols * intLoopIndex) =_

 intLoopIndex

 Next

 For intLoopIndex = MSFlexGrid1.FixedCols To MSFlexGrid1.Cols � 1

 MSFlexGrid1.TextArray(intLoopIndex) = Chr(Asc("A") +_

 intLoopIndex � 1)

 Next

End Sub

To select a cell, the user can click it with the mouse. When the user starts typing, we can add the text to the
text box this way:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

 Text1.Text = Text1.Text & Chr(KeyAscii)

 Text1.SelStart = 1

...

We also move the text box to cover the current cell and shape it to match that cell using the flex grid�s
CellLeft, CellTop, CellWidth, and CellHeight properties:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

 Text1.Text = Text1.Text & Chr(KeyAscii)

 Text1.SelStart = 1

 Text1.Move MSFlexGrid1.CellLeft + MSFlexGrid1.Left,_

 MSFlexGrid1.CellTop + MSFlexGrid1.Top, MSFlexGrid1.CellWidth,_

 MSFlexGrid1.CellHeight

...

End Sub

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\395-399.html (3 of 4) [3/14/2001 1:46:14 AM]

Finally, we make the text box visible and give it the focus:

Sub MSFlexGrid1_KeyPress(KeyAscii As Integer)

 Text1.Text = Text1.Text & Chr(KeyAscii)

 Text1.SelStart = 1

 Text1.Move MSFlexGrid1.CellLeft + MSFlexGrid1.Left,_

 MSFlexGrid1.CellTop + MSFlexGrid1.Top, MSFlexGrid1.CellWidth,_

 MSFlexGrid1.CellHeight

 Text1.Visible = True

 Text1.SetFocus

End Sub

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\395-399.html (4 of 4) [3/14/2001 1:46:14 AM]

When the user clicks another cell, a LeaveCell event is generated, and we can take advantage of that event
to transfer the text from the text box to the current cell and hide the text box. Note that if the text box is not
visible�in other words, the user is just moving around in the flex grid�we do not want to transfer the text
from the text box to the current cell, and so we exit the procedure in that case:

Sub MSFlexGrid1_LeaveCell()

 If Text1.Visible = False Then

 Exit Sub

 End If

...

Otherwise, we transfer the text from the text box to the current cell, clear the text box, and hide it:

Sub MSFlexGrid1_LeaveCell()

 If Text1.Visible = False Then

 Exit Sub

 End If

 MSFlexGrid1.Text = Text1

 Text1.Visible = False

 Text1.Text = ""

End Sub

And that�s it. Now users can use the text box to enter text in a way that makes it look as though they�re
entering text directly into the flex grid, as shown in Figure 12.16. The code for this example is located in
the flex folder on this book�s accompanying CD-ROM.

Figure 12.16 Using a text box for flex grid data entry.

Setting Flex Grid Grid Lines And Border Styles

You can set what types of grid lines a flex grid uses with the GridLines property. These can be set at
design time or runtime to the following values:

" flexGridNone

" flexGridFlat

" flexGridInset

" flexGridRaised

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\399-403.html (1 of 5) [3/14/2001 1:46:25 AM]

javascript:displayWindow('images/12-16.jpg',320,240%20)
javascript:displayWindow('images/12-16.jpg',320,240)

You can set the grid line width with the GridLineWidth property.

In addition, you can set the BorderStyle property to show a border around the whole control, or no border
at all:

" flexBorderNone

" flexBorderSingle

Labeling Rows And Columns In A Flex Grid

The usual convention in spreadsheets is to label the top row with letters and the first column with numbers.
Here�s some code to do just that (note that we use the Visual Basic Chr and Asc functions to set up the
letters and enter text directly into the flex grid using its TextArray property, which holds the grid�s text in
array form):

Sub Form_Load()

 Dim intLoopIndex As Integer

 For intLoopIndex = MSFlexGrid1.FixedRows To MSFlexGrid1.Rows � 1

 MSFlexGrid1.TextArray(MSFlexGrid1.Cols * intLoopIndex) =_

 intLoopIndex

 Next

 For intLoopIndex = MSFlexGrid1.FixedCols To MSFlexGrid1.Cols � 1

 MSFlexGrid1.TextArray(intLoopIndex) = Chr(Asc("A") +_

 intLoopIndex � 1)

 Next

End Sub

TIP: The columns and rows you label in a flex grid are usually colored gray; you set the number of label
columns and rows with the FixedCols and FixedRows properties.

Formatting Flex Grid Cells

The Aesthetic Design Department is calling again. Can�t you use italics in that spreadsheet? Hmm, you
think�can you?

Yes, you can: flex grid cells support formatting, including word wrap. You can format text using these
properties of flex grids:

" CellFontBold

" CellFontItalic

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\399-403.html (2 of 5) [3/14/2001 1:46:25 AM]

" CellFontName

" CellFontUnderline

" CellFontStrikethrough

" CellFontSize

Besides the preceding properties, you can size cells as you like using the CellWidth and RowHeight
properties.

Sorting A Flex Grid Control

The Testing Department is calling again. Your new program, SuperDuperDataCrunch, is terrific, but why
can�t the user sort the data in your spreadsheet? Sounds like a lot of work, you think.

Actually, it�s easy. You just use the flex grid�s Sort property (available only at runtime). For example, to
sort a flex grid according to the values in column 1 when the user clicks a button, add this code to your
program (setting Sort to 1 sorts the flex grid on ascending values):

Private Sub Command1_Click()

 MSFlexGrid1.Col = 1

 MSFlexGrid1.Sort = 1

End Sub

TIP: Note that when the user clicks a column, that column becomes the new default column in the Col
property, so if you want to let the user click a column and sort based on the values in that column, omit the
MSFlexGrid1.Col = 1 in the preceding code.

Dragging Columns In A Flex Grid Control

One of the attractive aspects of flex grids is that you can use drag-and-drop with them to let users rearrange
the flex grid as they like. To see how this works, we�ll write an example here that lets users drag and move
columns around in a flex grid.

When the user presses the mouse button to start the drag operation, we store the column where the mouse
went down in a form-wide variable named, say, intDragColumn in the MouseDown event. This event is
stored in the flex grid�s MouseCol property:

Private Sub MSFlexGrid1_MouseDown(Button As Integer, Shift As Integer, _

 X As Single, Y As Single)

 intDragColumn = MSFlexGrid1.MouseCol

...

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\399-403.html (3 of 5) [3/14/2001 1:46:25 AM]

We also add that variable, intDragColumn, to the (General) declaration area of the form:

Dim intDragColumn As Integer

Then we start the drag and drop operation for the column in the flex grid:

Private Sub MSFlexGrid1_MouseDown(Button As Integer, Shift As Integer, _

 X As Single, Y As Single)

 intDragColumn = MSFlexGrid1.MouseCol

 MSFlexGrid1.Drag 1

End Sub

Finally, when the user drags the column to a new location and drops it, we can catch that in the DragDrop
event. In that events handler�s procedure, we move the column to its new location�the current mouse
column�using the ColPosition property:

Private Sub MSFlexGrid1_DragDrop(Source As VB.Control, X As Single,

 Y As Single)

 MSFlexGrid1.ColPosition(intDragColumn) = MSFlexGrid1.MouseCol

End Sub

And that�s it. Now the user can drag and rearrange the columns in our flex grid. To see how this works, we
display a database in our flex grid, as shown in Figure 12.17. To see how to do that, take a look at the next
topic in this chapter where we use a Visual Basic data control (here, the database we use is the Nwind.mdb
database, which comes with Visual Basic). When the user drags a column in our program, a special mouse
pointer appears, as shown also in Figure 12.17.

Figure 12.17 Dragging a column in a flex grid.

The code for this example is located in the dragged folder on this book�s accompanying CD-ROM (note
that to run this example, you must set the data control�s DatabaseName to the Nwind.mdb file on your
computer, including the correct path).

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\399-403.html (4 of 5) [3/14/2001 1:46:25 AM]

javascript:displayWindow('images/12-17.jpg',552,287%20)
javascript:displayWindow('images/12-17.jpg',552,287)

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\399-403.html (5 of 5) [3/14/2001 1:46:25 AM]

Connecting A Flex Grid To A Database

We�ll work with databases later in this book, but because flex grids are often used
with databases, we�ll take a look at how to connect a database to a flex grid here. To
connect a database to a flex grid, follow these steps:

1. Add a data control, Data1, to your form (the data control is an intrinsic control in
Visual Basic and appears in the toolbox when you start Visual Basic).

2. Set the data control�s DatabaseName property to the database file you want to use.
This can also be done at runtime, but if you do so, be sure to call the data control�s
Refresh method to update that control. In code, the process goes something like this,
where we use the Visual Basic App object�s Path property to get the application�s
path (assuming the database file is stored at the same path as the application):

 Data1.DatabaseName = App.Path & "\Nwind.mdb"

 Data1.Refresh

3. Set Data1�s RecordSource property to the table in the database you want to work
with.

4. Set the flex grid�s DataSource property to the data control�s name, which is Data1
here.

For example, we display the Nwind.mdb database that comes with Visual Basic in a
flex grid in Figure 12.18. (There�s a lot more about data-bound controls later in this
book; this is just an appetizer.)

Figure 12.18 Opening a database in a flex grid.

Visual Basic 6 Black Book:The Chart And Grid Controls

http://24.19.55.56:8080/temp/ch12\403-404.html [3/14/2001 1:46:29 AM]

javascript:displayWindow('images/12-18.jpg',552,287%20)
javascript:displayWindow('images/12-18.jpg',552,287)

Chapter 13
The Timer And Serial Communications
Controls
If you need an immediate solution to:

Adding A Timer Control To A Program

Initializing A Timer Control

Handling Timer Events

Formatting Times And Dates

Creating A Clock Program

Creating A Stopwatch

Creating An Alarm Clock

Creating Animation Using The Timer Control

Adding A Communications Control To A Program

Setting Up The Receive And Transmit Buffers

Opening The Serial Port

Working With A Modem

Reading Data With The Communications Control

Sending Data With The Communications Control

Setting Up Communications Handshaking

Handling Communications Events

Closing The Serial Port

Adding A MonthView Control To Your Program

Getting Dates From A MonthView Control

Adding A DateTimePicker Control To Your Program

Using A DateTimePicker Control

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\405-409.html (1 of 4) [3/14/2001 1:46:39 AM]

In Depth

In this chapter, we�re going to cover the timer and communication controls that come
with Visual Basic. In particular, we�ll cover the timer control, the serial port
communications control, and two controls that exist mostly for convenience: the
MonthView control and the DateTimePicker control. Let�s get an overview of these
controls first.

The Timer Control

You use a timer control when you want to execute code at specific intervals. To use a
timer, you add a timer control to your program (timers are one of the intrinsic controls
that appear in the toolbox when you start Visual Basic) and set its Interval property.
From then on, while the timer is enabled, it creates Timer events, which are handled
in an event handling procedure, like Timer1_Timer() . You place the code you want
executed each interval in that procedure.

To add a timer to your program, use the Timer Control tool in the toolbox, which is
the seventh tool down on the left in Figure 13.1.

Figure 13.1 The Timer Control tool.

We should note, however, that there are a few issues about using the Interval
property. Although measured in milliseconds (1/1000s of a second), Timer events
cannot actually occur faster than 18.2 times a second (this is the period of the
computer�s timer interrupt). The interval can be set to values between 0 (in which case
nothing happens) and 64,767, which means that even the longest interval can�t be
much longer than 1 minute (about 64.8 seconds). Of course, you can design your code
to wait for several intervals to pass before doing anything.

You shouldn�t count on a timer too closely if your task execution is dependent on
exact intervals; if the system is busy executing long loops, intensive calculations, or
drive, network, or port access (in which case software routinely disables the timer
interrupt), your application may not get Timer events as often as the Interval
property specifies. That is to say, Timer events are not guaranteed to happen exactly
on time. If you need to be sure, your software should check the system clock when it
needs to (using, for example, the Visual Basic Time$ function), rather than try to keep
track of time internally.

Another point here has to do with Windows programming philosophy. Using a timer
can easily pull programmers back to thinking in terms of sequential programming (as
in the DOS days), rather than event-oriented programming. When you use a timer,
your code has a lot of control and can get a lot of execution time, because your code is
called each time the timer ticks. However, that doesn�t mean you should set a timer
interval short and put in all kinds of loops. Remember that Windows is built around

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\405-409.html (2 of 4) [3/14/2001 1:46:39 AM]

javascript:displayWindow('images/13-01.jpg',613,600%20)
javascript:displayWindow('images/13-01.jpg',613,600)

user events, not programs that are designed to retain control for long periods of time.
Other programs will probably be running at the same time as yours, so it�s considerate
not to use timers simply to wrest control from the environment.

With all that said, though, the timer is a uniquely powerful control, and we�ll put it to
use in this chapter.

The Communications Control

You use the Microsoft communications control to support serial port�that is, modem
�communications. If you want to write your own modem package, this is where you
start. You can use the communications control to do everything from dialing phone
numbers to creating a full-fledged terminal program.

To add this control to your program, select the Project|Components menu item, click
the Controls tab in the Components dialog box that opens, select the Microsoft Comm
Control entry, and click on OK to close the Components dialog box. Doing so adds
this control to the toolbox, as shown in Figure 13.2; the Communications Control tool
is the eleventh tool down on the right.

Figure 13.2 The Communications Control tool.

When you use the communications control, you use a serial port in your computer.
The mouse is usually connected to COM1, and the modem is usually connected to
COM2. You set baud rate, parity, and so on, and then call another computer by
issuing commands to your modem. After the connection is made, you can exchange
data with the other computer.

Receiving And Transmitting

When a serial port is opened, your program creates receive and transmit buffers. To
work with these buffers, the communications control supports a number of properties
that can be set at design time using the control�s property pages.

The InBufferSize and OutBufferSize properties hold the size of the input and output
buffers, and the RThreshold and SThreshold properties set or return the number of
characters that are received into the receive and transmit buffers before the OnComm
event is fired (this event is used to monitor changes in communications states). We�ll
see these and other such properties in this chapter.

To establish a connection, you set the communications control�s CommPort property
to the serial port�s number (usually 2), the Settings property to the protocol settings
you want (for example, �9600,N,8,1�), and set the PortOpen property to True. To start
dialing, you send the appropriate commands to your modem.

Sending Data

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\405-409.html (3 of 4) [3/14/2001 1:46:39 AM]

javascript:displayWindow('images/13-02.jpg',613,600%20)
javascript:displayWindow('images/13-02.jpg',613,600)

To actually send data, you use the Output property. You can either send data to your
modem or to the other computer. For example, here�s how you dial a phone number,
by sending an �ATDT� string to your modem (that string is part of the standard
Hayes-compatible command set used with modems; vbCr is a Visual Basic constant
standing for the ASCII code for carriage return/line feed):

MSComm1.Output = "ATDT 555-1234" & vbCr

You can also send data this way, as we�ll see in this chapter:

MSComm1.Output = "Here�s some text!"

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\405-409.html (4 of 4) [3/14/2001 1:46:39 AM]

Reading Data

You read data when an OnComm event occurs. In the OnComm event handler, you
use the CommEvent property to determine what happened. For example, when
CommEvent is equal to comEvReceive , we�ve received data and can use the Input
property. Here we fill a buffer with data that the communications control has received:

Private Static Sub MSComm1_OnComm()

 Select Case MSComm1.CommEvent

 Case comEvReceive

 Dim Buffer As Variant

 Buffer = MSComm1.Input

...

Setting the InputLen property to some value means you�ll get that number of bytes
when you use the Input property (if those bytes are available). Setting InputLen to 0
makes the communications control read the entire contents of the receive buffer when
you use Input . The EOFEnable property is used to indicate when an End Of File
(EOF) character is found in the data input. If you set this property to True, it makes
data input stop (and the OnComm event fire) when the EOF is encountered.

Finally, as each byte of data is received, the InBufferCount property is incremented
by 1 (you use the InBufferCount property to get the number of bytes in the receive
buffer). You can also clear the receive buffer by setting the value of this property to 0.
You can monitor the number of bytes in the transmit buffer by using the
OutBufferCount property. You can clear the transmit buffer by setting this value to
0.

We�ll see all about the communications control, such as how to support handshaking
and how to hang up, in this chapter.

The MonthView And DateTimePicker Controls

We�ll also cover two more controls in this chapter�the MonthView and
DateTimePicker controls (see Figure 13.3). These controls really exist just to make
life a little easier for the user, and they�re not all that complex.

Figure 13.3 The MonthView Control and the DateTimePicker Control tools.

In particular, the MonthView control displays a calendar of the current month and lets

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\409-413.html (1 of 4) [3/14/2001 1:46:57 AM]

javascript:displayWindow('images/13-03.jpg',874,600%20)
javascript:displayWindow('images/13-03.jpg',874,600)

the user scroll to other months as well. The user can select a date�or range of
sequential dates�in MonthView controls.

The DateTimePicker control allows the user to specify a date or time, as its name
implies. DateTimePickers can display a MonthView as a drop-down control, or the
current time together with an updown control to let users select the time they want.
The control�s UpDown property determines which mode the control is in. When
UpDown is False, the control is in drop-down calendar mode (that�s the default).
When the UpDown property is True, the DateTimePicker is in time format mode.

To add these controls to your program, select the Project|Components menu item,
click the Controls tab in the Components dialog box that opens, select the Microsoft
Windows Common Controls-2 entry, and click OK to close the Components dialog
box. This adds both these controls to the toolbox, as shown in Figure 13.3. The
MonthView Control tool is the thirteenth tool down on the left in Figure 13.3, and the
DateTimePicker Control tool is the tool just to the right of the MonthView Control
tool.

That�s it for our overview�it�s time to turn to the Immediate Solutions.

Immediate Solutions

Adding A Timer Control To A Program

The Testing Department is calling again. The users of your new program,
SuperDuperDataCrunch , turn out to be real clock-watchers. In fact, they�d like your
program to display a clock so they don�t get neck strain by looking up at the wall
every now and then. Can you add a clock to your program?

You can, using the timer control. You add a timer control to your program just as you
would any other intrinsic control�you just click the Timer Control tool and draw the
timer on your form. The timer control is invisible when the program runs, so the size
and location of the control don�t matter too much.

Now that you�ve added a timer, how do you get it running? See the next topic.

Initializing A Timer Control

Now that you�ve installed a timer control in your program�how do you get it started?
You use these two properties:

" Enabled determines whether or not the timer creates Timer events.

" Interval sets the number of milliseconds between Timer events.

When you place a timer in your program, you can set its Enabled property to False,
which means no Timer events will occur. When you want to start the timer, you can
set Enabled to True.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\409-413.html (2 of 4) [3/14/2001 1:46:57 AM]

TIP: Note that a timer�s Enabled property is different from other controls� Enabled
properties; the timer�s Enabled property makes Timer events occur or not, whereas
other Enabled properties make controls accessible or inaccessible to the user.

The Interval property sets the interval between Timer events. Although measured in
milliseconds (1/1000s of a second), Timer events cannot actually occur faster that
18.2 times a second. The interval can be between 0 (in which case nothing happens)
and 64,767, which means that even the longest interval can�t be much longer than 1
minute (about 64.8 seconds); however, you can design your code to wait for several
intervals to pass before doing anything.

WARNING! If the system is busy, your application may not get Timer events as
often as the Interval property specifies. That is, the interval is not guaranteed to
elapse exactly on time. To be more sure of accuracy, the Timer event handler should
check the system clock when needed.

Now that you�ve set up your timer as you want it, how do you use Timer events? See
the next topic in this chapter for the details.

Handling Timer Events

Well, you�ve set your timer�s Interval property and set its Enabled property to True.
Presumably, your timer is doing something�but what?

The main event for timers is the Timer event, and double-clicking a timer at design
time creates a handler function for that event:

Sub Timer1_Timer()

End Sub

All you need to do is to add the code you want executed to this procedure. For
example, here we display the current time in a label named Display using the Visual
Basic Time$ function:

Sub Timer1_Timer()

 Display.Caption = Time$

End Sub

This code will be called as often as the timer�s Interval property specifies (although
note that Timer events are not guaranteed to occur�many other types of programs
temporarily suspend the timer interrupt on occasion).

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\409-413.html (3 of 4) [3/14/2001 1:46:57 AM]

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\409-413.html (4 of 4) [3/14/2001 1:46:57 AM]

Formatting Times And Dates

When working with times and dates in Visual Basic, it�s valuable knowing how to
display them as strings. For example, you can use the Visual Basic Time$ and Date$
functions to get the time and date in string form, suitable for display:

Text1.Text = Time$

You can also use string comparisons here; for example, to check if the current time is
past a time specified in string form, you can use code like this:

If (Time$ > AlarmSetting.Text) Then

...

End If

Besides Time$ and Date$, you can use Now . This function refers to the current time
in a numeric way, and you can use comparisons this way:

If (Now > AlarmTime) Then

...

End If

To display the current date and time using Now , you use the Format$ function. For
example, this use of Format$ and Now :

Format$(Now, "dddd, mmmm d, yyy")

returns the string with the day of the week, the month, date, and year like this: �Friday,
January 1, 2000�. The different format strings and what they do appear in Table 13.1
�and some examples appear in Table 13.2 to make all this clearer.

Table
13.1
Date and
time
format
strings.
String

Description

d The one- or two-digit day.
dd The two-digit day. Single-digit day values are preceded by a zero.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\413-417.html (1 of 4) [3/14/2001 1:47:03 AM]

ddd The three-character day-of-week abbreviation.
dddd The full day-of-week name.

h The one- or two-digit hour in 12-hour format.

hh The two-digit hour in 12-hour format. Single-digit values are preceded by a
zero.

H The one- or two-digit hour in 24-hour format.

HH The two-digit hour in 24-hour format. Single-digit values are preceded by a
zero.

m The one- or two-digit minute.
mm The two-digit minute. Single-digit values are preceded by a zero.
M The one- or two-digit month number.

MM The two-digit month number. Single-digit values are preceded by a zero.
MMM The three-character month abbreviation.

MMMM The full month name.
s The one- or two-digit seconds.
ss The two-digit seconds. Single-digit values are proceeded by a zero.

AM/PM The two-letter AM/PM abbreviation (that is, AM is displayed as �AM�).
y The one-digit year (that is, 1999 would be displayed as �9�).
yy The last two digits of the year (that is, 1999 would be displayed as �99�).

yyyy The full year (that is, 1999 would be displayed as �1999�).

Table 13.2 Formatted
date and time examples.
Format Expression

Result

Format$(Now, �m - d -
yy�) �1-1-00�

Format$(Now, �m / d /
yy�) �1 / 1 / 00�

Format$(Now, �mm - dd
- yy�) �01 /01 / 00�

Format$(Now, �dddd,
mmmm d, yyyy�) �Friday, January 1, 2000�

Format$(Now, �d mmm,
yyyy�) �1 Jan, 2000�

Format$(Now,
�hh:mm:ss mm/dd/yy�) �01:00:00 01/01/00�

Format$(Now,
�hh:mm:ss AM/PM mm

- dd - yy�)
�01:00:00 AM 01-01-00�

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\413-417.html (2 of 4) [3/14/2001 1:47:03 AM]

Creating A Clock Program

Creating a clock in Visual Basic is easy with the timer control. To see how that works,
just create a new project now and add a timer control, Timer1. Set the timer�s
Interval property to 1000 (that is, a thousand milliseconds, or one second).

Next, add a label that covers most of the form and give it a large font, like 48-point
Courier New. We�ll display the time in that label each time the timer ticks, so add the
Timer1_Tick() event handler now:

Sub Timer1_Timer()

End Sub

All we have to do when there�s a Timer event is to update the clock, and we use the
Visual Basic Time$ function to do that:

Sub Timer1_Timer()

 Display.Caption = Time$

End Sub

That�s all we need. Now the clock is functional, as shown in Figure 13.4.

Figure 13.4 A clock created with the timer control.

The code for this example is located in the clock folder on this book�s accompanying
CD-ROM. If you want to create more than a simple clock�an alarm clock, for example
�see the following topics in this chapter.

Creating A Stopwatch

The Testing Department is calling. Users are concerned about the time your
SuperDuperDataCrunch program takes in execution�can you add a stopwatch to the
program to convince them it�s really pretty fast? You think, a stopwatch?

Building a stopwatch is valuable to see how to work with elapsed time instead of
simply system time. To build a stopwatch program, create a new Visual Basic project
now and add two buttons, labeled �Start� and �Stop�, as well as a label control named
Display (set the font in the label to something large, like 48-point Courier New). Also
add a timer control, Timer1, and set its Enabled property to False so it doesn�t do
anything until the user clicks the Start button.

Now when the user clicks the Start button, Command1 , we can store the current time
using Now in a form-wide variable named StartTime (add StartTime to the

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\413-417.html (3 of 4) [3/14/2001 1:47:03 AM]

javascript:displayWindow('images/13-04.jpg',353,186%20)
javascript:displayWindow('images/13-04.jpg',353,186)

(General) section of the form), and we can start the timer by setting its Enabled
property to True:

Private Sub Command1_Click()

 StartTime = Now

 Timer1.Enabled = True

End Sub

When the user clicks the Stop button, Command2, we can stop the timer:

Private Sub Command2_Click()

 Timer1.Enabled = False

End Sub

Finally, in the Timer event, we just display the time that has elapsed from the starting
time, and that time is just the difference between the current value of Now and the
StartTime variable:

Sub Timer1_Timer()

 Display.Caption = Format$(Now - StartTime, "hh:mm:ss")

End Sub

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\413-417.html (4 of 4) [3/14/2001 1:47:03 AM]

That�s it. The result of this code appears in Figure 13.5. Now we�ve created a stopwatch
in Visual Basic. The code for this example is located in the stopwatch folder on this
book�s accompanying CD-ROM.

Figure 13.5 A stopwatch created with the timer control.

Creating An Alarm Clock

Your great-aunt is calling. Why can�t you ever write a program that she can use? She
doesn�t use databases, spreadsheets, or word processors. You say, what else is there?
She says, how about a nice alarm clock?

You can build an alarm clock using the timer control in Visual Basic. To see how to do
that, create a new program now and add a timer, Timer1 , to it, setting the timer�s
Interval property to 1000 (that is, 1 second). Add a label named Display and set the
font in the label large enough to read easily (we�ll use 48-point Courier New). We�ll
need some way of setting when the alarm should go off, so add a text box named
AlarmSetting . We�ll also need some way of turning the alarm on or off, so add two
option buttons in a control array, OnButton ; give OnButton(1) the caption �Alarm On�
and OnButton(2) the caption �Alarm Off�.

Now we�re ready to write some code. Add a form-wide Boolean variable to the
(General) section of the form named AlarmOn. We�ll set this variable to True when the
user clicks the Alarm On button:

Sub OnButton_Click(Index As Integer)

 If (Index = 1) Then

 AlarmOn = True

...

End Sub

and we�ll set AlarmOn to False when the user clicks the Alarm Off button:

Sub OnButton_Click(Index As Integer)

 If (Index = 1) Then

 AlarmOn = True

 Else

 AlarmOn = False

 End If

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\417-421.html (1 of 5) [3/14/2001 1:47:21 AM]

javascript:displayWindow('images/13-05.jpg',362,240%20)
javascript:displayWindow('images/13-05.jpg',362,240)

End Sub

Now in the Timer event handler, we just check if the current time is past the setting in
the AlarmSetting text box and if AlarmOn is True (notice that we can do a direct
string comparison with Time$ and AlarmSetting.Text):

Sub Timer1_Timer()

 If (Time$ > AlarmSetting.Text And AlarmOn) Then

...

End Sub

If the alarm is supposed to sound, we just use the Visual Basic Beep procedure, which
will beep each time Timer1_Timer() is called (in other words, once a second) until the
user turns the alarm off:

Sub Timer1_Timer()

 If (Time$ > AlarmSetting.Text And AlarmOn) Then

 Beep

 End If

...

End Sub

Finally, we just display the current time in the Display label:

Sub Timer1_Timer()

 If (Time$ > AlarmSetting.Text And AlarmOn) Then

 Beep

 End If

 Display.Caption = Time$

End Sub

As an added touch, you can restrict user input in the AlarmSetting text box to valid
characters. Here�s how you restrict user input in a text box�when you set the KeyAscii
argument to 0, that cancels the struck key:

Sub AlarmSetting_KeyPress(KeyAscii As Integer)

 Dim Key As String

 Key = Chr$(KeyAscii)

 If ((Key < "0" Or Key > "9") And Key <> ":") Then

 Beep

 KeyAscii = 0

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\417-421.html (2 of 5) [3/14/2001 1:47:21 AM]

 End If

End Sub

And that�s it�now we�ve got a functioning alarm clock, as shown in Figure 13.6. The
code for this example is located in the alarm folder on this book�s accompanying
CD-ROM.

Figure 13.6 An alarm clock built on the timer control.

Creating Animation Using The Timer Control

A common use for the timer control is to create graphics animation, because the way
you create animation is by displaying successive frames of the animation sequence at
intervals. That�s a good job for the timer control.

To see how this works, we�ll create an example now. In this example, we�ll just switch
back and forth between two simple images, image1.bmp and image2.bmp, which are
simply strips of solid color, red and blue.

To store those images in our program, add an image list control, ImageList1 , now.
You add image list controls with the Project|Components menu item; click the Controls
tab in the Components dialog box that opens, select the Microsoft Windows Common
Controls item, and click on OK to close the Components box.

Draw a new image list control, ImageList1, and right-click it, selecting Properties in
the menu that opens. We click the Images tab in the image list�s property pages, and we
use the Insert Picture button to insert the two images in image1.bmp and image2.bmp
into the image list.

Next, add a timer control, Timer1; set its Interval property to 1000 (in other words, 1
second), and set its Enabled property to False. Also add a command button,
Command1, with the caption �Start Animation�, and a picture box, Picture1, setting the
picture box�s AutoSize property to True so that it resizes itself to fit our images.

That�s it�we�re ready to write some code. We start the animation when the user clicks
the Start Animation button by enabling the timer:

Private Sub Command1_Click()

 Timer1.Enabled = True

End Sub

We�ll keep track of the current image with a Boolean variable named blnImage1; if this
Boolean variable is True, we�ll display the first image in the image list:

Private Sub Timer1_Timer()

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\417-421.html (3 of 5) [3/14/2001 1:47:21 AM]

javascript:displayWindow('images/13-06.jpg',367,224%20)
javascript:displayWindow('images/13-06.jpg',367,224)

 Static blnImage1 As Boolean

 If blnImage1 Then

 Picture1.Picture = ImageList1.ListImages(1).Picture

...

Otherwise, we�ll display the second image in the image list:

Private Sub Timer1_Timer()

 Static blnImage1 As Boolean

 If blnImage1 Then

 Picture1.Picture = ImageList1.ListImages(1).Picture

 Else

 Picture1.Picture = ImageList1.ListImages(2).Picture

 End If

...

Finally, we toggle blnImage1 :

Private Sub Timer1_Timer()

 Static blnImage1 As Boolean

 If blnImage1 Then

 Picture1.Picture = ImageList1.ListImages(1).Picture

 Else

 Picture1.Picture = ImageList1.ListImages(2).Picture

 End If

 blnImage1 = Not blnImage1

End Sub

And that�s all we need. When you run the program and click the Start Animation button,
shown in Figure 13.7, the animation starts: the picture box flashes red and blue images
once a second. Our animation example is a success.

Figure 13.7 Graphics animation with the timer control in Visual Basic.

The code for this example is located in the coloranimation folder on this book�s
accompanying CD-ROM.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\417-421.html (4 of 5) [3/14/2001 1:47:21 AM]

javascript:displayWindow('images/13-07.jpg',283,217%20)
javascript:displayWindow('images/13-07.jpg',283,217)

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\417-421.html (5 of 5) [3/14/2001 1:47:21 AM]

Adding A Communications Control To A Program

The Testing Department is calling. Wouldn�t it be great if users of your program could
call in directly to the company�s bulletin board? Hmm, you think, how do you do that?

To support serial communications, you use the Microsoft communications control.
Adding this control to your program is easy; just follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Microsoft Comm Control entry, and click on OK to close the
Components dialog box.

4. Following the preceding steps adds this control to the toolbox; draw it on your
program�s form now. This control is invisible at runtime, so the control�s size and
location don�t matter very much.

Now that you�ve added the control, how do you set it up and get it working? Take a
look at those topics coming up in this chapter.

Setting Up The Receive And Transmit Buffers

When a port is opened, the program creates receive and transmit buffers. To manage
these buffers, the communications control has a number of properties that you set at
design time using the control�s property pages. For example, it�s probably not a good
idea to have a communications event (an OnComm event) for every byte you read;
instead, you can set the RThreshold property to the number of bytes you want to read
before triggering that event. The communications control�s buffer management
properties are InBufferSize, OutBufferSize, RThreshold, SThreshold, InputLen,
and EOFEnable.

InBufferSize And OutBufferSize

The InBufferSize and OutBufferSize properties indicate how much memory is
allocated to the receive and transmit buffers. By default, InBufferSize is 1024 and
OutBufferSize is 512, although you can set them as you like. If your buffer size is too
small, you run the risk of overflowing the buffer (unless you use handshaking�see that
topic later in this chapter).

RThreshold And SThreshold

The RThreshold and SThreshold properties set or return the number of bytes that are
received into the receive and transmit buffers before the OnComm event is fired. The
OnComm event is the important one for the communications control and is used to
monitor changes in communications states. For example, when your program receives

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\421-424.html (1 of 3) [3/14/2001 1:47:27 AM]

more than RThreshold bytes, an OnComm event occurs, and the control�s
CommEvent property will hold the value comEvReceive. (Setting the value for each
of these properties to 0 prevents the OnComm event from occurring.)

InputLen And EOFEnable

You can read data in chunks of specific length by setting the InputLen property; this
property sets how many bytes you want to read when you use the Input property.
When you set this property to 0 (the default), the communications control will read
the entire contents of the receive buffer when you use the Input property. The
EOFEnable property is used to indicate when an End Of File (EOF) character is
found while reading data. Setting this property to True makes data input stop when an
EOF is found and triggers the OnComm event.

Opening The Serial Port

Before you can work with the serial port and call another computer, you have to open
that port. There are three properties that you use with the communications control to
do that:

" CommPort sets and returns the communications port number.

" Settings sets and returns the baud rate, parity, data bits, and stop bits as a string.

" PortOpen sets and returns the state of a communications port. Also opens and
closes a port.

Here�s an example where we open COM2, which is usually the modem port, setting it
to 9600 bps, no parity, 8 data bits, and 1 stop bit:

MSComm1.CommPort = 2

MSComm1.Settings = "9600,N,8,1"

MSComm1.PortOpen = True

That�s all there is to it. When you�re ready to close the port again, set the PortOpen
property to False.

TIP: To close a connection with another computer, you usually do more than just set
PortOpen to False. For example, if you�re logged into a shell account on that
computer, you should log off by sending the appropriate command (such as �logoff�),
either by typing that command or having your program send it. To hang up, send your
modem the �ATH� command, followed by carriage return, vbCr.

Working With A Modem

To dial another computer, you send command strings to the modem. How do you do

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\421-424.html (2 of 3) [3/14/2001 1:47:27 AM]

that? You can send standard Hayes-type commands to your modem using the
communications control�s Output property this way, where we�re instructing the
modem to dial a number:

MSComm1.Output = "ATDT 555-1234" & vbCr

In this case, the command �AT� starts the connection, �D� dials the number, and �T�
specifies Touch-Tone�instead of pulse�dialing. Note that a carriage return character
(vbCr) must be added when using text strings with Output . (You do not, however,
need to add the return character when outputting byte arrays.)

If a command is successful, your modem will usually send back an �OK� result code,
and you can look for that result with the Input property.

TIP: For a list of Hayes-compatible commands, check your modem documentation
�the complete list of commands your modem understands should be there.

Reading Data With The Communications Control

You use the Input property to get data from a communication control�s receive buffer.
For example, if you wanted to retrieve data from the receive buffer and display it in a
text box, you might use the following code:

Text1.Text = MSComm1.Input

To retrieve the entire contents of the receive buffer, you must first set the InputLen
property to 0 at design time or runtime. Otherwise, you�ll get the number of bytes
specified in the InputLen property.

You can receive incoming data as either text or binary data by setting the InputMode
property to either comInputModeText or comInputModeBinary . The data will be
either formatted as string or as binary data in a byte array (the default is
comInputModeText). Also, it�s worth noting that when every byte of data is
received, the InBufferCount property is incremented by 1, which means that you can
get the total number of bytes waiting for you by checking this property.

TIP: You can clear the receive buffer by setting the value of InBufferCount to 0.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\421-424.html (3 of 3) [3/14/2001 1:47:27 AM]

You usually use the Input property with the CommEvent property in the OnComm
event handler (see �Handling Communications Events� later in this chapter). For
example, here�s how we read input data into a buffer in the OnComm event handler,
after checking the CommEvent property to make sure we actually received data:

Private Static Sub MSComm1_OnComm()

 Select Case MSComm1.CommEvent

 Case comEvReceive

 Dim Buffer As Variant

 Buffer = MSComm1.Input

...

Sending Data With The Communications Control

To send data with the communications control, you use the Output property�in fact,
you use this property to send both data to another computer and commands to your
modem. If you set this property to a string, the data is sent as text; if you set it to
binary data (a binary array), that data is sent in binary format.

Here are some examples. In this case, we�re directing the modem to dial a number
using a Hayes-compatible modem command:

MSComm1.Output = "ATDT 555-1234" & vbCr

In this case, we�re sending a text string to another computer:

MsComm1.Output = "Here�s the text!" & vbCr

And here we�re reading records from a file and sending them through the modem to
another computer:

FileBuffer = Space$(BufferSize)

Get #1, , FileBuffer

MSComm1.Output = FileBuffer

TIP: You can watch the number of bytes in the transmit buffer by using the
OutBufferCount property, and you can clear the transmit buffer by setting this value
to 0.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\424-428.html (1 of 4) [3/14/2001 1:47:33 AM]

Setting Up Communications Handshaking

Handshaking invokes a data-transmission protocol (which, for example, makes sure
that data is not sent too fast or doesn�t overflow the receive buffer). The
communications control can handle several different types of handshaking.

In particular, you set the Handshaking property to the handshaking protocol you
want to use; the default value is to have no handshaking (Handshaking = comNone).
Here are the possible handshaking protocols you can use with the Handshaking
protocol:

" comNone�0; no handshaking (the default)

" comXOnXOff�1; XOn/XOff handshaking

" comRTS�2; RTS/CTS (Request To Send/Clear To Send) handshaking

" comRTSXOnXOff�3; both Request To Send and XOn/XOff handshaking

Often the communications protocol itself handles handshaking, which means that
setting this property to anything but comNone can result in conflicts.

WARNING! Here�s an important note: If you set Handshaking to either comRTS or
comRTSXOnXOff, also set the RTSEnabled property to True. If you don�t, you will
be able to connect and send, but not receive, data.

Handling Communications Events

To handle communications events (and errors), you use the OnComm event and the
CommEvent property. The OnComm event is very useful, because you can keep
track of just about everything going on with the communications control. In the
OnComm event, you can determine what happened by checking the CommEvent
property, which will hold one of these values:

" comEvSend�1; there are fewer than SThreshold number of characters in the
transmit buffer.

" comEvReceive�2; received RThreshold number of characters. This event is
generated continuously until you use the Input property to remove the data from the
receive buffer.

" comEvCTS�3; change in Clear To Send line.

" comEvDSR�4; change in Data Set Ready line. This event is only fired when DSR
changes from 1 to 0.

" comEvCD�5; change in Carrier Detect line.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\424-428.html (2 of 4) [3/14/2001 1:47:33 AM]

" comEvRing�6; ring detected. Some universal asynchronous receiver-transmitters
(UARTs) may not support this event.

" comEvEOF�7; End Of File (ASCII character 26) character received.

The OnComm event also occurs for the following errors (these values will be in the
CommEvent property):

" comEventBreak�1001; Break Signal. A break signal was received.

" comEventCTSTO�1002; Clear To Send Timeout. The Clear To Send line was low
for CTSTimeout number of milliseconds while trying to transmit a character.

" comEventDSRTO�1003; Data Set Ready Timeout. The Data Set Ready line was
low for DSRTimeout number of milliseconds while trying to transmit a character.

" comEventFrame�1004; Framing Error. The hardware detected a framing error.

" comEventOverrun�1006; Port Overrun. A character was not read from the
hardware before the next character arrived and was lost.

" comEventCDTO�1007; Carrier Detect Timeout. The Carrier Detect line was low
for CDTimeout number of milliseconds while trying to transmit a character. Carrier
Detect is also known as the Receive Line Signal Detect (RLSD).

" comEventRxOver�1008; Receive Buffer Overflow. There is no room in the receive
buffer.

" comEventRxParity�1009; Parity Error. The hardware detected a parity error in
transmission.

" comEventTxFull�1010; Transmit Buffer Full. The transmit buffer was full while
trying to queue a character.

" comEventDCB�1011; unexpected error retrieving Device Control Block (DCB) for
the port.

Here�s an example using OnComm. In this case, we check for a receive event,
CommEvent = comEvReceive , and use the Input property to store the received data
in a buffer:

Private Static Sub MSComm1_OnComm()

 Select Case MSComm1.CommEvent

 Case comEvReceive

 Dim Buffer As Variant

 Buffer = MSComm1.Input

...

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\424-428.html (3 of 4) [3/14/2001 1:47:33 AM]

Closing The Serial Port

To close a serial port, you set the PortOpen property to False. Note that although
doing so closes the serial port, you usually do more than just close the serial port to
close a connection with another computer. For example, if you�re connected to a shell
account on another computer, you should log out first, then send the
Hayes-compatible �ATH� command to your modem to hang up before setting
PortOpen to False.

Here�s an example. When the user clicks Command1, we set up the serial port COM2
and dial a number:

Private Sub Command1_Click()

 MSComm1.CommPort = 2

 MSComm1.Settings = "9600,N,8,1"

 MSComm1.PortOpen = True

 MSComm1.Output = "ATDT 555-1234" & vbCr

End Sub

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\424-428.html (4 of 4) [3/14/2001 1:47:33 AM]

To hang up, we send the Hayes-compatible �ATH� command to the modem and set
PortOpen to False to close the serial port:

Private Sub Command2_Click()

 MSComm1.Output = "ATH" & vbCr

 MSComm1.PortOpen = False

End Sub

Adding A MonthView Control To Your Program

The Testing Department is on the line again. Your financial planning program,
BigBucks4U , is great, but what about displaying a calendar so the user can plan dates far
into the future. You start thinking about the algorithm for determining the day of the
week for any date throughout history�but there�s a better way.

You can use a MonthView control. That control displays the current month and lets the
user scroll through other months as well. Just think of it as a handy calendar, because that
�s what it�s designed to be.

To add a MonthView control to your program, just follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Microsoft Windows Common Controls-2 entry, and click on OK to close
the Components dialog box. This adds both the MonthView and DateTimePicker controls
to the toolbox.

4. Just draw the control as you would any other control in your form.

Now that you�ve added this control, how do you use it? See the next topic.

Getting Dates From A MonthView Control

When the user clicks a date in a MonthView control, the control creates a DateClick
event. We can take advantage of that event to display the date the user clicked in a text
box, using the MonthView�s Day, Month, and Year properties:

Private Sub MonthView1_DateClick(ByVal DateClicked As Date)

 Text1.Text = MonthView1.Month & "/" & MonthView1.Day & _

 "/" & MonthView1.Year

End Sub

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\428-432.html (1 of 3) [3/14/2001 1:47:36 AM]

In fact, we�ve done too much here. You can do the same thing with the MonthView�s
Value property, which holds the current date in mm/dd/yy format:

Private Sub MonthView1_DateClick(ByVal DateClicked As Date)

 Text1.Text = MonthView1.Value

End Sub

The result of this code appears in Figure 13.8 (the red circle indicates today�s date).

Figure 13.8 Reading a date from a clicked MonthView control.

Notice also that we are passed a Visual Basic Date object in this procedure,
corresponding to the date the user clicked. You can use the Format$() function as
outlined earlier in this chapter to format the date held in that object in any way you wish.

The code for this example is located in the calendar folder on this book�s accompanying
CD-ROM.

TIP: If you enable a MonthView�s MultiSelect property by setting it to True, the user
can select a number of dates in the MonthView (by using the Ctrl and Shift keys with the
mouse). You can use the SelStart and SelEnd properties to determine the selected range.

Adding A DateTimePicker Control To Your Program

An easy way of letting the user select a date is to use a DateTimePicker control. The
DateTimePicker control allows the user to specify a date or time. DateTimePickers can
display a MonthView as a drop-down control, or the current time with an updown control
to let the user select the time they want.

In particular, the control�s UpDown property determines which mode the control is in:

" UpDown = False means the control is in drop-down calendar mode (the default).

" UpDown = True means the DateTimePicker is in time format mode.

To add a DateTimePicker control to your program, just follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Microsoft Windows Common Controls-2 entry, and click on OK to close
the Components dialog box. This adds both the MonthView and DateTimePicker controls
to the toolbox.

4. Just draw the control as you would any other control in your form.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\428-432.html (2 of 3) [3/14/2001 1:47:36 AM]

javascript:displayWindow('images/13-08.jpg',320,240%20)
javascript:displayWindow('images/13-08.jpg',320,240)

5. Set the UpDown property as discussed in the preceding list to select calendar mode or
time format mode.

Now that you�ve added the control, how do you use it? See the next topic.

Using A DateTimePicker Control

We�ll see how to let the user select a time using a DateTimePicker control here. Just add
a DateTimePicker to your program and set its UpDown property to True (which means
we�ll let the user set the time, not the date).

DateTimePicker controls have a Change event, and we�ll make use of that event to catch
new time settings as the user makes them. In this case, we�ll just display the new time in a
text box this way, using the DateTimePicker�s Value property:

Private Sub DTPicker1_Change()

 Text1.Text = DTPicker1.Value

End Sub

That�s all we need. Now the user can edit the hour, minute, and second of the time
displayed in the DateTimePicker, and as soon as they make any change, we�ll display the
new value in the text box, as shown in Figure 13.9. Our DateTimePicker example is a
success. The code for this example is located in the timepicker folder on this book�s
accompanying CD-ROM.

Figure 13.9 Using a DateTimePicker control.

Visual Basic 6 Black Book:The Timer And Serial Communications Controls

http://24.19.55.56:8080/temp/ch13\428-432.html (3 of 3) [3/14/2001 1:47:36 AM]

javascript:displayWindow('images/13-09.jpg',320,240%20)
javascript:displayWindow('images/13-09.jpg',320,240)

Chapter 14
The Frame, Label, Shape, And Line
Controls
If you need an immediate solution to:

Adding A Frame To A Program

Setting Frame Size And Location

Dragging And Dropping Controls

Grouping Controls In A Frame

Adding A Label To A Program

Using Labels Instead Of Text Boxes

Formatting Text In Labels

Aligning Text In Labels

Handling Label Control Events

Using Labels To Give Access Keys To Controls Without Captions

Adding A Shape Control To A Program

Drawing Rectangles

Drawing Squares

Drawing Ovals

Drawing Circles

Drawing Rounded Rectangles

Drawing Rounded Squares

Setting Shape Borders: Drawing Width, Dashes, And Dots

Filling Shapes

Drawing A Shape Without The IDE Grid

Moving Shapes At Runtime

Adding A Line Control To A Program

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\433-438.html (1 of 4) [3/14/2001 1:47:49 AM]

Drawing Thicker, Dotted, And Dashed Lines

Drawing A Line Without The IDE Grid

Changing A Line Control At Runtime

Using Form Methods To Draw Lines

Using Form Methods To Draw Circles

In Depth

In this chapter, we�re going to examine the controls you use to organize and label
other controls in a form: the frame, label, shape, and line controls. You use the frame
control to create a frame�a labeled box�in which you can place the following types of
controls:

" Label controls to display noneditable text usually used to describe other controls or
control groups

" Shape controls to draw circles and boxes in a form

" Line controls to draw lines

These controls are used primarily at design time, but they have their runtime uses as
well, as we�ll see. All these controls are intrinsic controls�that is, they appear in the
toolbox when Visual Basic starts�and we�ll take a closer look at all these controls now.

The Frame Control

You usually use the frame control to group controls together into a recognizable
group. This control appears as a box with a label at upper left. You can make the
controls in a frame into a functional group as well, such as when you group option
buttons together. When you add option buttons to a frame, those buttons function in
concert; when you click one, all the others are deselected. And those option buttons
are separate from any other group of option buttons in the form.

The Frame Control tool appears as the third tool down on the left in the Visual Basic
toolbox in Figure 14.1.

Figure 14.1 The Frame Control tool.

The Label Control

You use label controls to display text that you don�t want the user to change directly.
As their name implies, you can use these controls to display text that labels other parts
of the form that don�t have their own captions. For example, you might label a picture

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\433-438.html (2 of 4) [3/14/2001 1:47:49 AM]

javascript:displayWindow('images/14-01.jpg',540,618%20)
javascript:displayWindow('images/14-01.jpg',540,618)

box something like �Current image�, or a text box �New setting�.

Despite their name, label controls are not static. You can change the text in a label at
runtime by setting its Caption property, and in fact that�s often a very useful thing to
do if you don�t want the user to change that text. For example, we�ll see how to build a
stopwatch example in this chapter that displays the time in a label control. The label
control in that example may be far from what you think of as a standard label, because
the text in the label will change, and that text will be large�48 point. It�s wise to
remember that labels can indeed display any kind of text�you can even format, word
wrap, or size a label to fit its text. All in all, labels are one of the most useful Visual
Basic controls. They can even have Click events and access keys, as we�ll see in this
chapter.

The Label Control tool appears in the toolbox in Figure 14.2 as the second tool down
on the left. Just about every Visual Basic programmer is familiar with this control, but
we�ll see some new label tricks in this chapter.

Figure 14.2 The Label Control tool.

The Shape Control

The shape control is a graphical control. You can use this control to draw predefined
colored and filled shapes, including rectangles, squares, ovals, circles, rounded
rectangles, or rounded squares.

You use the shape control at design time to draw shapes in a form. There�s no great
programming complexity here�you just use this control as a design element to add
rectangles, circles, and so on to your forms. In this way, the shape control is a little
like the frame control; however, shapes can�t act as control containers (for example,
you can�t group option buttons together with shapes or move the controls inside them
en masse). Still, shapes certainly come in more varieties than frames do.

Although shape controls are one of the Visual Basic intrinsic controls, Visual Basic
programmers remain largely ignorant of them. That�s too bad, because you can create
some nice effects with shapes, as we�ll see here.

The Shape Control tool appears in the Visual Basic toolbox in Figure 14.3 as the ninth
tool down on the left.

Figure 14.3 The Shape Control and Line Control tools.

The Line Control

Like the shape control, the line control is a graphical control. You use it to display

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\433-438.html (3 of 4) [3/14/2001 1:47:49 AM]

javascript:displayWindow('images/14-02.jpg',540,618%20)
javascript:displayWindow('images/14-02.jpg',540,618)
javascript:displayWindow('images/14-03.jpg',757,618%20)
javascript:displayWindow('images/14-03.jpg',757,618)

horizontal, vertical, or diagonal lines in a form. You can use these controls at design
time as a design element or at runtime to alter the original line you drew.

Drawing lines is easy�you just click the Line Control tool in the toolbox, press the
mouse button when the cursor is at the line�s start location on the form, and drag the
mouse to the end position of the line. When you release the mouse, the line appears
with sizing handles at each end that you can use to change the line as you like. You
can also change a line at runtime by changing its X1, X2, Y1, and Y2 properties.

You can draw lines with this control in forms, picture boxes, and frames. In fact, lines
drawn with the line control stay visible even if its container�s AutoRedraw property
is set to False. (The line control even has its own Visible property, which means you
can make lines appear and disappear.) The Line Control tool appears in the toolbox in
Figure 14.3 as the ninth tool down on the right.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\433-438.html (4 of 4) [3/14/2001 1:47:49 AM]

Form Drawing Methods

Besides using the preceding controls to draw lines and circles in forms, you can actually use methods built
into the form to do much the same thing. Because this is a chapter about designing and organizing your
controls on forms, we�ll take a look at those methods as well.

That�s it for the overview�it�s time to turn to the Immediate Solutions.

Immediate Solutions

Adding A Frame To A Program

The Testing Department is calling again. Do you really need 200 buttons in your program? Of course, you
say. They say, well, can you please organize them into groups? Hmm, you think, how do you do that?

You can use frames to group controls together in forms or picture boxes. To draw a frame, you just use the
Frame Control tool in the toolbox as you would for any control. When you add a frame to a form or picture
box, there are a few things you should know. To set the text that appears at upper left in a frame, you set the
frame�s Caption property (and you can change the caption at runtime by setting this property). You can
make frames appear flat or 3D (the default) by setting their Appearance property. You can also give frames
tool tips (the explanatory text that appears in a small yellow window when the mouse cursor rests over a
control) by setting the ToolTipText property.

For example, we�ve given the left frame in Figure 14.4 the caption �Day of the week� and the tool tip �Enter
the day here�.

Figure 14.4 Organizing controls with frames.

TIP: To group option buttons together in a frame, see �Grouping Controls In A Frame� later in this chapter.

Setting Frame Size And Location

Setting a frame�s height and width is easy�just set the frame�s Height and Width properties at design time or
runtime. You can set the frame�s location in its container (that is, a form or picture box) with its Left and
Top properties, or by using its Move method.

TIP: The frame contains other controls, such as option buttons, they move with the frame.

For example, here�s how you use a frame�s Move method:

Private Sub Command1_Click()

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\438-442.html (1 of 3) [3/14/2001 1:47:58 AM]

javascript:displayWindow('images/14-04.jpg',401,280%20)
javascript:displayWindow('images/14-04.jpg',401,280)

 Frame1.Move Frame1.Left + 1000

End Sub

For more on dragging frames, take a look at the next topic.

Dragging And Dropping Controls

The Aesthetic Design Department is on the phone. The way you�ve set up your controls in your program is
fine�but what if users want to move them around at runtime? Shouldn�t they be able to do that?

You drag and drop frames just as you do any other control, and dragging frames also drags all the controls in
that frame, so we�ll take a look at how to drag controls now.

To start a drag operation, you use the control�s Drag method:

Control.Drag action

Here, the action parameter can take these values:

" vbCancel�0; cancels drag operation

" vbBeginDrag�1; begins dragging object

" vbEndDrag�2; ends dragging and drops object

Let�s see this at work. For example, when the user drags a frame, Frame1, in our program, we catch the
MouseDown event first:

Private Sub Frame1_MouseDown(Button As Integer, Shift As Integer, X As _

 Single, Y As Single)

End Sub

When the control is dropped, we�ll get the new mouse location at the upper left of the control. However,
because the mouse was originally pressed at some location inside the control, and not at its upper left corner,
we�ll need to know that original mouse location before we move the control�s upper left corner. We�ll save
that mouse location inside the control as (intXoffset, intYoffset):

Private Sub Frame1_MouseDown(Button As Integer, Shift As Integer, X As _

 Single, Y As Single)

 intXOffset = X

 intYOffset = Y

...

End Sub

Declare these new variables as form-wide variables in the (General) section of the form:

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\438-442.html (2 of 3) [3/14/2001 1:47:58 AM]

Dim intXOffset As Integer

Dim intYOffset As Integer

Then we start the drag operation of the control itself with the Drag method:

Private Sub Frame1_MouseDown(Button As Integer, Shift As Integer, X As _

 Single, Y As Single)

 intXOffset = X

 intYOffset = Y

 Frame1.Drag 1

End Sub

When the control is dropped on the form, we just move the upper left of the control to the mouse location
minus the offset of the mouse in the control (this avoids making the control�s upper left corner appear to
jump to the mouse location). Doing so looks like this in code:

Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)

 Source.Move X - intXOffset, Y - intYOffset

End Sub

There�s one more thing to consider here�users may just move the frame a little distance, in which case they
are actually dropping the control on top of itself. In this case, the new mouse position we�re passed is relative
to the upper left of the control, so we have to add the Left and Top values to the mouse location to get form
coordinates:

Private Sub Frame1_DragDrop(Source As Control, X As Single, Y As Single)

 Source.Move Source.Left + X - intXOffset, Source.Top + Y - intYOffset

End Sub

That�s it�when you run the program, you can drag Frame1, the left frame in Figure 14.5, as you like. Our
drag and drop example is a success.

Figure 14.5 Dragging a frame control with all the controls in it.

The code for this example is located in the dragdrop folder on this book�s accompanying CD-ROM.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\438-442.html (3 of 3) [3/14/2001 1:47:58 AM]

javascript:displayWindow('images/14-05.jpg',401,280%20)
javascript:displayWindow('images/14-05.jpg',401,280)

Grouping Controls In A Frame

The Testing Department is calling again. Using option buttons to let users specify
months and days of the week is OK, but why can they only click one option button at
a time? Shouldn�t they be able to specify both day of the week and the month?

You can make option buttons function together in separate groups. Unless you set up a
frame (or picture box) to hold the option buttons, however, they�ll all be on the form,
which means they�ll be in the same group.

WARNING! If you draw a control outside the frame and then try to move it inside,
the control will be on top of the frame, not in it, which means the control will not be
grouped with other controls in the frame.

To group controls like option buttons, first draw the frame control, and then draw the
controls inside the frame.

TIP: At design time, you can also align the controls in a frame. Just select multiple
controls by holding down the Ctrl key, and use the Format menu to align the controls
or set their spacing uniformly.

We already developed a good example of grouping controls in our chapter on option
buttons and checkboxes, and we�ll review it here. In that example, we created a tour
package program that lets users select from one of four tour packages. When they
clicked one of the four option buttons representing each of the four packages, a series
of checkboxes in another frame are checked to indicate what cities are in that tour
package, as shown in Figure 14.6.

Figure 14.6 Grouping controls using frames.

As you can see in Figure 14.6, we�ve grouped the controls into two frames that have
the captions �Tour� and �Cities�. The option buttons and checkboxes each function as a
control group; when the user selects a tour package by clicking an option button, the
program displays the cities in that tour in the checkboxes. Because the option buttons
function as a group, only one option button may be selected at a time.

The code for this example is located in the tourpackage folder on this book�s
accompanying CD-ROM.

Adding A Label To A Program

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\442-446.html (1 of 4) [3/14/2001 1:48:15 AM]

javascript:displayWindow('images/14-06.jpg',320,240%20)
javascript:displayWindow('images/14-06.jpg',320,240)

The Testing Department is calling again. What are all those text boxes in your new
program, SuperDuperDataCrunch? You explain patiently that they are there to help
users with financial planning and let them enter current value, interest rate, time
period, taxable base, and so on. Well, they say, you better label those text boxes so
users know what they are. Hmm, you think, label them?

You can label controls without a Caption property, like text boxes, with the label
control. You simply use the Label Control tool in the toolbox to add a label to your
form and set its Caption property to display the label you want. You can size the label
as desired at design time using the sizing handles that appear around a label when you
select it, or at runtime using its Top, Left, Width, and Height properties.

As an example, take a look at Figure 14.7. There, we�ve used labels to describe what
value each of six text boxes are supposed to hold. In this way, labels can make your
program a great deal easier to work with.

Figure 14.7 Labeling text boxes with label controls.

WARNING! Don�t forget that you can set labels� captions at runtime simply by
changing their Caption property. In other words, labels can display text just like text
boxes can, except that you can�t edit it, and the text appears as though it�s directly on
the form. For more on this, see the next topic.

Using Labels Instead Of Text Boxes

There are several advantages to using labels instead of text boxes in a Visual Basic
program. Labels display read-only text (although you can make text boxes read-only
by setting their Locked property to True), and they give the appearance of text
directly on the form, which can look much better than a text box on occasion.

Let�s see an example. In the stopwatch program we created in our chapter on timers,
we used a label to display elapsed time. When the user clicked one button, we set a
form-wide variable, StartTime, to the current time using the Now function, and we
enabled a timer, Timer1:

Private Sub Command1_Click()

 StartTime = Now

 Timer1.Enabled = True

End Sub

When the user clicks another button, we stop the stopwatch by disabling the timer:

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\442-446.html (2 of 4) [3/14/2001 1:48:15 AM]

javascript:displayWindow('images/14-07.jpg',320,240%20)
javascript:displayWindow('images/14-07.jpg',320,240)

Private Sub Command2_Click()

 Timer1.Enabled = False

End Sub

In the Timer1_Timer() subroutine, which is called by the timer every second, we
display the elapsed time in a label named Display:

Sub Timer1_Timer()

 Display.Caption = Format$(Now - StartTime, "hh:mm:ss")

End Sub

You might think it odd to display time in a label, but we set the label�s font size to 48
point (and its font to Courier New), which makes a very satisfactory display, as you
can see in Figure 14.8.

Figure 14.8 Displaying time in a label control.

In this way, we�ve used a label to display text instead of a text box, because the user
can�t edit the text in the label, and in this case the label looks like a more integral part
of the program than a text box would. The code for this example is located in the
stopwatch folder on this book�s accompanying CD-ROM.

Formatting Text In Labels

When you add labels to a form, you can make the label match the text�s size or wrap
as needed by setting these label control properties:

" AutoSize makes the label size itself to fit the text.

" WordWrap enables word wrap if lines of text are too long.

In addition, you can format the text in a label with these properties, making the text
appear in any font or font size, or with attributes like bold or underline:

" FontBold

" FontItalic

" FontName

" FontStrikeThru

" FontUnderline

Keep in mind that you can use labels as a read-only text box, so formatting the text
can be a very useful thing to do.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\442-446.html (3 of 4) [3/14/2001 1:48:15 AM]

javascript:displayWindow('images/14-08.jpg',362,240%20)
javascript:displayWindow('images/14-08.jpg',362,240)

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\442-446.html (4 of 4) [3/14/2001 1:48:15 AM]

Aligning Text In Labels

As with text boxes, you can align text in labels. To do that, you just set the label�s Alignment property
at design time or runtime. Here are the possible values for the Alignment property:

" VbLeftJustify�0 (the default); text is left-aligned

" VbRightJustify�1; text is right-aligned

" VbCenter�2; text is centered

For example, if you�re writing a calculator program and have a column of right-justified text boxes
above a label that displays a running sum, you can also right-justify the label to match the controls
above it.

Handling Label Control Events

Here�s something that even experienced Visual Basic programmers often don�t know: labels have events
like Click and DblClick (although they don�t have any keystroke-handling events). Using these events
can be a good thing if you�re using a label control as more than just a label�for example, to reset a
setting of some kind.

Here�s an example using the DblClick event. We developed a stopwatch program in our chapter on
timers (Chapter 13) and displayed the elapsed time in a label named Display in that program. To make
life easier for users, we can let them just double-click that label to reset the stopwatch to 00:00:00.
Doing so is easy; we just add an event handle for the label�s DblClick event:

Private Sub Display_DblClick()

End Sub

To reset the stopwatch, we just use the Visual Basic Now function to set the start time, held in a variable
named StartTime, to the current time:

Private Sub Display_DblClick()

 StartTime = Now

End Sub

And that�s it. Now when the user double-clicks the stopwatch�s display, the stopwatch is reset to
00:00:00. We�ve made effective use of a label�s DblClick event.

Using Labels To Give Access Keys To Controls Without Captions

The Testing Department is calling again. The old thorny issue of keyboard access has come up again.
Theoretically, they say, users should be able to use your program, SuperDuperDataCrunch, with just
the keyboard. Fine, you say, we can add access keys to all the button captions so the user can give the
button the focus just by pressing Alt + the access key (just like menu items). Don�t forget to do the same

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\446-449.html (1 of 3) [3/14/2001 1:48:23 AM]

to all the text boxes, the testing department says. You think, how do you give an access key to a text
box?

This is where a useful aspect of labels comes in handy. In fact, this aspect of the label control is built
just to handle this problem. You can give access keys to controls with Caption properties just by
placing an ampersand (&) in the caption in front of the letter you want to make the access key�but how
can you do that if a control (like a text box) has no Caption property?

Here�s the way you do it: you give the access key to a label control and then make sure the control you
want to give the focus to with that access key is next in the tab order (that is, has the next highest
TabIndex property value). Because labels cannot accept the focus themselves, this is a neat feature:
when the user presses Alt + the access key, the label passes the focus on to the next control. In this way,
you can give even controls without Caption properties access keys.

WARNING! When you use access keys, make sure you set the label�s UseMnemonic property to True
(the default), or the access key won�t be enabled.

As an example, we�ve given the two labels in Figure 14.9 access keys. When the user presses Alt + the
access key above a text box, the focus is set to that text box, because those text boxes follow their
individual labels in the tab order.

Figure 14.9 Using access keys in labels to give the focus to text boxes.

Now we�re using access keys with text boxes.

Adding A Shape Control To A Program

The Aesthetic Design Department is calling again. Can�t you jazz up the appearance of your program a
little? How about something to give it a little pizzazz? Looking around, you happen to notice the shape
control. OK, you say, no problem.

You use the shape control at design time to draw shapes on a form or picture box. The shapes you can
draw are rectangles, squares, ovals, circles, rounded rectangles, and rounded squares.

At runtime, you can access and change the shape control�s properties like Left, Top, Width, Height,
BackColor, FillStyle, or FillColor, and use its methods, like Move or Refresh. However, shape
controls have no events, so they can�t respond directly to user actions like clicks.

You draw a shape using the Shape Control tool, which appears in the Visual Basic toolbox when Visual
Basic starts. Just draw the shape as you want it (it starts as a rectangle). To set the shape�s type (for
example, a rectangle, square, oval, and so on), you set the control�s Shape property to one of the
following values:

" VbShapeRectangle�0 (the default); rectangle

" VbShapeSquare�1; square

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\446-449.html (2 of 3) [3/14/2001 1:48:23 AM]

javascript:displayWindow('images/14-09.jpg',240,154%20)
javascript:displayWindow('images/14-09.jpg',240,154)

" VbShapeOval�2; oval

" VbShapeCircle�3; circle

" VbShapeRoundedRectangle�4; rounded rectangle

" VbShapeRoundedSquare�5; rounded square

One important use of shape controls is to group other controls together. (Note, however, that shape
controls can�t act as true control containers in the way picture boxes or frames can. For example, you
can�t group option buttons together with shapes.) In Figure 14.10, we�re using shape controls to group
the buttons visually into two groups.

Figure 14.10 Using the shape control to group other controls.

You can also set the width of the shape�s drawing line with the BorderWidth property and fill the shape
using the FillColor and FillStyle properties. The BorderStyle property lets you select the style of the
shape�s drawing line, including using dots and dashes. For more on this control, see the other topics in
this chapter.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\446-449.html (3 of 3) [3/14/2001 1:48:23 AM]

javascript:displayWindow('images/14-10.jpg',320,240%20)
javascript:displayWindow('images/14-10.jpg',320,240)

To access the contents, click the chapter and section titles.

Visual Basic 6 Black Book
(Publisher: The Coriolis Group)
Author(s): Steven Holzner
ISBN: 1576102831
Publication Date: 08/01/98

Bookmark It

Search this book:

PreviousTable of ContentsNext

Drawing Rectangles

How do you draw rectangles with the shape control? You start by clicking the Shape
Control tool in the Visual Basic toolbox and drawing that control to match the size
and location you want your new figure to have. To draw a rectangle, you simply set
the control�s Shape property to VbShapeRectangle (that�s the default anyway).

That�s all you have to do�the shape control is very easy to work with. Using the shape
control, you can draw in both forms and picture boxes.

You can also set the width of the shape�s drawing line with the BorderWidth
property and fill the shape using the FillColor and FillStyle properties. The
BorderStyle property lets you select the style of the shape�s drawing line, including
using dots and dashes.

Drawing Squares

How do you draw squares with the shape control? You start by clicking the Shape
Control tool in the Visual Basic toolbox and drawing that control to match the size
and location you want your new figure to have. To draw a square, you simply set the
control�s Shape property to VbShapeSquare.

That�s all you have to do�the shape control is simple. Using the shape control, you can
draw in both forms and picture boxes.

You can also set the width of the shape�s drawing line with the BorderWidth
property and fill the shape using the FillColor and FillStyle properties. The
BorderStyle property lets you select the style of the shape�s drawing line, including

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\449-452.html (1 of 3) [3/14/2001 1:48:31 AM]

javascript:bookMarkit();
http://24.19.55.56:8080/temp/446-449.html
http://24.19.55.56:8080/temp/..\ewtoc.html
http://24.19.55.56:8080/temp/452-456.html

using dots and dashes. For more on this control, see the other topics in this chapter.

Drawing Ovals

To draw ovals with the shape control, you start by clicking the Shape Control tool in
the Visual Basic toolbox and drawing that control to match the size and location you
want your new figure to have. To draw an oval, you simply set the control�s Shape
property to VbShapeOval.

That�s all you have to do�the shape control is very easy. Using the shape control, you
can draw in both forms and picture boxes.

You can also set the width of the shape�s drawing line with the BorderWidth
property and fill the shape using the FillColor and FillStyle properties. The
BorderStyle property lets you select the style of the shape�s drawing line, including
using dots and dashes. For more on this control, see the other topics in this chapter.

Drawing Circles

To draw circles, you start by clicking the Shape Control tool in the Visual Basic
toolbox and drawing that control to match the size and location you want your new
figure to have. To draw a circle, you simply set the control�s Shape property to
VbShapeCircle.

That�s all you have to do�the shape control is very easy to work with. Using the shape
control, you can draw in both forms and picture boxes.

You can also set the width of the shape�s drawing line with the BorderWidth
property and fill the shape using the FillColor and FillStyle properties. The
BorderStyle property lets you select the style of the shape�s drawing line, including
using dots and dashes. For more on this control, see the other topics in this chapter.

Drawing Rounded Rectangles

How do you draw rounded rectangles with the shape control? You start by clicking
the Shape Control tool in the Visual Basic toolbox and drawing that control to match
the size and location you want your new figure to have. To draw a rounded rectangle,
you simply set the control�s Shape property to VbShapeRoundedRectangle.

That�s all you have to do�this control is very easy. Using the shape control, you can
draw in both forms and picture boxes.

You can also set the width of the shape�s drawing line with the BorderWidth
property, and fill the shape using the FillColor and FillStyle properties. The
BorderStyle property lets you select the style of the shape�s drawing line, including
using dots and dashes. For more on this control, see the other topics in this chapter.

Drawing Rounded Squares

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\449-452.html (2 of 3) [3/14/2001 1:48:31 AM]

To draw rounded squares with the shape control, you start by clicking the Shape
Control tool in the Visual Basic toolbox and drawing that control to match the size
and location you want your new figure to have. To draw a rounded square, you simply
set the control�s Shape property to VbShapeRoundedSquare.

That�s all you have to do. The shape control is easy. Using the shape control, you can
draw in both forms and picture boxes.

You can also set the width of the shape�s drawing line with the BorderWidth
property and fill the shape using the FillColor and FillStyle properties. The
BorderStyle property lets you select the style of the shape�s drawing line, including
using dots and dashes. For more on this control, see the other topics in this chapter.

Setting Shape Borders: Drawing Width, Dashes, And Dots

The Aesthetic Design Department is on the line. Can�t you do something about the
shapes in your program? Maybe make them�dotted? You think, dotted?

Visual Basic can help here. Just set the shape control�s BorderStyle property. Here
are the possible values for the BorderStyle property:

" vbTransparent�0; transparent

" vbBSSolid�1 (the default); solid (the border is centered on the edge of the shape)

" vbBSDash�2; dash

" vbBSDot�3; dot

" vbBSDashDot�4; dash-dot

" vbBSDashDotDot�5; dash-dot-dot

" vbBSInsideSolid�6; inside solid (the outer edge of the border is the outer edge of
the shape)

Using this property, you can adjust the border of your shape control as you want it.

Here�s another way to customize a shape control: you can set the shape control�s
border width (in other words, the drawing line width) using the shape control�s
BorderWidth property. Just set that property to the new value you want for the
border thickness (the default value is 1).

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\449-452.html (3 of 3) [3/14/2001 1:48:31 AM]

Filling Shapes

You can fill shape controls using the shape’s FillStyle property with crosshatching, diagonal lines, and other
fill patterns. Here’s a list of the possible values for the FillStyle property:

• VbFSSolid—0; solid

• VbFSTransparent—1 (the default); transparent

• VbHorizontalLine—2; horizontal line

• VbVerticalLine—3; vertical line

• VbUpwardDiagonal—4; upward diagonal

• VbDownwardDiagonal—5; downward diagonal

• VbCross—6; cross

• VbDiagonalCross—7; diagonal cross

You can see what each of these fill styles looks like in Figure 14.11. Note in particular the transparent fill
style—which really just means that the shape control is not filled. That’s usually the style you use when you
draw shapes in a form to group controls together.

Figure 14.11 The Visual Basic fill styles.

TIP: To set the fill color in a shape control, you can use the FillColor property at both design time and runtime.
To place a value in the FillColor property at runtime, use the Visual Basic RGB function like this, where we fill
a shape with red: Shape1.FillColor = RGB(255, 0, 0).

Drawing A Shape Without The IDE Grid

When you draw shapes in the Visual Basic Integrated Development Environment (IDE), the boundaries of
that control fall along the dotted grid you can see in forms. That grid can help in aligning controls and lines,
but there are times when you want finer control.

To turn off the automatic alignment of controls to the grid as you draw them, follow these steps:

1. Select the Tools|Options menu item.

2. Click the General tab in the Options dialog box.

3. Deselect the box marked Align Controls To Grid.

4. Click on OK to close the Options dialog box.

That’s it. Now you’re free to draw controls as you want them and where you want them, without having your
controls’ boundaries fall on a grid line.

TIP: You can hide the grid by deselecting the Show Grid box in the Options dialog box, as well as reset its
dimensions (the default size of each cell in the grid is 120x120 twips).

Moving Shapes At Runtime

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\452-456.html (1 of 3) [3/14/2001 1:48:54 AM]

javascript:displayWindow('images/14-11.jpg',437,209)
javascript:displayWindow('images/14-11.jpg',437,209)

Because shape controls are design elements, there are times you might want to move them around as a
program runs, and you can do that with the control’s Move method:

Shape.Move left, [top, [width, height]]

Besides using Move, you can change a shape’s control Top, Left, Width, and Height properties. Let’s see
an example. Here, we’ll just move four shape controls showing circles around at random in a form. To use
random numbers in Visual Basic, we start with the Randomize statement when the form loads; this
initializes the random number generator:

Private Sub Form_Load()
 Randomize
End Sub

Next, add four shape controls, Shape1 to Shape4, showing circles, and a timer, Timer1, to the program,
setting the timer Interval property to 1000 (in other words, 1 second), and adding a Timer event handler:

Private Sub Timer1_Timer()

End Sub

Now in Timer1_Timer(), we move the four circles around at random with the Move method:

Private Sub Timer1_Timer()
 Shape1.Move Shape1.Left + ScaleWidth * (Rnd - 0.5) / 50, Shape1.Top _
 + ScaleHeight * (Rnd - 0.5) / 50
 Shape2.Move Shape2.Left + ScaleWidth * (Rnd - 0.5) / 50, Shape2.Top _
 + ScaleHeight * (Rnd - 0.5) / 50
 Shape3.Move Shape3.Left + ScaleWidth * (Rnd - 0.5) / 50, Shape3.Top _
 + ScaleHeight * (Rnd - 0.5) / 50
 Shape4.Move Shape4.Left + ScaleWidth * (Rnd - 0.5) / 50, Shape4.Top _
 + ScaleHeight * (Rnd - 0.5) / 50
End Sub

And that’s all it takes. The result of this code appears in Figure 14.12. When you run the program, the circles
move around at random. The code for this example is located in the circles folder on this book’s
accompanying CD-ROM.

Figure 14.12 Moving shape controls around at random.

TIP: Besides moving shapes, you can hide and show them by setting their Visible property to False and True,
respectively.

Adding A Line Control To A Program

The shape control offers a number of predefined shapes for visual design, but sometimes that’s not enough

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\452-456.html (2 of 3) [3/14/2001 1:48:54 AM]

javascript:displayWindow('images/14-12.jpg',437,265)
javascript:displayWindow('images/14-12.jpg',437,265)

(what if the Aesthetic Design Department were to start demanding octagons?). For other cases, there’s the
line control.

The line control does just as its name implies: it draws a line. You can draw lines at design time simply as
you would any other control—just click the Line Control tool in the toolbox, press the mouse button at one
end of the line you want, and drag the mouse to the other end.

The line control’s primary properties are X1, X2, Y1, and Y2, and those values form the coordinates of the
line segment: (X1, Y1) and (X2, Y2). You can even change those values at runtime to move or resize the line
(line controls do not have a Move method).

You can also draw lines with this control in forms, picture boxes, and in frames. In fact, lines drawn with the
line control stay visible even if its container’s AutoRedraw property is set to False (unless its Visible
property is set to False).

As an example, we’ve drawn a few lines in the form in Figure 14.13 using the line control.

Figure 14.13 Lines drawn with the line control.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\452-456.html (3 of 3) [3/14/2001 1:48:54 AM]

javascript:displayWindow('images/14-13.jpg',320,240)
javascript:displayWindow('images/14-13.jpg',320,240)

Drawing Thicker, Dotted, And Dashed Lines

Using the line control, you can select a line style with the BorderStyle property. Here are the possible
values for the line control’s BorderStyle property:

• vbTransparent—0; transparent

• vbBSSolid—1 (the default); solid

• vbBSDash—2; dash

• vbBSDot—3; dot

• vbBSDashDot—4; dash-dot

• vbBSDashDotDot—5; dash-dot-dot

• vbBSInsideSolid—6; inside solid

To set a line’s width, you use the BorderWidth property (the default value is 1). It seems a little odd to
call the line’s style BorderStyle and its width BorderWidth—after all, what is the line a border to?
However, those properties are named that way to be consistent with the shape control.

TIP: We might also note that the effect of setting the BorderStyle property depends on the setting of the
BorderWidth property; if BorderWidth isn’t 1 and BorderStyle isn’t 0 or 6, Visual Basic sets
BorderStyle to 1.

Drawing A Line Without The IDE Grid

When you draw lines in the Visual Basic Integrated Development Environment (IDE), those lines fall
along the dotted grid you can see in forms. That grid can help in aligning controls and lines, but there
are times when you want finer control.

To turn off the automatic alignment of controls to the grid as you draw them, follow these steps:

1. Select the Tools|Options menu item.

2. Click the General tab in the Options dialog box.

3. Deselect the box marked Align Controls To Grid.

4. Click on OK to close the Options dialog box.

That’s it. Now you’re free to draw controls as you want them and where you want them, without
having your controls’ boundaries fall on a grid line.

TIP: You can hide the grid by deselecting the Show Grid box in the Options dialog box, as well as reset
its dimensions (the default size of each cell in the grid is 120x120 twips).

Changing A Line Control At Runtime

You can move Visual Basic controls at runtime—why not line controls? You can’t use the Move
method to move a line control at runtime, but you can move or resize it by altering its X1, X2, Y1, and
Y2 properties.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\456-460.html (1 of 4) [3/14/2001 1:49:12 AM]

Let’s see an example. In this case, we’ve added four random line controls to a form in a control array,
LineControl(0) to LineControl(3). When the user clicks a command button, Command1, we loop
over all four lines and arrange them horizontally.

Here’s what the code looks like (the measurements are in the Visual Basic default, twips, or 1/1440s of
an inch):

Private Sub Command1_Click()
 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To 3
 LineControl(intLoopIndex).X1 = 1000
 LineControl(intLoopIndex).X2 = 3500
 LineControl(intLoopIndex).Y1 = 1000 + 100 * intLoopIndex
 LineControl(intLoopIndex).Y2 = LineControl(intLoopIndex).Y1
 Next intLoopIndex

End Sub

The result of this code appears in Figure 14.14. Now we’re moving lines around at runtime.

Figure 14.14 Changing line controls at runtime.

Using Form Methods To Draw Lines

We’ve seen how to draw lines with the line control—but you can use a form method, the Line method,
to draw lines directly. The Line method can be an important part of graphic design (especially if you
want to draw lines in a loop and don’t want to create a dozen or more line controls), and because we’re
covering that topic in this chapter, we’ll look at the line control here.

Here’s how you use the Line method:

[Form.]Line [(x1, y1)]&45;(x2, y2)[, color]

Let’s see an example. Here, we’ll just draw four lines with the Line method when a form first loads. As
with other graphic methods, to use this method in the Form_Load() handler, you must set the form’s
AutoRedraw property to True.

Here’s the code we add to the Load event, making use of the Line method:

Private Sub Form_Load()
 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To 3
 Line (1000, 1000 + 400 * intLoopIndex)-(3500, 1000 + 400 _

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\456-460.html (2 of 4) [3/14/2001 1:49:12 AM]

javascript:displayWindow('images/14-14.jpg',320,240)
javascript:displayWindow('images/14-14.jpg',320,240)

 * intLoopIndex)
 Next intLoopIndex
End Sub

The result of the preceding code appears in Figure 14.15—you can see the four lines we’ve drawn
there.

Figure 14.15 Drawing lines with the Line method.

TIP: The Line method is often a better choice than line controls if you have a large number of evenly
spaced lines to draw, such as when you need to draw a grid or rules. Note, however, that if the user
resizes the containing form, you might have to redraw those lines.

Using Form Methods To Draw Circles

We’ve seen that you can use the shape control to draw circles, but there is also a form method to do the
same thing: the Circle method.

Here’s how you use the Circle method:

[Form.]Circle (x, y), radius[, color]

For example, here’s how we draw a few circles in a form using the Circle method (note that as with all
graphics methods used in the Form_Load() event handler, you must set the form’s AutoRedraw
property to True here):

Private Sub Form_Load()

 Dim intLoopIndex As Integer

 For intLoopIndex = 1 To 4
 Circle (2300, 500 + 400 * intLoopIndex), 400 * intLoopIndex
 Next intLoopIndex

End Sub

Running this code yields the result you see in Figure 14.16. Now we’re drawing circles using the
form’s Circle method.

Figure 14.16 Drawing circles with the Circle method in a form.

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\456-460.html (3 of 4) [3/14/2001 1:49:12 AM]

javascript:displayWindow('images/14-15.jpg',320,240)
javascript:displayWindow('images/14-15.jpg',320,240)
javascript:displayWindow('images/14-16.jpg',320,289)
javascript:displayWindow('images/14-16.jpg',320,289)

Visual Basic 6 Black Book:The Frame, Label, Shape, And Line Controls

http://24.19.55.56:8080/temp/ch14\456-460.html (4 of 4) [3/14/2001 1:49:12 AM]

Chapter 15
Toolbars, Status Bars, Progress Bars, And
Coolbars
If you need an immediate solution to:

Adding A Toolbar To A Form

Aligning Toolbars In A Form

Adding Buttons To A Toolbar

Handling Toolbar Buttons Clicks

Connecting Toolbar Buttons To Menu Items

Adding Separators To A Toolbar

Adding Images To Toolbar Buttons

Adding Check (Toggle) Buttons To A Toolbar

Creating Button Groups In A Toolbar

Adding Combo Boxes And Other Controls To A Toolbar

Setting Toolbar Button Tool Tips

Letting The User Customize The Toolbar

Adding Toolbar Buttons At Runtime

Adding A Status Bar To A Program

Aligning Status Bars In A Form

Adding Panels To A Status Bar

Displaying Text In A Status Bar

Displaying Time, Dates, And Key States In A Status Bar

Customizing A Status Bar Panel’s Appearance

Displaying Images In A Status Bar

Handling Panel Clicks

Adding New Panels To A Status Bar At Runtime

Creating Simple Status Bars

Adding A Progress Bar To A Form

Using A Progress Bar

Adding A Coolbar To A Form

Aligning Coolbars In A Form

Adding Bands To A Coolbar

Adding Controls To Coolbar Bands

Handling Coolbar Control Events

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\463-469.html (1 of 4) [3/14/2001 1:49:33 AM]

In Depth

In this chapter, we’re going to take a look at the bar controls: toolbars, status bars, progress bars, and
coolbars. All these controls have their uses in Visual Basic programs, and users are coming to expect
them more and more. We’ll start with an overview of these controls.

Toolbars

Every Windows user knows about toolbars: they’re those bars at the top of a window (although they
can appear other places as well) that are filled with buttons and, sometimes, other controls like combo
bars.

Often, a toolbar contains buttons that correspond to items in an application’s menu, providing an easy
interface for the user to reach frequently used functions and commands. In this way, toolbars can make
life a lot easier for the user. The user can also customize toolbars: double-clicking a toolbar at runtime
opens the Customize Toolbar dialog box, which allows the user to hide, display, or rearrange toolbar
buttons.

You create a toolbar by adding a toolbar control to a form, and to do that, you select the
Project|Components menu item, then click the Controls tab in the Components dialog box, select the
Microsoft Windows Common Controls item, and click on OK to close the Components dialog box.
This adds the Toolbar Control tool to the Visual Basic toolbox, as shown in Figure 15.1; the Toolbar
tool is the twelfth tool down on the left.

Figure 15.1 The Toolbar Control tool.

To add buttons to a toolbar, you add Button objects to its Buttons collection, usually by working with
the toolbar’s property pages. Each button can have text and/or an image, (supplied by an associated
ImageList control). Set text with the Caption property and an image with the Image property for each
Button object. At runtime, you can add or remove buttons from the Buttons collection using Add and
Remove methods.

Status Bars

Status bars appear at the bottom of windows and usually hold several panels in which you can display
text. The status bar is there to give feedback to the user on program operation, as well as other items
like time of day or key states (such as the Caps Lock or the Ins key). Although status bars usually
display text in panels, there is a simple status bar style that makes the status bar function as one long
panel, as we’ll see.

Status bars are built around the Panels collection, which holds the panels in the status bar. Up to 16
Panel objects can be contained in the collection. Each object can display an image and text, as shown
later in this chapter. You can change the text, images, or widths of any Panel object, using its Text,
Picture, and Width properties. To add Panel objects at design time, right-click the status bar, and click
Properties to display the Property Pages dialog box. (We’ll cover the procedure in more detail later in

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\463-469.html (2 of 4) [3/14/2001 1:49:33 AM]

javascript:displayWindow('images/15-01.jpg',415,524)
javascript:displayWindow('images/15-01.jpg',415,524)

the chapter.)

You add the Status Bar Control tool to the toolbox by following the same steps to add the Toolbar
Control tool, because the status bar control is also part of the Microsoft Windows common controls.
The Status Bar Control tool is the twelfth tool down on the right in Figure 15.2.

Figure 15.2 The Status Bar Control tool.

Progress Bars

Progress bars give the user some visual feedback on what’s happening during a time-consuming
operation. They present the user with a color bar that grows in the control to show how the operation is
proceeding, usually from 0 to 100 percent. You can use a progress bar when an operation will take
some time to finish. The progress bar’s Value property (not available at design time) determines how
much of the control has been filled. The Min and Max properties set the limits of the control.

You add the Progress Bar Control tool to the toolbox by following the same steps to add the toolbar
tool, because the progress bar control is also part of the Microsoft Windows common controls. The
Progress Bar Control tool is the thirteenth tool down on the left in Figure 15.3.

Figure 15.3 The Progress Bar Control and the Coolbar Control tools.

Coolbars

Coolbars were first introduced in the Microsoft Internet Explorer, and they are toolbars that present
controls in bands. Users can adjust these bands by dragging a gripper, which appears at left in a band.
In this way, users can configure the coolbar by sliding the bands around as they want. One popular use
of coolbars is to display toolbars in the bands of that coolbar, allowing users to move those toolbars
around as they want.

The Coolbar Control tool is on the bottom, at left, in the Visual Basic toolbox in Figure 15.3. These
controls can act just as toolbars do, as we’ll see.

That’s it for the overview—it’s time to turn to the Immediate Solutions.

Immediate Solutions

Adding A Toolbar To A Form

The Testing Department is calling again. Your program, SuperDuperTextPro, is wonderful—but what
about putting in a toolbar? That would make things easier for the program’s users, because they could
click buttons in the toolbar instead of having to open menu items. So how do you add a toolbar to a
form?

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\463-469.html (3 of 4) [3/14/2001 1:49:33 AM]

javascript:displayWindow('images/15-02.jpg',415,524)
javascript:displayWindow('images/15-02.jpg',415,524)
javascript:displayWindow('images/15-03.jpg',415,524)
javascript:displayWindow('images/15-03.jpg',415,524)

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\463-469.html (4 of 4) [3/14/2001 1:49:33 AM]

You use the toolbar control. In fact, probably the easiest way to add a toolbar to a program is to design
that program with the Visual Basic Application Wizard. We’ll take a look at what the Application
Wizard has to offer us, and then add a toolbar to a program ourselves.

When you use the Application Wizard to create a program, that program gets a toolbar automatically.
You can arrange and configure the toolbar with the Application Wizard Customize Toolbar dialog box,
shown in Figure 15.4, which appears when you create a program with the Application Wizard.

Figure 15.4 The Application Wizard Customize Toolbar dialog box.

The Application Wizard takes care of all the details for us. When you run the program it generates, you
see a fully functional toolbar in that program, as shown in Figure 15.5.

Figure 15.5 An Application Wizard program, complete with toolbar.

However, most programmers will want to add their own toolbars to their programs, and you create a
toolbar by adding a toolbar control to a form. Here’s how that works:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box.

3. Select the Microsoft Windows Common Controls item, and click on OK to close the
Components dialog box.

This adds the Toolbar Control tool to the Visual Basic toolbox, as shown in Figure 15.1. To place a
toolbar in your form, just double-click the Toolbar Control tool.

Now you’ve got a new toolbar—but how do you align it at the top of the window and add buttons to it?
See the next couple of topics in this chapter.

Aligning Toolbars In A Form

Now that you’ve added a toolbar to your form, where does it go? By default, it aligns itself with the top
of the client area of the form. You can set the alignment of the toolbar with its Align property, which
can take these values:

• vbAlignNone—0

• vbAlignTop—1 (the default)

• vbAlignBottom—2

• vbAlignLeft—3

• vbAlignRight—4

Adding Buttons To A Toolbar

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\469-474.html (1 of 4) [3/14/2001 1:49:49 AM]

javascript:displayWindow('images/15-04.jpg',486,357)
javascript:displayWindow('images/15-04.jpg',486,357)
javascript:displayWindow('images/15-05.jpg',410,309)
javascript:displayWindow('images/15-05.jpg',410,309)

You’ve got your new toolbar in the form you want and aligned it correctly. How about adding some
buttons?

You add buttons to a toolbar control at design time by right-clicking the control and clicking the
Properties item in the menu that appears. When the toolbar’s property pages open, click the Buttons
tab, as shown in Figure 15.6.

Figure 15.6 Adding new buttons to a toolbar.

You insert new buttons by clicking the Insert Button button (and remove them with the Remove Button
button). When you add a new button to a toolbar, you can associate a picture or caption with it. For
example, to give a button a caption, just fill in the Caption box in Figure 15.6.

Each button gets a new Index value, which will be passed to the Click event handler. You can also
give each button a Key value, which is a string that you can use to identify the button.

When you’re done, click on the OK button to close the toolbar’s property pages. Now that you’ve
installed buttons in your toolbar, how do you handle button clicks? Take a look at the next topic.

Handling Toolbar Buttons Clicks

Now that you’ve set up your toolbar with the buttons you want, how can you make those buttons
active? You do that with the toolbar control’s ButtonClick event:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)

End Sub

The button the user clicked is passed to us in this event handler procedure, and we can determine which
button was clicked by checking either the button’s Index or Key properties. For example, we can
indicate to users which button they clicked with a message box and the Index property this way:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)
 MsgBox "You clicked button " & Button.Index
End Sub

All buttons in a toolbar control have an Index value by default (this value is 1-based), so this code is
ready to go. When the user clicks a button, we report which button the user has clicked, as shown in
Figure 15.7.

Figure 15.7 Determining which button the user has clicked.

Besides using the Index property, you can also give each button’s Key property a text string (you do

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\469-474.html (2 of 4) [3/14/2001 1:49:49 AM]

javascript:displayWindow('images/15-06.jpg',419,387)
javascript:displayWindow('images/15-06.jpg',419,387)
javascript:displayWindow('images/15-07.jpg',385,284)
javascript:displayWindow('images/15-07.jpg',385,284)

that at design time in the toolbar control’s property pages). Then you use a Select Case statement to
determine which button was clicked, like this:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)
 Select Case Button.Key
 Case "OpenFile"
 OpenFile
 Case "SaveFile"
 SaveFile
 Case "CloseFile"
 CloseFile
 End Select
End Sub

The complete code for the preceding code where we use the Index property appears in the toolbars
folder on this book’s accompanying CD-ROM.

Connecting Toolbar Buttons To Menu Items

You often use buttons in a toolbar as shortcuts for menu items. How do you connect a toolbar button to
a menu item? You just call the menu item’s Click event handler when the button is clicked.

For example, if you have three items in the File menu, Open, Save, and Close, that you want to connect
to toolbar buttons, you can set those buttons’ Key properties to, say, “OpenFile”, “SaveFile”, and
“CloseFile”, testing for those button clicks this way:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)
 Select Case Button.Key
 Case "OpenFile"
...
 Case "SaveFile"
...
 Case "CloseFile"
...
 End Select
End Sub

If one of those buttons were clicked, you simply call the associated menu item’s Click event handler
function directly:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)
 Select Case Button.Key
 Case "OpenFile"
 mnuFileOpen_Click
 Case "SaveFile"
 mnuFileSave_Click

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\469-474.html (3 of 4) [3/14/2001 1:49:49 AM]

 Case "CloseFile"
 mnuFileClose_Click
 End Select
End Sub

And that’s all it takes. Now we’ve connected toolbar buttons to menu items.

Adding Separators To A Toolbar

The Aesthetic Design Department is calling again. Can’t you group the buttons in your toolbar into
logical groups as you do with items in a menu?

You can, and just in the same way—by using separators. In menus, separators appear as solid lines, but
in toolbars, separators just appear as blank spaces, setting groups of buttons apart.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\469-474.html (4 of 4) [3/14/2001 1:49:49 AM]

Let’s see an example. Insert a new button into a toolbar and set its Style property to tbrSeparator, as
shown in Figure 15.8.

Figure 15.8 Adding a spacer to a toolbar.

Now add other buttons, and click on OK to close the toolbar’s property pages. When you do, you’ll see
that the separator puts some distance between the buttons, as shown in Figure 15.9.

Figure 15.9 Using a separator in a toolbar.

TIP: Although toolbar separators just look like blank space, they count as buttons, which means that
they have their own Index value. That means that you have to take separators into account when figuring
a button’s Index value in your toolbar in order to handle it when it’s clicked.

Adding Images To Toolbar Buttons

The Aesthetic Design Department is calling. Your new toolbar looks great, but it would look even
better if you used images in the buttons and not text captions. How about it?

You can give toolbar buttons if you place those images into an image list control. Image lists are
Windows common controls just as toolbars are, so add an image list to a program now.

To place the images you want in the buttons in the image list, follow these steps:

1. Right-click the image list control.

2. Select the Properties menu item.

3. Click the Images tab in the image control’s property pages.

4. Click the Insert Picture button to insert the first image (you can browse through your hard
disks and select the images you want).

5. Keep going until all the images have been added to the image control, then click on OK to
close the property pages.

Now you need to associate the image control with the toolbar, and you do that in the toolbar’s property
pages; just follow these steps:

1. Right-click the toolbar and select the Properties item to open the toolbar’s property pages, as
shown in Figure 15.10.

Figure 15.10 Adding images from an image control to a toolbar.

2. Next, click the Buttons tab in the property pages, as shown in Figure 15.11.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\474-480.html (1 of 4) [3/14/2001 1:50:18 AM]

javascript:displayWindow('images/15-08.jpg',419,387)
javascript:displayWindow('images/15-08.jpg',419,387)
javascript:displayWindow('images/15-09.jpg',380,259)
javascript:displayWindow('images/15-09.jpg',380,259)
javascript:displayWindow('images/15-10.jpg',419,387)
javascript:displayWindow('images/15-10.jpg',419,387)

Figure 15.11 Connecting images from an image control to toolbar buttons.

3. Enter the index of the image in the image control you want to connect to the first button in the
box labeled Image (image lists are 1-based).

4. Keep going for the other buttons, entering the image control indices of the images you want to
connect to those buttons.

5. Click on OK to close the property pages.

When you run the program, the images appear in the toolbar.

You can also connect an image control to a toolbar at runtime, using the toolbar’s ImageList property:

Private Sub Command1_Click()
 Toolbar1.ImageList = ImageList1
End Sub

TIP: Visual Basic comes with the standard bitmaps you’ll find in Windows toolbars—just check the
common\graphics\bitmaps\offctlbr\small\color directory.

Adding Check (Toggle) Buttons To A Toolbar

The Testing Department is calling again: The toolbar you’ve added to your program,
SuperDuperTextPro, is terrific, but there’s one problem. One of the menu items, the Insert item,
displays a checkmark next to it when the user toggles that mode on. Can’t you add a checkmark to the
Insert button in the toolbar as well?

The way toolbars handle this problem instead of displaying checkmarks is to keep a button depressed
once it’s been pressed. In this way, you can show toggle states. Let’s take a look at an example.

To make a toolbar button a “check” button, you must set its Style property to tbrCheck, and you do
that in the toolbar’s property pages. Right-click the toolbar now and select the Properties item to open
the property pages. Click the Buttons tab in the property pages, as shown in Figure 15.12.

Figure 15.12 Making a toolbar button a check button.

Select the button you want to work with, and set its style to tbrCheck, as shown in Figure 15.12.
That’s it. Now when the user clicks the button, it stays clicked, as shown in Figure 15.13, until the user
clicks it again.

Figure 15.13 A check toolbar button at work.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\474-480.html (2 of 4) [3/14/2001 1:50:18 AM]

javascript:displayWindow('images/15-11.jpg',419,387)
javascript:displayWindow('images/15-11.jpg',419,387)
javascript:displayWindow('images/15-12.jpg',419,387)
javascript:displayWindow('images/15-12.jpg',419,387)
javascript:displayWindow('images/15-13.jpg',380,259)
javascript:displayWindow('images/15-13.jpg',380,259)

Creating Button Groups In A Toolbar

You may notice in some toolbars that a set of buttons are mutually exclusive—for example, if your
word processor lets you align text to the right, left, and center with buttons in a toolbar, only one of
those styles can be active at once. When the user clicks one, the others should toggle off.

You can set up groups of mutually exclusive buttons in toolbars, just as you can with groups of option
buttons (in fact, that’s just what button groups in a toolbar resemble: a group of graphical [Style = 1]
option buttons).

To create a button group, just follow these steps:

1. Open the toolbar’s property pages by right-clicking the toolbar and selecting the Properties
item.

2. Click the Buttons tab.

3. Select the button in the button group, and set its style to tbrButtonGroup in the Style box, as
shown in Figure 15.14.

Figure 15.14 Creating a button group in a toolbar.

4. Repeat Step 3 for the other buttons in the button group.

5. Click on OK to close the property pages.

That’s all it takes. Now the buttons you’ve placed together in a group will act together. When the user
clicks one to select it, the others will toggle off (in other words, go back to their unselected position).
Button groups can be very useful in a toolbar—any time option buttons would come in handy in a
toolbar, just use a button group instead.

Adding Combo Boxes And Other Controls To A Toolbar

The Program Design Department is calling again. That shopping program you’ve written,
SuperDuperGroceryStore4U, is nice, but what about listing the available groceries in a combo box in
the toolbar. You wonder, how can you do that?

You can add combo boxes or other controls to a toolbar easily; just set aside space in the toolbar by
setting a button’s Style property to tbrPlaceholder. Here are the steps to follow to add a combo box to
a toolbar:

1. Right-click the toolbar, and select Properties in the menu that appears.

2. Click the Buttons tab in the property pages that open, as shown in Figure 15.15.

Figure 15.15 The toolbar property pages.

3. Insert a new button where you want the combo box to go.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\474-480.html (3 of 4) [3/14/2001 1:50:18 AM]

javascript:displayWindow('images/15-14.jpg',419,387)
javascript:displayWindow('images/15-14.jpg',419,387)
javascript:displayWindow('images/15-15.jpg',419,387)
javascript:displayWindow('images/15-15.jpg',419,387)

4. Set the new button’s Style property to tbrPlaceholder in the box labeled Style. This means
the button won’t appear—there’ll only be a blank space, and we’ll place our combo box there.

5. Set the width of the space you want to leave for the combo box by entering a twip (1/1440s of
an inch) value in the box labeled Width: (Placeholder), as shown in Figure 15.15.

6. Close the property pages by clicking on OK.

7. Click the Combo Box Control tool in the toolbox, and draw a new combo box in the new
space in the toolbar.

8. Add the items you want in the combo box in the Properties window’s List property (or add
items to the combo box at runtime).

9. Connect the code you want to the combo box. For example, here we respond to combo box
clicks and text entry by displaying a message box:

Private Sub Combo1_Change()
 MsgBox "You entered " & Combo1.Text
End Sub

Private Sub Combo1_Click()
 MsgBox "You selected " & Combo1.Text
End Sub

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\474-480.html (4 of 4) [3/14/2001 1:50:18 AM]

That’s all we need—now run the program, as shown in Figure 15.16.

Figure 15.16 Adding a combo box to a toolbar.

When users make a selection with the combo box, we display a message box letting them know what
they’ve selected. Our combo box toolbar example is a success.

The code for this example appears in the combotoolbar folder on this book’s accompanying CD-ROM.

Setting Toolbar Button Tool Tips

Giving toolbar buttons tool tips (those small yellow windows that display explanatory text when the
mouse cursor rests on the underlying control) is an easy process. All you need to do to give a button a
tool tip is to set its ToolTipText property.

To set the ToolTipText property, right-click the toolbar and select the Properties item in the menu that
opens. Click the Buttons tab and select the button you want to add the tool tip to. Place the tool tip text
in the box labeled ToolTipText, as shown in Figure 15.17. Finally, close the property pages by clicking
on OK. Now when you run the program, the button displays a tool tip, as shown in Figure 15.18.

Figure 15.17 Setting a toolbar button’s tool tip text.

Figure 15.18 Toolbar buttons with tool tips.

Letting The User Customize The Toolbar

The Testing Department has sent you a memo. Some users of your new program, SuperDuperTextPro,
want the Save button at left in the toolbar, but other users want the Create New Document button there.
What can we do?

You can let the user customize the toolbar. Just set the AllowCustomize property to True (the default).
When the user double-clicks the toolbar, the Customize Toolbar dialog box appears, as shown in Figure
15.19. Users can customize the toolbar as they like using that dialog box.

Figure 15.19 Using the Customize Toolbar dialog box.

TIP: If you allow your end user to reconfigure the toolbar control, you can save and restore the toolbar
by using the SaveToolbar and RestoreToolbar methods.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\480-485.html (1 of 4) [3/14/2001 1:50:55 AM]

javascript:displayWindow('images/15-16.jpg',380,259)
javascript:displayWindow('images/15-16.jpg',380,259)
javascript:displayWindow('images/15-17.jpg',419,387)
javascript:displayWindow('images/15-17.jpg',419,387)
javascript:displayWindow('images/15-18.jpg',380,259)
javascript:displayWindow('images/15-18.jpg',380,259)
javascript:displayWindow('images/15-19.jpg',542,228)
javascript:displayWindow('images/15-19.jpg',542,228)

Adding Toolbar Buttons At Runtime

How do you add buttons to a toolbar at runtime? It’s possible to add menu items to menus, so it should
be possible to add buttons to toolbars.

It is. To add a new button when the user clicks a button, we start by declaring a new Button object:

Private Sub Command1_Click()
 Dim Button1 As Button
...
End Sub

Next, we add a new button to the toolbar’s Buttons collection, which is how it stores its buttons
internally. As with all collections, the Buttons collection has an Add method, and we use it here:

Private Sub Command1_Click()
 Dim Button1 As Button
 Set Button1 = Toolbar1.Buttons.Add()
...
End Sub

Now we’re free to set the button’s style. Here, we make it a standard button by setting its Style
property to tbrDefault (other options include tbrButtonGroup, tbrSeparator, tbrCheck,
tbrPlaceHolder, and tbrDropDown):

Private Sub Command1_Click()
 Dim Button1 As Button
 Set Button1 = Toolbar1.Buttons.Add()
 Button1.Style = tbrDefault
...
End Sub

We can also give the new button a caption:

Private Sub Command1_Click()
 Dim Button1 As Button
 Set Button1 = Toolbar1.Buttons.Add()
 Button1.Style = tbrDefault
 Button1.Caption = "New button"
...
End Sub

Finally, we give the new button a tool tip:

Private Sub Command1_Click()
 Dim Button1 As Button

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\480-485.html (2 of 4) [3/14/2001 1:50:55 AM]

 Set Button1 = Toolbar1.Buttons.Add()
 Button1.Style = tbrDefault
 Button1.Caption = "New button"
 Button1.ToolTipText = "New button"
End Sub

And that’s it—the new button is active. It’s been added to the Buttons collection of the toolbar control,
which means it has its own Index value. That Index value will be passed to the ButtonClick handler,
and we can make use of the index this way (you can also set a button’s key text from code by setting its
Key property):

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)
 MsgBox "You clicked button " & Button.Index
End Sub

Adding A Status Bar To A Program

The Testing Department is calling again. Your new SuperDuperDataCrunch program looks good, but
what about the status bar? You ask, what status bar? Exactly, they say.

How can you add a status bar to your program? You could design the program with the Visual Basic
Application Wizard, which automatically adds a status bar (see “Adding A Toolbar To A Form” earlier
in this chapter for more information). However, most programmers will want to add their own status
bar to their programs, and you create a status bar by adding a status bar control to a form. Here’s how
that works:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box.

3. Select the Microsoft Windows Common Controls item, and click on OK to close the
Components dialog box.

This adds the Status Bar Control tool to the Visual Basic toolbox, as shown in Figure 15.2. To place a
status bar in your form, just double-click the Status Bar Control.

Now you’ve got a new status bar—but how do you align it at the top of the window and display text in
it? See the next couple of topics in this chapter.

Aligning Status Bars In A Form

Now that you’ve added a status bar to your form, where does it go? By default, it aligns itself with the
bottom of the client area of the form. You can set the alignment of the status bar with its Align
property, which can take these values:

• vbAlignNone—0

• vbAlignTop—1 (the default)

• vbAlignBottom—2

• vbAlignLeft—3

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\480-485.html (3 of 4) [3/14/2001 1:50:55 AM]

• vbAlignRight—4

Adding Panels To A Status Bar

Now that you’ve added a status bar to your program, it’s time to take the next step: adding panels to the
status bar. The text in a status bar is displayed in those panels.

A status bar control has a Panels collection, and you add the panels you want to that collection. To do
that at design time, follow these steps:

1. Right-click the status bar, and select the Properties item in the menu that opens.

2. Click the Panels tab in the property pages, as shown in Figure 15.20.

Figure 15.20 Adding a panel to a status bar.

3. Click the Insert Panel button as many times as you want panels in your status bar.

4. Close the property pages by clicking on OK.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\480-485.html (4 of 4) [3/14/2001 1:50:55 AM]

javascript:displayWindow('images/15-20.jpg',419,339)
javascript:displayWindow('images/15-20.jpg',419,339)

It’s also easy to add a new status bar panel at runtime—just use the Panels collection’s Add method.
Here’s an example where we add a panel to a status bar when the user clicks a command button:

Private Sub Command1_Click()
 Dim panel5 As Panel
 Set panel5 = StatusBar1.Panels.Add()
 Panel5.Text = "Status: OK"
End Sub

Now that you’ve added panels to the status bar, how do you display text in those panels? See the next
topic.

Displaying Text In A Status Bar

You’ve added a new status bar to your program and added the panels you want to the status bar—but
how do you display text? The status bar control you’ve added doesn’t seem to have a Text property.

The text in a status bar is displayed in the status bar’s panels (unless the status bar is a simple status
bar—see “Creating Simple Status Bars” later in this chapter—in which case you use the status bar’s
SimpleText property). Displaying text in a status bar’s panels is easy—just select the panel you want
to work with as the index into the status bar’s Panels collection, and use that panel’s Text property.

Here’s an example—in this case, we’ll display the program status, “OK”, in the first panel of the status
bar (note that the Panels collection is 1-based) when the user clicks a command button, Command1:

Private Sub Command1_Click()
 StatusBar1.Panels(1).Text = "OK"
End Sub

That’s it—the result of this code appears in Figure 15.21. Now we’ve displayed text in a status bar.

Figure 15.21 Displaying text in a status bar control.

The code for this example is located in the statusbar folder on this book’s accompanying CD-ROM.

Displaying Time, Dates, And Key States In A Status Bar

The Testing Department has sent you some email: the clock-watchers who use your
SuperDuperDataCrunch program want a clock to watch. Can you add one to your program?

You can, and you can display it in the status bar. In fact, status bar controls are already set up to display
common status items like key states and dates. To display one of those items, just right-click the status
bar, select the Properties item in the menu that appears, click the Panels tab, select the panel you want
to work with, and set the Style property in the box labeled Style to one of the following:

• sbrText—0 (the default); text and/or a bitmap. Displays text in the Text property.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\485-489.html (1 of 3) [3/14/2001 1:51:03 AM]

javascript:displayWindow('images/15-21.jpg',320,240)
javascript:displayWindow('images/15-21.jpg',320,240)

• sbrCaps—1; Caps Lock key. Displays the letters “CAPS” in bold when Caps Lock is enabled,
and dimmed when disabled.

• sbrNum—2; Num Lock key. Displays the letters “NUM” in bold when the Num Lock key is
enabled, and dimmed when disabled.

• sbrIns—3; Insert key. Displays the letters “INS” in bold when the Insert key is enabled, and
dimmed when disabled.

• sbrScrl—4; Scroll Lock key. Displays the letters “SCRL” in bold when Scroll Lock is
enabled, and dimmed when disabled.

• sbrTime—5; time. Displays the current time in the system format.

• sbrDate—6; date. Displays the current date in the system format.

• sbrKana—7; Kana lock. Displays the letters “KANA” in bold when kana lock is enabled, and
dimmed when disabled (this feature is enabled on Japanese operating systems only).

See Figure 15.22 for a status bar showing the time.

Figure 15.22 Displaying time in a status bar.

Customizing A Status Bar Panel’s Appearance

You can customize the appearance of the panels in a status bar with the Bevel, AutoSize, and
Alignment properties. The Bevel property specifies whether the panel will have an inset bevel (the
default), raised, or none at all. Here’s how you can set the Bevel property:

• sbrNoBevel—0; the Panel displays no bevel, and text looks like it is displayed right on the
status bar.

• sbrInset—1; the Panel appears to be sunk into the status bar.

• sbrRaised—2; the Panel appears to be raised above the status bar.

The AutoSize property determines how a panel will resize itself when its container (usually a form) is
resized by the user. Here are the settings for the AutoSize property:

• sbrNoAutoSize—0; None. No autosizing occurs. The width of the panel is always and exactly
that specified by the Width property.

• sbrSpring—1; Spring. When the parent form resizes and there is extra space available, all
panels with this setting divide the space and grow accordingly. (The panels’ width never falls
below that specified by the MinWidth property.)

• sbrContents—2; Content. The panel is resized to fit its contents.

The Alignment property indicates how the text or image in a panel will align in the panel. The settings
for the Alignment property are as follows:

• sbrLeft—0; text appears left-justified and to the right of any bitmap.

• sbrCenter—1; text appears centered and to the right of any bitmap.

• sbrRight—2; text appears right-justified but to the left of any bitmap.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\485-489.html (2 of 3) [3/14/2001 1:51:03 AM]

javascript:displayWindow('images/15-22.jpg',320,240)
javascript:displayWindow('images/15-22.jpg',320,240)

Displaying Images In A Status Bar

The Aesthetic Design Department is on the phone. How about adding a few images to the status bar? In
fact, how about some animation for the user to watch while the program does other things? You think,
is that possible?

Yes, it is, because status bar panels have a Picture property. To place an image in a status bar panel at
design time, follow these steps:

1. Right-click the status bar, and select the Properties item in the menu that appears.

2. Click the Panels tab in the property pages that open.

3. Select the panel you want to work with.

4. Set the panel’s Picture property by clicking the Browse button in the box labeled Picture.
You can set this property with an image file on disk.

5. Close the property pages by clicking on OK.

That’s it—now when you run the program, the image you’ve selected appears in the panel you’ve
chosen, as shown in Figure 15.23.

Figure 15.23 Displaying images in a status bar.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\485-489.html (3 of 3) [3/14/2001 1:51:03 AM]

javascript:displayWindow('images/15-23.jpg',320,240)
javascript:displayWindow('images/15-23.jpg',320,240)

You can also set a status bar panel’s image at runtime. For example, here’s how we set the image in the
first panel of a status bar, using the image in a picture box when the user clicks a button (you can also
use the LoadPicture function to load images in directly):

Private Sub Command1_Click()
 StatusBar1.Panels(1).Picture = Picture1.Picture
End Sub

TIP: You can even create animation in a status bar panel; just set up a timer and place a succession of
images in the panel’s Picture property.

Handling Panel Clicks

Are status bars static controls? Or can they handle events? Status bars certainly can handle events, and
the most common are PanelClick and PanelDblClick. The event handler procedures for those events
are passed the panel that was clicked, as in this example:

Private Sub StatusBar1_PanelClick(ByVal Panel As ComctlLib.Panel)

End Sub

You can tell which panel was clicked by checking the Panel argument’s Index or Key properties. For
example, here’s how we use the Index property to report to the user which panel was clicked:

Private Sub StatusBar1_PanelClick(ByVal Panel As ComctlLib.Panel)
 MsgBox "You clicked panel " & Panel.Index
End Sub

If you’ve set the Key properties of the panels in your status bar (the Key property holds a text string),
you can set up a Select Case statement to see which panel was clicked and take the appropriate action:

Private Sub StatusBar1_PanelClick(ByVal Panel As ComctlLib.Panel)
 Select Case Panel.Key
 Case "Date"
 Panel.Text = Date$
 Case "Time"
 Panel.Text = Time$
 End Select
End Sub

Adding New Panels To A Status Bar At Runtime

It’s easy to add a new status bar panel at runtime—just use the Panels collection’s Add method. Here’s
an example where we add a panel to a status bar when the user clicks a command button:

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\489-493.html (1 of 4) [3/14/2001 1:51:11 AM]

Private Sub Command1_Click()
 Dim panel5 As Panel
 Set panel5 = StatusBar1.Panels.Add()
 Panel5.Text = "Status: OK"
End Sub

Creating Simple Status Bars

There’s a way of using a status bar without using panels: by making the status bar a simple status bar.
How do you make a status bar into a simple status bar? You set its Style property to sbrSimple (which
equals 1; the other option is sbrNormal, which equals 0). Simple status bars have only one panel, and
you set the text in that panel with the SimpleText property.

Here’s an example; in this case, we just display the message “Status: OK” in the simple status bar when
the user clicks a button:

Private Sub Command1_Click()
 StatusBar1.SimpleText = "Status: OK"
End Sub

The result of this code appears in Figure 15.24.

Figure 15.24 Using a simple status bar.

TIP: One reason programmers used to use simple status bars was to show the progress of an operation
by displaying a succession of dots (or other text) in the status bar’s single long panel. However, you can
use the progress bar control for that these days—see the next topic in this chapter.

Adding A Progress Bar To A Form

The Testing Department is calling again. Why does downloading the 200MB data file your program
requires take so long? Well, you explain, the Internet is like that. They ask, but can’t you at least show
the user what progress the downloading operation is making? You take a look at the Progress Bar
Control tool in the Visual Basic toolbox. Sure, you say, no problem.

You can use progress bar controls to show the progress of a time-consuming operation. These controls
display a colored band that can grow (or shrink) as time goes on. To add a progress bar to a form,
follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box.

3. Select the Microsoft Windows Common Controls item, and click on OK to close the
Components dialog box. This adds the Progress Bar Control tool to the Visual Basic toolbox, as
shown in Figure 15.3.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\489-493.html (2 of 4) [3/14/2001 1:51:11 AM]

javascript:displayWindow('images/15-24.jpg',320,240)
javascript:displayWindow('images/15-24.jpg',320,240)

4. To place a progress bar in your form, just add it as you would any control, using the Progress
Bar Control tool.

5. Set the progress bar’s Min (default is 0) and Max (default is 100) properties as desired to
match the range of the operation you’re reporting on.

Now you’ve got a new progress bar in your form—but how do you use it? See the next topic.

Using A Progress Bar

Now that you’ve added a progress bar to your program and set its Min and Max properties, how do
you actually use it to display data? You use a progress bar’s Value property (available only at runtime)
to specify how much of the progress bar is visible. As you might expect, setting Value to Min means
none of the progress bar is visible, and setting it to Max means all of it is.

Let’s see an example. In this case, we’ll let the user click a button to display a progress bar whose bar
lengthens from Min to Max in 10 seconds. Add a progress bar, command button, and a timer control to
a form now. Set the timer’s Interval property to 1000 (in other words, 1000 milliseconds, or 1 second).
We’ll leave the progress bar’s Min property at 0 and its Max property at 100, the defaults.

When the form loads, we disable the timer and set the progress bar’s Value to 0:

Private Sub Form_Load()
 Timer1.Enabled = False
 ProgressBar1.Value = 0
End Sub

When the user clicks the command button, we want to start the progress bar, so we enable the timer.
We also set the progress bar back to 0 (even though we did that when the form loads, the user might
want to restart the operation, which means he might click the button several times):

Private Sub Command1_Click()
 ProgressBar1.Value = 0
 Timer1.Enabled = True
End Sub

Finally, in the Timer event handler, Timer1_Timer, we add a value of 10 to the progress bar’s Value
property every second. We also check if we’ve filled the progress bar, and if so, disable the timer:

Private Sub Timer1_Timer()
 ProgressBar1.Value = ProgressBar1.Value + 10
 If ProgressBar1.Value >= 100 Then Timer1.Enabled = False
End Sub

That’s all we need—now when the user clicks the command button, we start the progress bar in motion,
and it goes from 0 to 100 in 10 seconds, as shown in Figure 15.25.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\489-493.html (3 of 4) [3/14/2001 1:51:11 AM]

Figure 15.25 Using a progress bar.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\489-493.html (4 of 4) [3/14/2001 1:51:11 AM]

javascript:displayWindow('images/15-25.jpg',325,240)
javascript:displayWindow('images/15-25.jpg',325,240)

The code for this example is located in the progressbar folder on this book’s accompanying CD-ROM.

Adding A Coolbar To A Form

Coolbars were first introduced in the Microsoft Internet Explorer, and they are toolbars that present
controls in bands. The user can adjust these bands by dragging a gripper, which appears at left in a
band. In this way, users can configure the coolbar by sliding the bands around as they want.

To add a coolbar control to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box.

3. Select the Microsoft Windows Common Controls-3 item, and click on OK to close the
Components dialog box. This adds the Coolbar Control tool to the Visual Basic toolbox, as
shown in Figure 15.3.

4. To place a coolbar in your form, just add it as you would any control, using the Coolbar
Control tool.

Now that you’ve added a coolbar to your form, maybe you’ll need to align it in that form? See the next
topic for the details.

Aligning Coolbars In A Form

Now that you’ve added a coolbar to your form, how do you align it to the top, bottom, or wherever you
want to place it? You use the Align property, setting it to one of these values:

• vbAlignNone—0 (the default)

• vbAlignTop—1

• vbAlignBottom—2

• vbAlignLeft—3

• vbAlignRight—4

Now that you’ve added a coolbar to your form and set its alignment as you want, how do you add
bands to that coolbar? See the next topic for the details.

Adding Bands To A Coolbar

The controls in a coolbar are usually organized into bands (and note that those controls can themselves
contain controls, as when you place toolbars in a band). To add a band to a coolbar, just follow these
steps:

1. Right-click the coolbar and select the Properties item in the menu that appears.

2. Click the Bands tab in the coolbar’s property pages, as shown in Figure 15.26.

Figure 15.26 The coolbar property pages.

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\493-497.html (1 of 3) [3/14/2001 1:51:16 AM]

javascript:displayWindow('images/15-26.jpg',400,398)
javascript:displayWindow('images/15-26.jpg',400,398)

3. Add new bands to the coolbar using the Insert Band button.

4. When finished, close the property pages by clicking on OK.

You can also add a band to a coolbar at runtime with its Bands collection, because that collection
supports the usual collection methods Add and Remove. For example, here’s how we add a new band
to a coolbar at runtime:

Private Sub Command1_Click()
 Dim band5 As Band
 Set band5 = CoolBar1.Bands.Add()
End Sub

Now that you’ve added bands to a coolbar, how do you install controls in those bands? Take a look at
the next topic to get the details.

Adding Controls To Coolbar Bands

You add controls to coolbar bands by setting the band’s Child property. The Child property can only
hold one child control, which you might think limits the power of coolbars, but in fact, that control can
be a complete toolbar. If you fill a coolbar’s bands with toolbar controls, users can arrange and slide
those toolbars around as they like.

To add a control to a coolbar band, follow these steps:

1. Add the control (such as a toolbar) you want to place in a band to the coolbar by drawing it
inside the coolbar.

2. Right-click the coolbar and select the Properties item in the menu that appears.

3. Click the Bands tab in the coolbar’s property pages, as shown in Figure 15.27.

Figure 15.27 Adding a toolbar to a coolbar band.

4. Select the band you want to work with.

5. Set the band’s Child property to the control you want to add to that band, such as Toolbar1
in Figure 15.27.

6. Close the coolbar’s property pages by clicking on OK.

You can also set a band’s Child property at runtime, as in this example where we set the control in the
coolbar’s first band to Toolbar1:

Private Sub Command1_Click()
 Set CoolBar1.Bands(1).Child = Toolbar1
End Sub

Handling Coolbar Control Events

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\493-497.html (2 of 3) [3/14/2001 1:51:16 AM]

javascript:displayWindow('images/15-27.jpg',400,398)
javascript:displayWindow('images/15-27.jpg',400,398)

You’ve set up the coolbar you want and placed a few toolbars in the various bands of that coolbar. Now
how do you handle button clicks in those toolbars (or other controls you’ve place in a coolbar’s bands)?

Handling events from controls in coolbar bands is easy—just connect event handlers to those controls
as you normally would (in other words, if they weren’t in a coolbar). Here’s an example where we’ve
added a toolbar, Toolbar1, to a coolbar. You can add buttons to the toolbar as you would
normally—just open the toolbar’s property pages and use the Insert Button button. To handle Click
events for those button, you just double-click the toolbar’s buttons at design time, which opens the
matching Click event handler:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)

End Sub

Then you just proceed as you would in a normal toolbar, such as adding this code where we indicate to
users which button they’ve clicked:

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)
 MsgBox "You clicked button " & Button.Index

End Sub

Visual Basic 6 Black Book:Toolbars, Status Bars, Progress Bars, And Coolbars

http://24.19.55.56:8080/temp/ch15\493-497.html (3 of 3) [3/14/2001 1:51:16 AM]

Chapter 16
Image Lists, Tree Views, List Views, And Tab
Strips
If you need an immediate solution to:

Adding An Image List To A Form

Adding Images To Image Lists

Using The Images In Image Lists

Setting Image Keys In An Image List

Adding A Tree View To A Form

Selecting Tree View Styles

Adding Nodes To A Tree View

Adding Subnodes To A Tree View

Adding Images To A Tree View

Expanding And Collapsing Nodes (And Setting Node Images To Match)

Handling Tree View Node Clicks

Adding A List View To A Form

Adding Items To A List View

Adding Icons To List View Items

Adding Small Icons To List View Items

Selecting The View Type In List Views

Adding Column Headers To A List View

Adding Column Fields To A List View

Handling List View Item Clicks

Handling List View Column Header Clicks

Adding A Tab Strip To A Form

Inserting Tabs Into A Tab Strip Control

Setting Tab

Setting Tab Images

Using A Tab Strip To Display Other Controls

Handling Tab Clicks

In Depth

In this chapter, we’re going to take a look at image list controls and some of the controls that use image
lists: tree views, list views, and tab strips. These controls are part of the Windows common controls
package and are being used more and more frequently in Windows programs.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\499-504.html (1 of 4) [3/14/2001 1:51:44 AM]

We’ll get an overview of each control before tackling the programming issues. You add all the controls
in this chapter to the Visual Basic toolbox by selecting the Project|Components menu item, clicking the
Controls tab in the dialog box that opens, selecting the entry marked Windows Common Controls, and
clicking on OK to close the Components dialog box.

Image Lists

Image list controls are invisible controls that serve one purpose: to hold images that are used by other
controls. Usually, you add images to an image list control at design time, using the Insert Picture button
in the control’s property pages. You can also add images to an image list at runtime, using the Add
method of its internal image collection, ListImages.

To use the images in the image list, you usually associate the image list with a Windows common
control (which has an ImageList property). For each item in the common control, such as a tab in a tab
strip control, you can then specify either an index into the image lists’ ListImages collection or an
image’s key value to associate that image with the item.

You can also reach the images in an image list with the ListImages collection’s Picture property. For
example, if you wanted to use an image list with a control that’s not a Windows common control, such
as a picture box, you can assign the first image in the image control to that picture box this way:

Picture1.Picture = ImageList1.ListImages(1).Picture

The Image List Control tool appears in the Visual Basic toolbox in Figure 16.1 at bottom, on the right.

Figure 16.1 The Image List Control tool.

Tree Views

If you’ve used the Windows Explorer, you’re familiar with tree views. Tree views present data in a
hierarchical way, such as the view of directories that appears in the tree view at left in the Windows
Explorer, as shown in Figure 16.2.

Figure 16.2 The Windows Explorer.

Trees are composed of cascading branches of nodes , and each node usually consists of an image (set
with the Image property) and a label (set with the Text property). Images for the nodes are supplied by
an image list control associated with the tree view control.

A node can be expanded or collapsed, depending on whether or not the node has child nodes. At the
topmost level are root nodes, and each root node can have any number of child nodes. Each node in a
tree is actually a programmable Node object, which belongs to the Nodes collection. As with other
collections, each member of the collection has a unique Index and Key property that allows you to

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\499-504.html (2 of 4) [3/14/2001 1:51:44 AM]

javascript:displayWindow('images/16-01.jpg',415,524)
javascript:displayWindow('images/16-01.jpg',415,524)
javascript:displayWindow('images/16-02.jpg',689,408)
javascript:displayWindow('images/16-02.jpg',689,408)

access the properties of the node.

The Tree View Control tool is the thirteenth tool down on the right in Figure 16.3.

Figure 16.3 The Tree View Control tool.

List Views

The list view control displays, as its name implies, lists of items. You can see a list view at right in the
Windows Explorer in Figure 16.2. There, the list view is displaying a list of files. Each item in a list
view control is itself a ListItem object and can have both text and an image associated with it. The
ListItem objects are stored in the list view’s ListItems collection.

List views can display data in four different view modes:

• Icon mode—Can be manipulated with the mouse, allowing the user to drag and drop and
rearrange objects.

• SmallIcon mode—Allows more ListItem objects to be viewed. Like the Icon view mode,
objects can be rearranged by the user.

• List mode—Presents a sorted view of the ListItem objects.

• Report mode—Presents a sorted view, with sub-items, allowing extra information to be
displayed.

The list view in the Windows Explorer in Figure 16.2 is displaying files in Report view mode (which is
the only mode that has columns and column headers). In this mode, you add sub-items to each item,
and the text in those sub-items will appear under the various column headings.

You usually associate two image list controls with a list view: one to hold the icons for the Icon view
mode, and one to hold small icons for the other three modes. The size of the icons you use is
determined by the image list control (the available sizes are 16 × 16, 32 × 32, 48 × 48, and Custom).

The List View Control tool is the fourteenth control down on the left in Figure 16.4.

Figure 16.4 The List View Control tool.

Tab Strips

A tab strip control presents the user with a row (or rows) of tabs that acts like the dividers in a notebook
or the labels on a group of file folders. Like an increasing number of other controls (such as coolbars
and tree views), tab strips represent one of Microsoft’s attempts to compact data into less and less of
the screen (because there’s getting to be more and more data). Using tab strips, the user can click a tab
and see a whole new panel of data, like opening a file folder. In fact, we’ve already used tab strips in
many parts of this book already to set Visual Basic options or to include ActiveX controls in our

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\499-504.html (3 of 4) [3/14/2001 1:51:44 AM]

javascript:displayWindow('images/16-03.jpg',412,522)
javascript:displayWindow('images/16-03.jpg',412,522)
javascript:displayWindow('images/16-04.jpg',415,524)
javascript:displayWindow('images/16-04.jpg',415,524)

programs.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\499-504.html (4 of 4) [3/14/2001 1:51:44 AM]

The most common use of tab strips today is to organize dialog boxes—often those dialog boxes that let
the user set program options—into many different panels, all hidden from view except the current one
the user has selected. In this way, you can pack a great deal into a small space in a dialog box and avoid
the need for many dialog boxes.

From the programmer’s point of view, a tab strip control consists of one or more Tab objects in a Tabs
collection. At both design time and runtime, you can set the Tab object’s appearance by setting
properties, and at runtime, by invoking methods to add and remove Tab objects.

The Tab Strip Control tool appears as the eleventh tool down on the right in the Visual Basic toolbox in
Figure 16.5.

Figure 16.5 The Tab Strip Control tool.

That’s it for the overview. It’s time to turn to the Immediate Solutions.

Immediate Solutions

Adding An Image List To A Form

To work with many Windows common controls, you need to use image lists. How do you add an image
list control to a program? Just follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Windows Common Controls entry.

4. Close the Components dialog box by clicking on OK.

5. Double-click the Image List Control tool (see Figure 16.1 at bottom, on the right) to add an
image list control to a form. This control is invisible at runtime, so its size and location don’t
make much difference.

Now that you’ve added an image list to a form, how do you add images to that image list? See the next
topic.

Adding Images To Image Lists

To add images to an image list, you can use the image list’s property pages at design time. Just
right-click the image list and select the Properties item in the menu that opens. Next, click the Images
tab in the property pages, as shown in Figure 16.6.

Figure 16.6 Adding images to an image list.

To insert images into the image list control, just use the Insert Picture button; clicking that button lets

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\504-510.html (1 of 4) [3/14/2001 1:51:52 AM]

javascript:displayWindow('images/16-05.jpg',412,522)
javascript:displayWindow('images/16-05.jpg',412,522)
javascript:displayWindow('images/16-06.jpg',416,312)
javascript:displayWindow('images/16-06.jpg',416,312)

you search for image files on disk. Each successive image gets a new Index value, starting at 1 and
counting up. If you wish, you can also give each image a Key value (a unique text string identifier) by
entering text in the box labeled Key when you add an image.

When you’re done adding images, close the property pages by clicking on OK.

You can also add images to an image list using the ListImages collection’s Add method at runtime
like this, where we give the image the key “tools”:

ImageList1.ListImages.Add ,"tools", LoadPicture("c:\tools.bmp")

TIP: You should note that when the image list control is bound to another Windows common control,
images of different sizes can be added to the control, but the size of the image displayed in the associated
Windows common control will be constrained to the size of the first image added to the image list.

Using The Images In Image Lists

The Testing Department is calling again. The 40 picture boxes you have hidden in your program are
taking up too much memory. Can’t you do something else to store images?

You can. An image control can take up much less memory. Usually when you use an image control,
you’re storing images for a Windows common control. Those controls have an ImageList property,
which you set to the name of the image list control you want to use (for example, ImageList1). From
then on, you can associate the elements of the Windows common control with the images in the
associated image list either by index or by key value.

However, you can also use image list controls with other controls, such as picture boxes. Here’s an
example taken from our earlier chapter on picture boxes that will create some graphics animation. We
store images in an image list and swap them into a picture box in this example.

Add a timer control with its Interval property set to 1000 (that is, 1 second), setting its Enabled
property to False; a picture box, Picture1 , with its AutoSize property set to True; an image list
control, ImageList1 , adding two images to the image list control (we used image1.bmp and
image2.bmp, which are just bands of blue and red, in this example); and a command button,
Command1 , labeled Start Animation.

When the user clicks the Start Animation button, we enable the timer:

Private Sub Command1_Click()
 Timer1.Enabled = True
End Sub

Then we toggle a Boolean variable, blnImage1 , and alternate images from the image list control every
second:

Private Sub Timer1_Timer()
 Static blnImage1 As Boolean

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\504-510.html (2 of 4) [3/14/2001 1:51:52 AM]

 If blnImage1 Then
 Picture1.Picture = ImageList1.ListImages(1).Picture
 Else
 Picture1.Picture = ImageList1.ListImages(2).Picture
 End If

 blnImage1 = Not blnImage1

End Sub

Note how we refer to the images in the image control, using the ListImages collection this way:
ImageList1.ListImages(1).Picture.

That’s all we need—the result appears in Figure 16.7. Now we’re using the images in an image control.
The code for this example is located in the coloranimation folder on this book’s accompanying
CD-ROM.

Figure 16.7 Using the images in an image control for animation.

Setting Image Keys In An Image List

When you add an image to an image list control, that image gets a new index value automatically.
However, you can also refer to images with the Key property. The key is a unique text string that
identifies the image just as its index does, and in Windows common controls, you can refer to an image
in an image list by either its index or key.

You set an image’s key in the image list’s property pages. For example, set an image’s Key property to
Image1 by entering that text in the Key field.

Adding A Tree View To A Form

The Testing Department is calling again. There sure is a lot of data in your new program,
SuperDuperDataCrunch . Yes, you agree, there is. How about using a tree view instead? Hmm, you
think, how does that work?

To add a tree view control to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Windows Common Controls item.

4. Click on OK to close the Components dialog box.

5. The preceding steps add the Tree View Control tool to the toolbox. Draw a tree view in the
form as you want it.

6. Set the tree view’s properties, and add the code you want.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\504-510.html (3 of 4) [3/14/2001 1:51:52 AM]

javascript:displayWindow('images/16-07.jpg',280,214)
javascript:displayWindow('images/16-07.jpg',280,214)

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\504-510.html (4 of 4) [3/14/2001 1:51:52 AM]

When you first add a tree view control, there are only sample nodes visible in it, and nothing at
runtime. You’re responsible for adding the nodes and setting up their relationships, text, and images
yourself. We’ll do that in the topics that follow in this chapter, but for reference, we list the program
we’ll develop here, so you can refer back to it as you like.

Running this example program yields the results you see in Figure 16.8; as you can see, we let the user
expand and collapse nodes in the tree view, have associated both an image and text with each node, and
report which node was clicked in a text box at the bottom on the form. This program has the following
controls in it: an image list, ImageList1 ; a tree view control, TreeView1 , with its Style property set to
7 (the default); and a text box, Text1.

Figure 16.8 Using a tree view in a form.

The code for this example is located in the treeview folder on this book’s accompanying CD-ROM.

Selecting Tree View Styles

There are many different styles for tree views—text nodes only, pictures and text nodes, showing or not
showing the tree “lines” that connect nodes, showing or not showing the plus and minus symbols to
expand or collapse nodes, and so on. You set the tree view’s style using its Style property. Here are the
possible values (we’ll stick to the default, style 7, tvwTreelinesPlusMinusPictureText , in this chapter
because that style offers the richest set of attributes):

• tvwTextOnly—0

• tvwPictureText—1

• tvwPlusMinusText—2

• tvwPlusPictureText—3

• tvwTreelinesText—4

• tvwTreelinesPictureText—5

• tvwTreeLinesPlusMinusText—6

• tvwTreelinesPlusMinusPictureText—7 (the default)

TIP: Note that you can set the tree view’s style at design time or runtime, which means you can allow
users to customize the tree view’s appearance as they want.

Adding Nodes To A Tree View

The Testing Department is calling again. The tree view you’ve added to your program is fine, but why
isn’t there anything in it? Oops, you think, it’s time to add some nodes.

You actually add Node objects to a tree view by adding them to the Nodes collection. How does this
work? Let’s see an example. Here, we’ll add a node, Node1 , to a tree view, TreeView1 (the tree
view’s Style property is set to tvwTreelinesPlusMinusPictureText , the default).

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\510-514.html (1 of 4) [3/14/2001 1:52:01 AM]

javascript:displayWindow('images/16-08.jpg',317,237)
javascript:displayWindow('images/16-08.jpg',317,237)

First, we declare that node:

Private Sub Form_Load()
 Dim Node1 As Node
...

Next, we add the node to the tree view using the Nodes collection’s Add method (see the next topic for
more information on this method):

Private Sub Form_Load()
 Dim Node1 As Node

 Set Node1 = TreeView1.Nodes.Add
...

Now we can refer to the node by name, Node1 , as we set its text:

Private Sub Form_Load()
 Dim Node1 As Node

 Set Node1 = TreeView1.Nodes.Add
 Node1.Text = "Node 1"
...

We can also refer to the node as a member of the Nodes collection as here, where we set the node’s
Key property:

Private Sub Form_Load()
 Dim Node1 As Node

 Set Node1 = TreeView1.Nodes.Add
 Node1.Text = "Node 1"
 TreeView1.Nodes(1).Key = "Node 1"
End Sub

How does this look when you run it? You can see the result in Figure 16.9: not very spectacular with
just one node. You can add other nodes by duplicating the preceding code and naming the new nodes
Node2, Node3, and so on, but they’ll all appear at the same level. Aren’t trees supposed to have nodes
that contain other nodes? They are, and we’ll take a look at that in the next topic.

Figure 16.9 Placing a node in a tree view.

Adding Subnodes To A Tree View

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\510-514.html (2 of 4) [3/14/2001 1:52:01 AM]

javascript:displayWindow('images/16-09.jpg',317,199)
javascript:displayWindow('images/16-09.jpg',317,199)

The Testing Department is calling again. The new node you’ve put in your tree view is nice, but don’t
tree views usually display more than one node? What about other nodes and nodes that contain
subnodes? Ok, you say, no problem.

When you add a new node to a tree view’s Nodes collection using the Add method, you can specify
how it is related to the nodes already there. Here’s how you use the Add method in general:

Nodes.Add(relative , [relationship] [, key] [, text] [, image]
[, selectedimage])

The relative argument is another node that you’re relating the new node to with the relationship
argument. Here are the possible values for relationship:

• tvwLast—1; the node is placed after all other nodes at the same level of the node named in
relative.

• tvwNext—2; the node is placed after the node named in relative.

• tvwPrevious—3; the node is placed before the node named in relative.

• tvwChild—4; the node becomes a child node of the node named in relative.

Let’s see an example. In this case, we’ll set up the tree of text nodes, with one root node that has two
nodes—and the second of those subnodes has a subnode itself.

In this example, we’ll use a tree view control, TreeView1 , (the tree view’s Style property is set to
tvwTreelinesPlusMinusPictureText , the default) and add four new nodes, Node1 to Node4 :

Private Sub Form_Load()
 Dim Node1, Node2, Node3, Node4 As Node
...

We add the first node like this using the Nodes collection’s Add method:

Private Sub Form_Load()
 Dim Node1, Node2, Node3, Node4 As Node

 Set Node1 = TreeView1.Nodes.Add
 TreeView1.Nodes(1).Text = "Node 1"
 TreeView1.Nodes(1).Key = "Node 1"
...

Now we add two nodes, Node2 and Node3 , that are child nodes of the first node:

Private Sub Form_Load()
 Dim Node1, Node2, Node3, Node4 As Node

 Set Node1 = TreeView1.Nodes.Add
 TreeView1.Nodes(1).Text = "Node 1"
 TreeView1.Nodes(1).Key = "Node 1"

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\510-514.html (3 of 4) [3/14/2001 1:52:01 AM]

 Set Node2 = TreeView1.Nodes.Add("Node 1", tvwChild, "Node 2")
 TreeView1.Nodes(2).Text = "Node 2"
 TreeView1.Nodes(2).Key = "Node 2"

 Set Node3 = TreeView1.Nodes.Add("Node 1", tvwChild, "Node 3")
 TreeView1.Nodes(3).Text = "Node 3"
 TreeView1.Nodes(3).Key = "Node 3"
...

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\510-514.html (4 of 4) [3/14/2001 1:52:01 AM]

Finally, we add a fourth node, Node4 , which is the child of Node3 :

Private Sub Form_Load()
 Dim Node1, Node2, Node3, Node4 As Node

 Set Node1 = TreeView1.Nodes.Add
 TreeView1.Nodes(1).Text = "Node 1"
 TreeView1.Nodes(1).Key = "Node 1"

 Set Node2 = TreeView1.Nodes.Add("Node 1", tvwChild, "Node 2")
 TreeView1.Nodes(2).Text = "Node 2"
 TreeView1.Nodes(2).Key = "Node 2"

 Set Node3 = TreeView1.Nodes.Add("Node 1", tvwChild, "Node 3")
 TreeView1.Nodes(3).Text = "Node 3"
 TreeView1.Nodes(3).Key = "Node 3"

 Set Node4 = TreeView1.Nodes.Add("Node 3", tvwChild, "Node 4")
 TreeView1.Nodes(4).Text = "Node 4"
 TreeView1.Nodes(4).Key = "Node 4"

End Sub

And that’s it—the result appears in Figure 16.10. Now we’re adding nodes and subnodes to a tree view
control.

Figure 16.10 Nodes and subnodes in a tree view.

Adding Images To A Tree View

The Aesthetic Design Department is on the phone. About that tree view control in your program—can’t
you give each node an image? All the other Windows programs seem to do that. You look around, note
that the tree view Node objects have an Image property, and say, no problem.

To add an image to a node in a tree view, you just have to set its Image property to an index or key in
the tree view’s associated image list control. Let’s see an example. Here, we’ll use an image list
control, ImageList1 , with two images taken from the Visual Basic common\graphics\bitmaps\outline
directory: closed.bmp and leaf.bmp, which we add to the image list control with the Key properties
“closed” and “leaf”, respectively, as shown in Figure 16.11.

Figure 16.11 Adding images to an image list control.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\514-519.html (1 of 4) [3/14/2001 1:52:42 AM]

javascript:displayWindow('images/16-10.jpg',317,199)
javascript:displayWindow('images/16-10.jpg',317,199)
javascript:displayWindow('images/16-11.jpg',416,312)
javascript:displayWindow('images/16-11.jpg',416,312)

Now we can add those images to the nodes in a tree view control, TreeView1 , by using the Node
object’s Image property, setting that property to the Key values for the various images:

Private Sub Form_Load()
 Dim Node1, Node2, Node3, Node4 As Node

 Set Node1 = TreeView1.Nodes.Add
 TreeView1.Nodes(1).Text = "Node 1"
 TreeView1.Nodes(1).Key = "Node 1"
 TreeView1.Nodes(1).Image = "closed"

 Set Node2 = TreeView1.Nodes.Add("Node 1", tvwChild, "Node 2")
 TreeView1.Nodes(2).Text = "Node 2"
 TreeView1.Nodes(2).Key = "Node 2"
 TreeView1.Nodes(2).Image = "leaf"

 Set Node3 = TreeView1.Nodes.Add("Node 1", tvwChild, "Node 3")
 TreeView1.Nodes(3).Text = "Node 3"
 TreeView1.Nodes(3).Key = "Node 3"
 TreeView1.Nodes(3).Image = "closed"

 Set Node4 = TreeView1.Nodes.Add("Node 3", tvwChild, "Node 4")
 TreeView1.Nodes(4).Text = "Node 4"
 TreeView1.Nodes(4).Key = "Node 4"
 TreeView1.Nodes(4).Image = "leaf"

End Sub

The result appears in Figure 16.12—now we’re adding images to tree view nodes in Visual Basic.

Figure 16.12 Using images in a tree view.

However, if you take a close look at Figure 16.12, you’ll see that the folders there are closed, even
when the node they represent is open. How can we change those images to an open folder when the
user expands a node? For the details, see the next topic.

Expanding And Collapsing Nodes (And Setting Node Images To Match)

When the user clicks a plus or minus sign in a tree view to expand or contract a node, how can we
make the node’s image match? For example, when the node is closed, we can display a closed folder
image, and when expanded, an open folder image. We’ll take those images from the Visual Basic
common\graphics\ bitmaps\outline directory: open.bmp and closed.bmp. Add those images to an image
list, ImageList1 , now, giving them the Key properties “open” and “closed”. Next, connect the image
list control to a tree view control, TreeView1 , by setting that control’s ImageList property to

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\514-519.html (2 of 4) [3/14/2001 1:52:42 AM]

javascript:displayWindow('images/16-12.jpg',317,199)
javascript:displayWindow('images/16-12.jpg',317,199)

ImageList1.

When the user closes a node, the tree view control generates a Collapse event:

Private Sub TreeView1_Collapse(ByVal Node As ComctlLib.Node)

End Sub

In that event’s handler, we can set the node’s image to the closed folder by referring to that image by its
key:

Private Sub TreeView1_Collapse(ByVal Node As ComctlLib.Node)
 Node.Image = "closed"
End Sub

Similarly, when the user expands a node, the tree view control generates an Expand event:

Private Sub TreeView1_Expand(ByVal Node As ComctlLib.Node)

End Sub

In that event’s handler, we set the node’s image to the open folder:

Private Sub TreeView1_Expand(ByVal Node As ComctlLib.Node)
 Node.Image = "open"
End Sub

That’s all it takes—now the nodes in this program display open and closed folders when they are
expanded and collapsed, as shown in Figure 16.13.

Figure 16.13 Expanded and collapsed node images in a tree view.

TIP: You can tell if a node is expanded or collapsed with its Expanded property.

Handling Tree View Node Clicks

How do you know which node in a tree view the user clicked? You can use the NodeClick event:

Private Sub TreeView1_NodeClick(ByVal Node As ComctlLib.Node)

End Sub

For example, we can display the text in the node that the user has clicked in a text box, Text1, this way:

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\514-519.html (3 of 4) [3/14/2001 1:52:42 AM]

javascript:displayWindow('images/16-13.jpg',317,199)
javascript:displayWindow('images/16-13.jpg',317,199)

Private Sub TreeView1_NodeClick(ByVal Node As ComctlLib.Node)
 Text1.Text = "You clicked " & Node.Text
End Sub

The result of this code appears in Figure 16.14—when the user clicks a node, the program indicates
which node was clicked in the text box at the bottom. Now we’re handling tree view node clicks in
Visual Basic.

Figure 16.14 Handling node clicks in a tree view.

Adding A List View To A Form

The Testing Department is calling again. When you list all files on disk in a text box in your
SuperDuperTextPro program, doesn’t that text box seem pretty full? Of course, you say, there are
hundreds of filenames to display. Try a list view control, they say.

To add a list view control to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Windows Common Controls item.

4. Click on OK to close the Components dialog box.

5. The preceding steps add the List View Control tool to the toolbox. Draw a list view in the
form as you want it.

6. Set the list view’s properties, and add the code you want.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\514-519.html (4 of 4) [3/14/2001 1:52:42 AM]

javascript:displayWindow('images/16-14.jpg',317,239)
javascript:displayWindow('images/16-14.jpg',317,239)

After the list view is in your program, it’s up to you to add items, images, and select what kind of view
you want. There are four view types:

• Icon mode—Can be manipulated with the mouse, allowing the user to drag and drop and
rearrange objects.

• SmallIcon mode—Allows more ListItem objects to be viewed. Like the icon view, objects can
be rearranged by the user.

• List mode—Presents a sorted view of the ListItem objects.

• Report mode—Presents a sorted view, with sub-items allowing extra information to be
displayed.

We’ll set up the list view in the following topics in this chapter, creating the program listview, which is
located on this book’s accompanying CD-ROM. This program shows how to use a list view control and
has the following controls in it: an image list control, ImageList1, that holds the images we’ll use for
the items in the list view; a list view control, ListView1 , with its ImageList property set to
ImageList1; a combo box, Combo1; and a text box, Text1.

Running the program yields the result you see in Figure 16.15; we’ve added four items to the list view
in that program, and users can select what type of view they want in the list view with the combo box.
When the user clicks an item in the list view, the program reports which item was clicked in a text box
at the bottom on the form. The code for this example is located in the listview folder on this book’s
accompanying CD-ROM.

Figure 16.15 Using a list view in a program.

Adding Items To A List View

You add items to a list view’s ListItems collection, using its Add method. Each item you add is a
ListItem object.

Let’s see how this works in an example. In this case, we’ll add three items to a list view, ListView1 .
We start by declaring the first item, ListItem1 , as a ListItem object:

Private Sub Form_Load()
 Dim ListItem1 As ListItem
...

Next we add that item to the list view control with the ListItems collection’s Add method:

Private Sub Form_Load()
 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
...

We can also give the new item some text to display in the list view:

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\519-522.html (1 of 4) [3/14/2001 1:53:00 AM]

javascript:displayWindow('images/16-15.jpg',317,246)
javascript:displayWindow('images/16-15.jpg',317,246)

Private Sub Form_Load()
 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
 ListItem1.Text = "Item 1"
...

And we add the other two items in the same way:

Private Sub Form_Load()
 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
 ListItem1.Text = "Item 1"

 Dim ListItem2 As ListItem
 Set ListItem2 = ListView1.ListItems.Add()
 ListItem2.Text = "Item 2"

 Dim ListItem3 As ListItem
 Set ListItem3 = ListView1.ListItems.Add()
 ListItem3.Text = "Item 3"

End Sub

We set the ListView1 control’s View property to lvwList (= 2) and run the program, yielding the result
you see in Figure 16.16.

Figure 16.16 Adding items to a list view control.

That’s fine as far as it goes—but what about adding icons to list view items? We’ll take a look at that in
the next topic.

Adding Icons To List View Items

The Aesthetic Design Department is on the phone. Your new list view control is fine, but what about
adding icons to the items in that list view? Hmm, you think, how do you do that?

Each item in a list view is a ListItem object, and each such object has an Icon property. You set this
property to an image’s index or key in an image list control.

Let’s see an example. We add a list view control, ListView1 , to a form, as well as an image list,
ImageList1 . We add one image to the image list, new.bmp, which is in the Visual Basic
common\graphics\bitmaps\offctlbr\large\color directory.

To connect the image list with the list view, right-click the list view at design time, and select the

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\519-522.html (2 of 4) [3/14/2001 1:53:00 AM]

javascript:displayWindow('images/16-16.jpg',317,205)
javascript:displayWindow('images/16-16.jpg',317,205)

Properties item in the menu that appears. Click the Image Lists tab in the property pages, and select
ImageList1 in the box labeled Normal, then click on OK to close the property pages.

Now we can add the image in the image list to the items in a list view, using their Icon property like
this:

Private Sub Form_Load()

 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
 ListItem1.Text = "Item 1" ListItem1.Icon = 1

 Dim ListItem2 As ListItem
 Set ListItem2 = ListView1.ListItems.Add()
 ListItem2.Text = "Item 2"
 ListItem2.Icon = 1

 Dim ListItem3 As ListItem
 Set ListItem3 = ListView1.ListItems.Add()
 ListItem3.Text = "Item 3"
 ListItem3.Icon = 1

End Sub

Finally, we set the list view’s View property to lvwIcon (= 0) and run the program. The result appears
in Figure 16.17.

Figure 16.17 Displaying icons in a list view control.

On the other hand, only the lvwIcon view uses icons this way—the other three list view control views
use small icons. We’ll see how to add small icons in the next topic.

Adding Small Icons To List View Items

You usually use two icons for each item in a list view, a normal icon and a small icon. Let’s see how to
add small icons now.

Each set of icons is stored in its own image list control, so we add a new image list control, ImageList2
, to a program now to hold small icons (we’ll use ImageList1 to store the large icons and the actual list
view control will be ListView1). In this example, we’ll just place one image in ImageList2 —leaf.bmp
from the Visual Basic common\graphics\bitmap\outline directory.

To connect the image list with the list view, right-click the list view at design time, and select the
Properties item in the menu that appears. Click the Image Lists tab in the property pages, and select
ImageList2 in the box labeled Small, then click on OK to close the property pages.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\519-522.html (3 of 4) [3/14/2001 1:53:00 AM]

javascript:displayWindow('images/16-17.jpg',317,205)
javascript:displayWindow('images/16-17.jpg',317,205)

Now we can add the image we’ve stored as the small icon of all the list items:

Private Sub Form_Load()

 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
 ListItem1.Text = "Item 1"
 ListItem1.Icon = 1
 ListItem1.SmallIcon = 1

 Dim ListItem2 As ListItem
 Set ListItem2 = ListView1.ListItems.Add()
 ListItem2.Text = "Item 2"
 ListItem2.Icon = 1
 ListItem2.SmallIcon = 1

 Dim ListItem3 As ListItem
 Set ListItem3 = ListView1.ListItems.Add()
 ListItem3.Text = "Item 3"
 ListItem3.Icon = 1
 ListItem3.SmallIcon = 1

End Sub

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\519-522.html (4 of 4) [3/14/2001 1:53:00 AM]

Finally, set the list view’s View property to lvwSmallIcon (= 1) and run the program, as shown in Figure 16.18.
You can see the icons we’ve selected for each item displayed in the list view in that figure. Our code is a success.

Figure 16.18 Using small icons in a list view.

Selecting The View Type In List Views

List view controls support four different views :

• lvwIcon—0; can be manipulated with the mouse, allowing the user to drag and drop and rearrange objects.

• lvwSmallIcon—1; allows more ListItem objects to be viewed. Like the icon view, objects can be
rearranged by the user.

• lvwList—2; presents a sorted view of the ListItem objects.

• lvwReport—3; presents a sorted view, with sub-items, allowing extra information to be displayed.

You set the view type in a list view with its View property, which you can set at design time or runtime.

Let’s see an example. Here, we’ll display the various view types in a combo box, Combo1 , and when the user
selects one of them, we’ll make that the current view type in the list view, ListView1.

When the form first loads, we place the view types in the combo box:

Private Sub Form_Load()

 With Combo1
 .AddItem "Icon View"
 .AddItem "Small Icon View"
 .AddItem "List View"
 .AddItem "Report View"
 End With

End Sub

Then when the user makes a selection in the combo box, we install the corresponding view in the list view:

Private Sub Combo1_Change()
 ListView1.View = Combo1.ListIndex
End Sub

Private Sub Combo1_Click()
 ListView1.View = Combo1.ListIndex
End Sub

The result appears in Figure 16.19. Although we can now select all four view types in a list view, note that we
haven’t implemented the last type, the report view, which displays a list of columns. We’ll take a look at that
starting with the next topic in this chapter.

Figure 16.19 Selecting view types in a list view control.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\522-528.html (1 of 3) [3/14/2001 1:53:09 AM]

javascript:displayWindow('images/16-18.jpg',317,205)
javascript:displayWindow('images/16-18.jpg',317,205)
javascript:displayWindow('images/16-19.jpg',317,205)
javascript:displayWindow('images/16-19.jpg',317,205)

Adding Column Headers To A List View

List views can display lists arranged in columns when you set their View property to lvwReport . We’ll take a look
at using the report view in this and the next topic. Here, we’ll see how to add multiple columns to a list view control.

To add columns to a list view, you just need to add column headers, and you do that with the list view’s
ColumnHeaders collection. For example, here’s how we add four columns to a list view, giving each column the
caption “Field 1”, “Field 2”, and so on:

Private Sub Form_Load()
 Dim colHeader As ColumnHeader
 Dim intLoopIndex As Integer

 For intLoopIndex = 1 To 4
 Set colHeader = ListView1.ColumnHeaders.Add()
 colHeader.Text = "Field " & intLoopIndex
 Next intLoopIndex

End Sub

This code works fine, but each column appears in a default width, which might not be right for the size of your list
view. To tailor the columns to your list view control, you can do something like this, where we set the columns’
Width property:

Private Sub Form_Load()
 Dim colHeader As ColumnHeader
 Dim intLoopIndex As Integer

 For intLoopIndex = 1 To 4
 Set colHeader = ListView1.ColumnHeaders.Add()
 colHeader.Text = "Field " & intLoopIndex
 colHeader.Width = ListView1.Width / 4
 Next intLoopIndex

End Sub

After you set the View property of the list view control to lvwReport, the result of this code appears in Figure 16.20
(where we’ve added a few items to the list view control itself, Items 1 through 3, as well).

Figure 16.20 Supporting column headers in a list view.

Now that we’re using columns in a list view, how do you add text for each column, item by item? We’ll look into
that next.

Adding Column Fields To A List View

You’ve set up a list view and added the items you want to it. Now you want to set the list view up to use columns by
setting its View property to lvwReport. You’ve added headers to each column (see the previous topic in this
chapter)—but how do you add text for each item in each column?

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\522-528.html (2 of 3) [3/14/2001 1:53:09 AM]

javascript:displayWindow('images/16-20.jpg',317,205)
javascript:displayWindow('images/16-20.jpg',317,205)

You use the ListSubItems collection’s Add method to add column text to an item. Each ListItem object has a
ListSubItems collection, and here’s how you use that collection’s Add method:

ListSubItems.Add [index] [, key] [, text] [, reporticon] [, tooltiptext]

For example, let’s say that we add three items to a list view that has four columns. We can add text in each of the
columns for each of the three items.

Here’s how it works. The first column, or field , holds the item’s text (set with its Text property). To add text for the
following three columns of the first item (we’ll display “Field 2” in field 2, “Field 3” in field 3, and so on), we use
the ListSubItems collection’s Add method this way:

Private Sub Form_Load()

 Dim colHeader As ColumnHeader
 Dim intLoopIndex As Integer

 For intLoopIndex = 1 To 4 'Label headers
 Set colHeader = ListView1.ColumnHeaders.Add()
 colHeader.Text = "Field " & intLoopIndex
 colHeader.Width = ListView1.Width / 4
 Next intLoopIndex

 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
 ListItem1.Text = "Item 1"
 ListItem1.Icon = 1
 ListItem1.SmallIcon = 1
 ListView1.ListItems(1).ListSubItems.Add , , "Field 2"
 ListView1.ListItems(1).ListSubItems.Add , , "Field 3"
 ListView1.ListItems(1).ListSubItems.Add , , "Field 4"
...

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\522-528.html (3 of 3) [3/14/2001 1:53:09 AM]

And we do the same for the remaining two items:

Private Sub Form_Load()

 Dim colHeader As ColumnHeader
 Dim intLoopIndex As Integer

 For intLoopIndex = 1 To 4 'Label headers
 Set colHeader = ListView1.ColumnHeaders.Add()
 colHeader.Text = "Field " & intLoopIndex
 colHeader.Width = ListView1.Width / 4
 Next intLoopIndex

 Dim ListItem1 As ListItem
 Set ListItem1 = ListView1.ListItems.Add()
 ListItem1.Text = "Item 1"
 ListItem1.Icon = 1
 ListItem1.SmallIcon = 1
 ListView1.ListItems(1).ListSubItems.Add , , "Field 2"
 ListView1.ListItems(1).ListSubItems.Add , , "Field 3"
 ListView1.ListItems(1).ListSubItems.Add , , "Field 4"

 Dim ListItem2 As ListItem
 Set ListItem2 = ListView1.ListItems.Add()
 ListItem2.Text = "Item 2"
 ListItem2.Icon = 1
 ListItem2.SmallIcon = 1
 ListView1.ListItems(2).ListSubItems.Add , , "Field 2"
 ListView1.ListItems(2).ListSubItems.Add , , "Field 3"
 ListView1.ListItems(2).ListSubItems.Add , , "Field 4"

 Dim ListItem3 As ListItem
 Set ListItem3 = ListView1.ListItems.Add()
 ListItem3.Text = "Item 3"
 ListItem3.Icon = 1
 ListItem3.SmallIcon = 1
 ListView1.ListItems(3).ListSubItems.Add , , "Field 2"
 ListView1.ListItems(3).ListSubItems.Add , , "Field 3"
 ListView1.ListItems(3).ListSubItems.Add , , "Field 4"

End Sub

That’s it—when you set ListView1’s View property to lvwReport , the preceding code gives us the
results you see in Figure 16.21. Now we’ve added text to all the fields in our list view.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\528-533.html (1 of 4) [3/14/2001 1:53:22 AM]

Figure 16.21 Adding column text to list view items.

Handling List View Item Clicks

Your list view is set up, and you’ve displayed the items you want in it in the view type you want. But
now what? How do you let the user use that list view?

When the user clicks an item in a list view, the control generates an ItemClick event:

Private Sub ListView1_ItemClick(ByVal Item As ComctlLib.ListItem)

End Sub

The item that was clicked is passed to us as the argument named Item , and you can access its Index or
Key properties to determine which item it is. As an example, here we display the item’s index in a text
box, Text1 , when the user clicks it:

Private Sub ListView1_ItemClick(ByVal Item As ComctlLib.ListItem)
 Text1.Text = "You clicked item " & Item.Index
End Sub

Adding this code to a program gives us the results you see in Figure 16.22—when the user clicks an
item, we report which item was clicked in the text box at bottom in that figure.

Figure 16.22 Handling list view clicks.

Besides item clicks, you can also handle column header clicks—see the next topic.

Handling List View Column Header Clicks

How do you know when the user clicks a column header in a list view? The control generates a
ColumnClick event, which you can handle in its event handler:

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As _
 ComctlLib.ColumnHeader)

End Sub

The column header the user clicked is passed to us as the ColumnHeader argument, and you can
determine which column header was clicked with its Index property. For example, here we display
which column the user has clicked with a message in a text box, Text1:

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\528-533.html (2 of 4) [3/14/2001 1:53:22 AM]

javascript:displayWindow('images/16-21.jpg',317,205)
javascript:displayWindow('images/16-21.jpg',317,205)
javascript:displayWindow('images/16-22.jpg',317,247)
javascript:displayWindow('images/16-22.jpg',317,247)

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As _
 ComctlLib.ColumnHeader)
 Text1.Text = "You clicked column " & ColumnHeader.Index
End Sub

Now we can determine which column header the user clicked, as shown in Figure 16.23.

Figure 16.23 Determining which column was clicked in a list view.

Adding A Tab Strip To A Form

The Testing Department is calling again. There are just too many dialog boxes in your program. How
can you fix that?

You can group the dialog boxes into one, using a tab strip; as the user selects tabs in the tab strip, you
can display the contents that were separate dialog boxes in panels that appear when their tab is clicked.
For an example of how this works, select the Project Properties item in the Visual Basic Project menu.

To add a tab strip control to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Windows Common Controls item.

4. Click on OK to close the Components dialog box.

5. The preceding steps add the Tab Strip Control tool to the toolbox. Draw a tab strip in the form
as you want it.

6. Set the tab strip’s properties, and add the code you want.

After you add a tab strip control to your program, it’s up to you to tailor it the way you want it, by
adding new tabs, text, and images to those tabs, and so on. We’ll develop a tab strip example in the
next topics in this chapter, and you can see that program at work in Figure 16.24. When the user clicks
one of the three tabs in the program, we display a new panel of the tab strip control, each of which
displays a picture box with a different color.

Figure 16.24 Our tab strip example program at work.

This example has these controls: a tab strip, TabStrip1 ; three picture boxes, Picture1 through
Picture3 , which each hold a solid-color picture (and with their AutoSize property set to True); a text
box, Text1 , so we can report which tab the user has clicked; and an image list control, ImageList1 ,
which holds three images that we use in the tabs of the tab strip.

The code for this example is located in the tabstrip folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\528-533.html (3 of 4) [3/14/2001 1:53:22 AM]

javascript:displayWindow('images/16-23.jpg',317,247)
javascript:displayWindow('images/16-23.jpg',317,247)
javascript:displayWindow('images/16-24.jpg',317,237)
javascript:displayWindow('images/16-24.jpg',317,237)

Inserting Tabs Into A Tab Strip Control

When you first add a tab strip control to a form, that control has one tab in it (and it can’t have less than
one—if you take that one tab out of the control, you’ll find it back in place the next time you load the
program into Visual Basic). How do you add others?

At design time, you use the tab strip’s property pages. Just right-click the tab strip, select Properties
from the menu that appears, and click the Tabs tab, as shown in Figure 16.25.

Figure 16.25 Adding tabs to a tab strip control.

You add new tabs by clicking the Insert Tab button, and at the same time you can set the tab’s Text ,
Key , and other properties.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\528-533.html (4 of 4) [3/14/2001 1:53:22 AM]

javascript:displayWindow('images/16-25.jpg',416,312)
javascript:displayWindow('images/16-25.jpg',416,312)

You can also add new tabs at runtime if you add them to the tab strip’s Tabs property, using the Add
method. For example, here’s how we add two new tabs to a tab strip control and set their keys:

Private Sub Form_Load()
 Dim Tab2, Tab3 As ComctlLib.Tab

 Set Tab2 = TabStrip1.Tabs.Add()
 Tab2.Key = "Key2"

 Set Tab3 = TabStrip1.Tabs.Add()
 Tab3.Key = "key3"

End Sub

That’s all there is to it. In the next topic, we’ll take a look at adding text to the tabs.

Setting Tab Captions

You’ve added the tabs you want to your tab strip control—now how do you add text to those tabs?

At design time, you use the tab strip’s property pages. Just right-click the tab strip, select Properties from
the menu that appears, and click the Tabs tab, as shown in Figure 16.25. To enter the text for each tab, just
select the tab you want to work on, and enter the text for that tab in the box labeled Caption, shown in
Figure 16.25. That’s all it takes.

You can also set a tab’s Caption property at runtime. For example, here we set the captions of three tabs to
“Tab 1”, “Tab 2”, and so on:

Private Sub Form_Load()
Dim Tab2, Tab3 As ComctlLib.Tab

Set Tab1 = TabStrip1.Tabs(1)
Tab1.Key = "Key1"
Tab1.Caption = "Tab 1"

Set Tab2 = TabStrip1.Tabs.Add()
Tab2.Key = "Key2"
Tab2.Caption = "Tab 2"

Set Tab3 = TabStrip1.Tabs.Add()
Tab3.Key = "key3"
Tab3.Caption = "Tab 3"

Adding this code to a program gives you the captions you see in Figure 16.26.

Figure 16.26 Making use of tab captions.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\533-538.html (1 of 4) [3/14/2001 1:53:39 AM]

javascript:displayWindow('images/16-26.jpg',317,192)
javascript:displayWindow('images/16-26.jpg',317,192)

Setting Tab Images

The Aesthetic Design Department has sent you some email. How about adding some images to that tab
strip control in your program? Hmm, you think, how does that work?

You can connect an image list control to a tab strip using the tab strip’s ImageList property, and you can
connect the images in that image list to the tabs in the tab strip. At design time, you use the tab strip’s
property pages. Just right-click the tab strip, select Properties from the menu that appears, and click the
Tabs tab, as shown in Figure 16.25. Then select the tab you want to add an image to, and place the image’s
index or key in the image list into the box labeled Image, as shown in Figure 16.25. In addition, you must
connect the image list to the tab strip control; select the General tab, shown in Figure 16.25, and enter the
name of the image list control that holds the images you’ll use (for example, ImageList1) in the box
labeled ImageList.

You can also connect images to tabs at runtime. Let’s see an example in code. Here, we add images
displaying large numerals, 1, 2, and 3, as stored in an image list (ImageList1 , which is connected to the
tab strip with its ImageList property) to a tab strip’s tabs this way:

Private Sub Form_Load()
Dim Tab2, Tab3 As ComctlLib.Tab

Set Tab1 = TabStrip1.Tabs(1)
Tab1.Key = "Key1"
Tab1.Caption = "Tab 1"
Tab1.Image = 1

Set Tab2 = TabStrip1.Tabs.Add()
Tab2.Key = "Key2"
Tab2.Caption = "Tab 2"
Tab2.Image = 2

Set Tab3 = TabStrip1.Tabs.Add()
Tab3.Key = "key3"
Tab3.Caption = "Tab 3"
Tab3.Image = 3

Now those numerals appear as images in the tabs in the tab strip, as shown in Figure 16.27.

Figure 16.27 Displaying images in a tab strip’s tabs.

Using A Tab Strip To Display Other Controls

You usually use tab strips to display other controls. Let’s see how this works with an example. Here, we’ll
use a tab strip to display three picture boxes.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\533-538.html (2 of 4) [3/14/2001 1:53:39 AM]

javascript:displayWindow('images/16-27.jpg',317,192)
javascript:displayWindow('images/16-27.jpg',317,192)

After you’ve sized the tab strip control as you want it, you can move and size the picture boxes to cover the
tab strip’s client area (in other words, its display area). We do that for all three picture boxes like this,
where we’ve placed them in a control array named PictureControl (we use a With statement because
that’s what you usually use here if you want to add other code to initialize the controls you’re displaying):

For intLoopIndex = 0 To PictureControl.Count – 1
 With PictureControl(intLoopIndex)
 .Move TabStrip1.ClientLeft, TabStrip1.ClientTop,_
 TabStrip1.ClientWidth, TabStrip1.ClientHeight
 End With
Next intLoopIndex

This puts all the picture boxes on top of each other. How do you make sure only one is showing at a time?
You set its ZOrder property to 0; for example, if we want to display the first picture box only, we’d use
this code:

For intLoopIndex = 0 To PictureControl.Count – 1
 With PictureControl(intLoopIndex)
 .Move TabStrip1.ClientLeft, TabStrip1.ClientTop,_
 TabStrip1.ClientWidth, TabStrip1.ClientHeight
 End With
Next intLoopIndex

PictureControl(0).ZOrder 0

Now we’ve installed our picture boxes and displayed one on top. But how do we display the others when
the user clicks a tab? We’ll look into that in the next topic.

Handling Tab Clicks

When the user clicks a tab in a tab strip, the control creates a Click event:

Private Sub TabStrip1_Click()

End Sub

We can display the control that matches the clicked tab by setting its ZOrder to 0. For example, if we use
the three picture boxes we added to a tab strip in the previous topic in this chapter, we can bring the
selected picture box to the front this way:

Private Sub TabStrip1_Click()
 PictureControl(TabStrip1.SelectedItem.Index – 1).ZOrder 0
End Sub

We can also indicate which tab the user clicked in a text box:

Private Sub TabStrip1_Click()

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\533-538.html (3 of 4) [3/14/2001 1:53:39 AM]

 PictureControl(TabStrip1.SelectedItem.Index – 1).ZOrder 0
 Text1.Text = "You clicked tab " & Str$(TabStrip1.SelectedItem.Index)
End Sub

Adding this code to a program gives the results you see in Figure 16.28. Now we’re letting the user click
the tabs in a tab strip.

Figure 16.28 Clicking tabs in a tab strip.

Visual Basic 6 Black Book:Image Lists, Tree Views, List Views, And Tab Strips

http://24.19.55.56:8080/temp/ch16\533-538.html (4 of 4) [3/14/2001 1:53:39 AM]

javascript:displayWindow('images/16-28.jpg',317,234)
javascript:displayWindow('images/16-28.jpg',317,234)

Chapter 17
File Handling And File Controls
If you need an immediate solution to:

Using The Common Dialogs File Open And File Save As

Creating A File

Getting A File’s Length

Opening A File

Writing To A Sequential File

Writing To A Random Access File

Writing To A Binary File

Reading From Sequential Files

Reading From Random Access Files

Reading From Binary Files

Accessing Any Record In A Random Access File

Closing A File

Saving Files From Rich Text Boxes

Opening Files In Rich Text Boxes

Saving Files From Picture Boxes

Opening Files In Picture Boxes

Using The Drive List Box Control

Using The Directory List Box Control

Using The File List Box Control

Creating And Deleting Directories

Changing Directories

Copying A File

Moving A File

Deleting A File

When Was A File Created? Last Modified? Last Accessed?

Creating A TextStream

Opening A TextStream

Writing To A TextStream

Reading From A TextStream

Closing A TextStream

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\539-544.html (1 of 4) [3/14/2001 1:53:44 AM]

In Depth

This chapter focuses on file handling and using the file controls in Visual Basic. Here, we’ll see how
to:

• Use the Common Dialogs File Open and File Save As (you can find more information on this
topic in Chapter 11).

• Create a file

• Open a file

• Read from a file

• Write to a file

• Close a file

• Read and write files with rich text boxes

• Use the file controls like the directory list box and drive list box

• Determine a file’s creation date, last modified date, and more

• Move and copy files

• Use the TextStream object

There are three main ways to access files in Visual Basic: as sequential files, as random access files,
and as binary files (you set the way you’ll treat a file when you open it). We’ll get an overview of these
types of files before turning to the Immediate Solutions.

Sequential Access Files

Sequential files are like tape cassettes—you read data from them in a sequential manner. If you want
data at the end of the file, you have to read all the intervening data first. Sequential files are often
organized into text strings in Visual Basic. Here are the Visual Basic statements and functions you use
with sequential files (the # symbol refers to an open file, as we’ll see):

• Open
• Line Input #
• Print #
• Write #
• Input$
• Input #
• Close

In addition, Visual Basic supports TextStream objects to make working with sequential files easier, as
we’ll see later in this chapter. Here are the major TextStream methods:

• Read
• ReadAll
• ReadLine
• Write

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\539-544.html (2 of 4) [3/14/2001 1:53:44 AM]

• WriteBlankLines
• WriteLine
• Close

When do you use sequential files? If you’ve got a text file full of variable-length strings, you usually
treat that file as sequential. You can also use sequential files to store binary-format items like numbers.

Random Access Files

If sequential files are like cassettes, random access files are more like CDs. Random files are organized
into records (usually of the same length), and you can read a particular record without having to read all
the intervening data—you can move to that record in a file directly, just as you can move to a CD track.

Here are the Visual Basic statements and functions you use with random access files:

• Type…End Type (to create and format records)

• Open
• Put #
• Len
• Seek
• LOC
• Get #
• Close

When do you use random access files? If you want to create your own database files, formatted as you
want them, you’d organize them into records. In fact, any file that you want to organize into records is
best formatted as a random access file.

Binary Files

Binary files are simply unformatted binary data, and Visual Basic does not interpret (such as looking
for text strings) or organize the contents (into records) of such files at all. These files are just bytes to
Visual Basic, and the statements and functions you usually use with these files include the following:

• Open
• Get
• Put
• Seek
• Close

Binary files include EXE files, graphics files, and so on.

The FileSystemObject

Besides the preceding file types, Visual Basic includes the FileSystemObject for easy file manipulation
on disk. This object includes a number of methods for copying, moving, and deleting files such as

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\539-544.html (3 of 4) [3/14/2001 1:53:44 AM]

these:

• GetFile
• CopyFile
• DeleteFile
• MoveFile
• FileExists
• CreateFolder
• CreateTextFile
• OpenTextFile

In fact, you use the FileSystemObject to create TextStream objects (with methods like CreateTextFile
and OpenTextFile). We’ll see more about this topic later in this chapter.

That’s it for the overview of files and file handling. It’s time to turn to the Immediate Solutions.

Immediate Solutions

Using The Common Dialogs File Open And File Save As

The usual way to start working with files is to get a file name from the user using the Common Dialogs
File Open or File Save As. We’ve covered these dialogs in depth in Chapter 11, but we’ll provide a
quick overview here.

You display the File Open and File Save As dialog boxes with the Common Dialog control’s
ShowOpen and ShowSave methods. These methods need no arguments passed to them—to set various
options, you set the Common Dialog control’s Flags property (see Chapter 11). You can also set the
Filter property so the dialog box displays only certain types of files, such as text files.

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\539-544.html (4 of 4) [3/14/2001 1:53:44 AM]

To find out what file the user wants to work with, you check the Common Dialog’s FileName property after the user
clicks on OK in the dialog box. That property holds the fully qualified (that is, with the path) name of the file to open.
If you just want the file’s name, use the FileTitle property.

Here’s an example. In this case, we’ll let the user select a file to open, and then display the file’s name and path in a
message box.

Add a Common Dialog control to a form and set the control’s CancelError property to True so we can check if the
user clicked the Cancel button. To check that, we use On Error GoTo:

Private Sub Command1_Click()
 On Error GoTo Cancel
...
Cancel:
End Sub

Then we display the Open dialog box:

Private Sub Command1_Click()
 On Error GoTo Cancel
 CommonDialog1.ShowOpen
...
Cancel:
End Sub

Finally, assuming the user clicked OK, we display the name of the file the user selected in a message box using the
FileName property:

Private Sub Command1_Click()
 On Error GoTo Cancel
 CommonDialog1.ShowOpen
 MsgBox "File to open: " & CommonDialog1.FileName
Cancel:
End Sub

When you run this code and click the button, the Open dialog box appears, as in Figure 17.1.

Figure 17.1 The Open dialog box.

If you make a file selection and click on OK, the Open dialog box closes and the program displays the name of the file
you selected, and its path, in a message box, as shown in Figure 17.2.

Figure 17.2 Getting a file to open from the user.

Creating A File

The Testing Department is on the phone again. Your new SuperDuperTextPro word-processing program is great, but
shouldn’t it offer users some way to save their text in a file? Hmm, you think, could be a good idea.

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\544-549.html (1 of 4) [3/14/2001 1:53:59 AM]

javascript:displayWindow('images/17-01.jpg',556,432)
javascript:displayWindow('images/17-01.jpg',556,432)
javascript:displayWindow('images/17-02.jpg',338,269)
javascript:displayWindow('images/17-02.jpg',338,269)

So how do you create a file in Visual Basic? The standard way is to use the Open statement (we’ll see another way
when we work with TextStream objects later in this chapter). Here’s how the Open statement works:

Open pathname For mode [Access access] [lock] As [#] filenumber [Len= reclength]

Here are what the various arguments mean:

• pathname—A file name (may include directory or folder, and drive).

• mode—A keyword specifying the file mode: Append, Binary, Input, Output, or Random (if unspecified, the
file is opened for Random access).

• access—A keyword specifying the operations permitted on the open file: Read, Write, or Read Write.

• lock—A keyword specifying the operations restricted on the open file by other processes: Shared, Lock Read,
Lock Write, and Lock Read Write.

• filenumber—A valid file number in the range 1 to 511, inclusive. Use the FreeFile function to obtain the next
available file number.

• reclength—A number less than or equal to 32,767 (bytes). For files opened for random access, this value is the
record length. For sequential files, this value is the number of characters buffered.

If the file is already opened by another process and the specified type of access is not allowed, the Open operation fails
and an error occurs. Also note that the Len clause is ignored if mode is Binary.

So how do you create a file with Open? If the file specified by pathname doesn’t exist, it is created when a file is
opened for Append, Binary, Output, or Random modes. After you’ve created the file, you refer to it using the file
number.

Let’s see an example. Here, we’ll let users write the text in a text box, Text1, to a file on disk, file.txt, when they press
a button. Because file operations are prone to error (we might run into missing diskettes, locked files, and so on), we
start by checking for errors:

Private Sub Command1_Click()
 On Error GoTo FileError
...
FileError:
 MsgBox "File Error!"
End Sub

Next, we create file.txt as file #1:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
...
FileError:
 MsgBox "File Error!"
End Sub

Now we write the text in Text1 to the file with the Print # method:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
...

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\544-549.html (2 of 4) [3/14/2001 1:53:59 AM]

FileError:
 MsgBox "File Error!"
End Sub

And finally we close the file:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

When you add a text box, Text1, to the form, and a command button, Command1, labeled “Write text to file”, and run
the program, you see the display much like that in Figure 17.3. When you click the command button, the new file is
created and written.

Figure 17.3 Writing text to a file.

TIP: We should note that each open file needs its own unique file number; you can use the FreeFile function to return the
next available free file number. You use FreeFile like this: FreeFile[(rangenumber)]. Here, the optional rangenumber
argument is a variant that specifies the range from which the next free file number is to be returned. Pass a 0 (default) to
return a file number in the range 1 to 255. Specify a 1 to return a file number in the range 256 to 511.

Getting A File’s Length

When you start reading files in code, it can help to know the file’s length (for one thing, it can tell you how many bytes
to read in). There are two ways to determine file length, the FileLen and the LOF functions.

The FileLen Function

The FileLen function returns the length of a file (in bytes) on disk. Here’s an example in which we report the size of a
file, file.txt, in a message box using FileLen:

Private Sub Command1_Click()
 MsgBox "The file.txt file is" & Str(FileLen("c:\file.txt")) & _
 " bytes long."
End Sub

Running this code gives a result such as you see in Figure 17.4.

Figure 17.4 Reporting a file’s length.

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\544-549.html (3 of 4) [3/14/2001 1:53:59 AM]

javascript:displayWindow('images/17-03.jpg',320,240)
javascript:displayWindow('images/17-03.jpg',320,240)
javascript:displayWindow('images/17-04.jpg',173,100)
javascript:displayWindow('images/17-04.jpg',173,100)

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\544-549.html (4 of 4) [3/14/2001 1:53:59 AM]

The LOF Function

The LOF function returns the length of a file (in bytes) opened with the Open statement. You pass the LOF function an
open file number. Here’s an example in which we report the length of a file we’ve just written, using the LOF function:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
 MsgBox "The file is" & Str(LOF(1)) & " bytes long."
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

Opening A File

How do you open a file in Visual Basic? You use the Open statement. Here’s how the Open statement works:

Open pathname For mode [Access access] [lock] As [#] filenumber [Len= reclength]

Here are what the various arguments mean:

• pathname—A file name (may include directory or folder, and drive).

• mode—A keyword specifying the file mode: Append, Binary, Input, Output, or Random (if unspecified, the
file is opened for Random access).

• access—A keyword specifying the operations permitted on the open file: Read, Write, or Read Write.

• lock—A keyword specifying the operations restricted on the open file by other processes: Shared, Lock Read,
Lock Write, and Lock Read Write.

• filenumber—A valid file number in the range 1 to 511, inclusive. Use the FreeFile function to obtain the next
available file number.

• reclength—Number less than or equal to 32,767 (bytes). For files opened for random access, this value is the
record length. For sequential files, this value is the number of characters buffered.

If the file is already opened by another process and the specified type of access is not allowed, the Open operation fails
and an error occurs. Also note that the Len clause is ignored if mode is Binary . If the file specified by pathname doesn’t
exist, it is created when a file is opened for Append, Binary, Output, or Random modes. If you open an existing file for
Output, it is overwritten; if you open it for Append, new data is added to the end of the file. After you’ve created the file,
you refer to it using the file number.

For example, here we open a file named file.txt and write the contents of a text box, Text1, to that file:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\549-552.html (1 of 3) [3/14/2001 1:54:05 AM]

End Sub

Writing To A Sequential File

Sequential files are often text strings in Visual Basic, but they can also be combinations of text and numbers. You usually
use these standard statements to write to sequential files in Visual Basic (we’ll also see how to use the TextStream
methods later in this chapter):

Print # number, expressionlist
Write # number, expressionlist

Here, number is an open file number and expressionlist is a list of variables to write, separated by commas. Let’s take a
look at some examples.

The Print # Statement

If you want to store your data in text format, use Print # . As an example, we’ll store the text in a text box to a file named
file.txt using Print # . We start by checking for errors:

Private Sub Command1_Click()
 On Error GoTo FileError
...
FileError:
 MsgBox "File Error!"
End Sub

Then we open a file for output:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
...
FileError:
 MsgBox "File Error!"
End Sub

Then we print the text in a text box, Text1, to the file:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
...
FileError:
 MsgBox "File Error!"
End Sub

Finally we close the file:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
 Close #1

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\549-552.html (2 of 3) [3/14/2001 1:54:05 AM]

 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

And that’s it—now the user can write the contents of a text box out to disk. The code for this is located in the filewrite
folder on this book’s accompanying CD-ROM.

The Write # Statement

You can also use the Write # statement to write text and other types of data to a file. You use this statement with a file
number and a comma-delimited list of the variables you want to write to that file. For example, here we open a file,
data.dat, and write two numbers that the user has entered in the text boxes Text1 and Text2 to that file:

Private Sub Command1_Click()
 Open "c:\data.dat" For Output As #1
 Write #1, Val(Text1.Text), Val(Text2.Text)
 Close #1
End Sub

To see how to read those values back in, take a look at “Reading From Sequential Files” coming up in this chapter.

Writing To A Random Access File

You usually write records to random access files using the Put statement:

Put [#] filenumber, [recnumber], varname

Here, filenumber is the number of a file to write to, recnumber is the number of the record to write (you set the record size
when you open the file), and varname is the name of the variable that holds the data to write to the file.

To work with records in a random access file, you define a record type first. For example, here we define a new type
named Record in a module (you can only define types in modules; to add a new module to a program, use the Project
menu’s Add Module item):

Type Record
 Name As String * 50
 Number As String * 50
End Type

Note that we use fixed-length strings here to make all our records the same size.

Now in a program, we can set up an array of such records in the (General) part of a form, as well as an integer to keep
track of the total number of records:

Dim WriteData(1 To 50) As Record
Dim TotalRecords As Integer

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\549-552.html (3 of 3) [3/14/2001 1:54:05 AM]

In this example, we’ll just have one record, which we fill from the text boxes Text1 and Text2 when
the user clicks a button:

Private Sub Command1_Click()
 WriteData(1).Name = Text1.Text
 WriteData(1).Number = Text2.Text
 TotalRecords = 1
...

Next, we create a file to store our record(s) in—note that we set the size of each record in the file with
the Len keyword:

Private Sub Command1_Click()
 WriteData(1).Name = Text1.Text
 WriteData(1).Number = Text2.Text
 TotalRecords = 1

 On Error GoTo FileError
 Open "c:\records.dat" For Random As #1 Len = Len(WriteData(1))
...
FileError:
 MsgBox "File Error!"
End Sub

Finally, we use the Put statement to write the data to the file. We only have one record here, but if we
had a number of records, we could loop like this:

Private Sub Command1_Click()
 WriteData(1).Name = Text1.Text
 WriteData(1).Number = Text2.Text
 TotalRecords = 1

 On Error GoTo FileError
 Open "c:\records.dat" For Random As #1 Len = Len(WriteData(1))
 For loop_index = 1 To TotalRecords
 Put #1, , WriteData(loop_index)
 Next loop_index
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"

End Sub

And that’s it—we’ve written our data file. To see how to read records back in, see “Reading From

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\552-557.html (1 of 5) [3/14/2001 1:54:10 AM]

Random Access Files” later in this chapter.

Writing To A Binary File

You usually write records to binary files using the Put statement:

Put [#] filenumber, [recnumber], varname

Here, filenumber is the number of a file to write to, recnumber is the number of the record to write for
random files and the byte at which to start writing for binary files, and varname is the name of the
variable that holds the data to write to the file.

Here’s an example showing how to use Put to write a floating point number the user has entered in a
text box, Text1, to a file—note that we open that file in Binary mode and don’t use a record number
with Put here:

Private Sub Command1_Click()
 Dim varOutput As Double
 varOutput = Val(Text1.Text)

 On Error GoTo FileError
 Open "c:\binary.dat" For Binary As #1
 Put #1, , varOutput
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

To see how to read the binary data back in, see “Reading from Binary Files” later in this chapter.

Reading From Sequential Files

To read from sequential file, you can use these standard statements (we’ll see how to use TextStream
methods later in this chapter):

Input # number, expressionlist
Line Input # number, string
Input$ (numberbytes, [#] number)

Here, number is a file number, expressionlist is a list of variables the data will be stored in, string is a
string variable to store data in, and numberbytes is the number of bytes you want to read. Let’s see
some examples.

The Input # Statement

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\552-557.html (2 of 5) [3/14/2001 1:54:10 AM]

You can use the Input # statement to read text and numbers from a sequential file. For example, if we
write two integers the user has entered in Text1 and Text2 to a file, data.dat, this way using Write #
when the user clicks Command1:

Private Sub Command1_Click()
 Open "c:\data.dat" For Output As #1
 Write #1, Val(Text1.Text), Val(Text2.Text)
 Close #1
End Sub

then we can read those integers back using Input # this way when the user clicks Command2:

Private Sub Command2_Click()
 Dim int1, int2 As Integer

 Open "c:\data.dat" For Input As #1
 Input #1, int1, int2
 Text3.Text = Str(int1)
 Text4.Text = Str(int2)
 Close #1

End Sub

The result appears in Figure 17.5. When the user enters two integers in the text boxes and clicks the
Write Data button, we write them to disk. When the user clicks the Read data button, we read them
back using Input # . In that way, we’re able to write and read a sequential file. The code for this
example is located in the filedata folder on this book’s accompanying CD-ROM.

Figure 17.5 Using Write # and Input # to save and restore integers.

The Line Input Statement

Using the Line Input statement, you can read lines (text strings that end with a carriage return or
carriage return/line feed pair) from a file. For example, say we had this set of lines, each separated by a
carriage return/line feed pair in a file named file.txt:

Here is some
multi-line text
that we
will read in...

When the user clicks a button, we can read in the preceding text line by line with Line Input . First, we
open the file:

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\552-557.html (3 of 5) [3/14/2001 1:54:10 AM]

javascript:displayWindow('images/17-05.jpg',320,240)
javascript:displayWindow('images/17-05.jpg',320,240)

Private Sub Command1_Click()

 On Error GoTo FileError
 Open "c:\file.txt" For Input As #1
...
FileError:
 MsgBox "File Error!"
End Sub

Now we need some way of looping over all the lines in the file—but how do we know when we’ve
reached the end of the file? We use the Visual Basic EOF (End Of File) function, which returns True
when we reach the end of the file:

Private Sub Command1_Click()

 On Error GoTo FileError
 Open "c:\file.txt" For Input As #1
 Do Until EOF(1)
...
 Loop

 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

Next we use Line Input to read lines of text from the file and append them to a multiline text box (that
is, a text box with its MultiLine property set to True), Text1, along with a carriage return line feed pair
this way:

Private Sub Command1_Click()
 Dim NewLine As String

 On Error GoTo FileError
 Open "c:\file.txt" For Input As #1
 Do Until EOF(1)
 Line Input #1, NewLine
 Text1.Text = Text1.Text + NewLine + vbCrLf
 Loop

 Exit Sub
FileError:
 MsgBox "File Error!"
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\552-557.html (4 of 5) [3/14/2001 1:54:10 AM]

The result of this code appears in Figure 17.6. When the user clicks the command button, we read in
the file.txt file line by line using Line Input and display it in the text box.

Figure 17.6 Reading text with Line Input.

The code for this is located in the fileread folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\552-557.html (5 of 5) [3/14/2001 1:54:10 AM]

javascript:displayWindow('images/17-06.jpg',320,240)
javascript:displayWindow('images/17-06.jpg',320,240)

The Input$ Statement

The Input$ statement lets you read in a string of a specified length. It might seem odd to have to know
the strings’ lengths before reading them in, but Input$ does have one very useful aspect: if you use it
together with the LOF (Length Of File) function, you can read in a whole text file at once.

For example, here’s how we read in the file from the previous example, file.txt, all at once, without
having to work line by line:

Private Sub Command1_Click()
 Dim NewLine As String

 On Error GoTo FileError
 Open "c:\file.txt" For Input As #1

 Text1.Text = Input$(LOF(1), #1)

 Exit Sub
FileError:
 MsgBox "File Error!"
End Sub

This example produces the same result as the previous example that uses Line Input.

Reading From Random Access Files

The Testing Department is on the phone. Your new program, SuperDuperDataCrunch, is great for
writing data to disk, but shouldn’t you let the user read that data back in? Hmm, you think, good idea.

You use Get to read records from a random access file:

Get [#] filenumber, [recnumber], varname

Here, filenumber is the number of a file to read from, recnumber is the number of the record to read,
and varname is the name of the variable that should receive the read-in data.

Let’s see an example. Earlier in this chapter, we saw how to write records to a random access file. We
set up a new type named Record in a module:

Type Record
 Name As String * 50
 Number As String * 50
End Type

Then we set up two formwide arrays of records, WriteData and ReadData, and an integer named
TotalRecords to keep track of how many records are total (these variables are stored in the (General)
section of the form):

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\557-562.html (1 of 5) [3/14/2001 1:54:16 AM]

Dim WriteData(1 To 50) As Record
Dim ReadData(1 To 50) As Record
Dim TotalRecords As Integer

When the user clicked a command button, we read the text from two text boxes, Text1 and Text2,
placed that text in the first record of the WriteData array, and wrote that record out to a file named
records.dat with the Put statement:

Private Sub Command1_Click()
 WriteData(1).Name = Text1.Text
 WriteData(1).Number = Text2.Text
 TotalRecords = 1

 On Error GoTo FileError
 Open "c:\records.dat" For Random As #1 Len = Len(WriteData(1))
 For intLoopIndex = 1 To TotalRecords
 Put #1, , WriteData(intLoopIndex)
 Next intLoopIndex
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"

End Sub

Now we’ll see how to read that record back in. First, we open the file records.dat for random access,
setting the record size to the length of each array element:

Private Sub Command2_Click()

 Open "c:\records.dat" For Random As #1 Len = Len(ReadData(1))
...

Then we use Get to read in the records:

Private Sub Command2_Click()
 Dim intLoopIndex As Integer

 Open "c:\records.dat" For Random As #1 Len = Len(ReadData(1))
 For intLoopIndex = 1 To LOF(1) / Len(ReadData(1))
 Get #1, , ReadData(intLoopIndex)
 Next intLoopIndex

Next, we loop over all the records in the file (although we use LOF(1) / Len(ReadData(1)) to

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\557-562.html (2 of 5) [3/14/2001 1:54:16 AM]

determine the number of records in the file, we could also loop until the EOF function is True):

Private Sub Command2_Click()
 Dim intLoopIndex As Integer

 Open "c:\records.dat" For Random As #1 Len = Len(ReadData(1))

 For intLoopIndex = 1 To LOF(1) / Len(ReadData(1))
...
 Next intLoopIndex
...

Then we close the file and display the Name and Number fields of the first (and only) record in two
new text boxes, Text3 and Text4:

Private Sub Command2_Click()
 Dim intLoopIndex As Integer

 Open "c:\records.dat" For Random As #1 Len = Len(ReadData(1))

 For intLoopIndex = 1 To LOF(1) / Len(ReadData(1))
 Get #1, , ReadData(intLoopIndex)
 Next intLoopIndex

 Close #1

 Text3.Text = ReadData(1).Name
 Text4.Text = ReadData(1).Number

 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

When you run this program, as shown in Figure 17.7, the user can enter data into the two text boxes at
left, click the Write To File button to write the data to a record in a file, then click the Read From File
button to read the data back in and display that text in the two text boxes at right.

Figure 17.7 Writing and reading records to and from a random access file.

You can see the result in Figure 17.7. Now we’re reading records from random access files in Visual
Basic.

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\557-562.html (3 of 5) [3/14/2001 1:54:16 AM]

javascript:displayWindow('images/17-07.jpg',320,240)
javascript:displayWindow('images/17-07.jpg',320,240)

The code for this example is located in the filerecord folder on this book’s accompanying CD-ROM.

Reading From Binary Files

How do you read raw data from files that have been opened in Binary format with the Open
statement? You usually use Get to read data from a binary file (although you can use Input # as
well—see the previous topic on reading from sequential files):

Get [#] filenumber, [recnumber], varname

Here, filenumber is the number of a file to read from, recnumber is the number of the record to read for
random files and the byte at which to start reading for binary files, and varname is the name of the
variable that will hold the read-in data.

Let’s see an example. In this case, we first write some binary data—such as a floating point
number—to a file, and then we’ll read it back in. Here, we let the user enter a Double value in a text
box, which we read in when the user clicks a command button, Command1:

Private Sub Command1_Click()
 Dim varOutput As Double
 varOutput = Val(Text1.Text)
...

Then we write that number out to a binary file, binary.dat (making it a binary file by opening it in
Binary mode):

Private Sub Command1_Click()
 Dim varOutput As Double
 varOutput = Val(Text1.Text)

 On Error GoTo FileError
 Open "c:\binary.dat" For Binary As #1
 Put #1, , varOutput
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

Now it’s up to us to read that number back in as binary data when the user clicks a new button,
Command2 . We start by opening the file again:

Private Sub Command2_Click()

 On Error GoTo FileError

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\557-562.html (4 of 5) [3/14/2001 1:54:16 AM]

 Open "c:\binary.dat" For Binary As #1
...
FileError:
 MsgBox "File Error!"
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\557-562.html (5 of 5) [3/14/2001 1:54:16 AM]

Next, we use Get to read in the number and store it in a new variable, varInput:

Private Sub Command2_Click()
 Dim varInput As Double

 On Error GoTo FileError
 Open "c:\binary.dat" For Binary As #1
 Get #1, , varInput
...
FileError:
 MsgBox "File Error!"

End Sub

Finally, we display the newly read-in variable in a text box, Text2, and close the file:

Private Sub Command2_Click()
 Dim varInput As Double

 On Error GoTo FileError
 Open "c:\binary.dat" For Binary As #1
 Get #1, , varInput
 Text2.Text = Str(varInput)
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"

End Sub

The result appears in Figure 17.8, where we write the number 3.1415 out to disk in the file binary.dat and
then read it in again. Now we’re working with binary files in Visual Basic.

Figure 17.8 Writing and reading binary data.

The code for this example is located in the filebinary folder on this book’s accompanying CD-ROM.

Accessing Any Record In A Random Access File

When you’ve set up a file to hold records (by creating it in Random mode with the Open statement and
passing the length of the records you want to open), you can use Get to access any record in the file by
record number:

Get #1, recordnumber, variablename

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\562-567.html (1 of 4) [3/14/2001 1:54:21 AM]

javascript:displayWindow('images/17-08.jpg',320,240)
javascript:displayWindow('images/17-08.jpg',320,240)

In this case, we’re reading record number recordnumber from file 1 and placing the data read into a
variable named variablename . In the same way, you can write any record with Put:

Put #1, recordnumber, variablename

Using Get and Put in this way, you can read and write any record in the file.

TIP: Besides Get and Put, you can use the Seek function to set the position at which a record will next be
read or written in a file—called the read/write position—and the LOC function to determine the current
read/write position.

Closing A File

How do you close a file in Visual Basic? It’s simple—you just use the Close statement:

Private Sub Command1_Click()
 On Error GoTo FileError
 Open "c:\file.txt" For Output As #1
 Print #1, Text1.Text
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

Closing a file writes all its data out to disk.

TIP: If you want to close all files your application has open, just use the Close statement without any
arguments.

Saving Files From Rich Text Boxes

You can use the SaveFile() method to save the text in a rich text box to disk, and doing that is really
easy—you just use SaveFile() this way:

RichTextBox.SaveFile(pathname, [filetype])

You can save text as plain or RTF text; the settings for filetype are as follows:

• rtfRTF— 0 (the default); the rich text box control saves its contents as an RTF file.

• rtfText— 1; the rich text box control saves its contents as a text file.

Here’s an example where we display some text in a rich text box:

Private Sub Form_Load()
 RichTextBox1.Text = "This is the text in the file."
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\562-567.html (2 of 4) [3/14/2001 1:54:21 AM]

Next, we save that text to a file this way:

Private Sub Command1_Click()
 RichTextBox1.SaveFile ("c:\data.txt")
End Sub

And that’s all it takes—now we’ve written RTF to a file. For more information on rich text boxes, see
Chapter 6.

TIP: Many word processors, like Microsoft Word, support RTF files, so you can now write text formatted
files that such word processors can read in and use.

Opening Files In Rich Text Boxes

You can write files to disk from a rich text box with SaveFile() ; how can you read files back in? You use
LoadFile() . Like SaveFile(), LoadFile() is very easy to use:

RichTextBox.LoadFile pathname, [filetype]

And you can load in plain text or RTF text files; the settings for filetype are as follows:

• rtfRTF— 0 (the default); the rich text box control saves its contents as an RTF file.

• rtfText— 1; the rich text box control saves its contents as a text file.

Here’s an example where we load in the file we wrote in the last topic on saving files, data.txt:

Private Sub Command1_Click()
 RichTextBox1.LoadFile "c:\data.txt"
End Sub

That’s all there is to it—it’s that easy to load in files. For more information on rich text boxes, see Chapter
6.

Saving Files From Picture Boxes

Can you save the images in picture boxes to disk files? Yes, you can, using SavePicture . Here’s how that
statement works:

SavePicture picture, stringexpression

Here’s what the arguments in that statement mean:

• picture—Picture or image control from which the graphics file is to be created

• stringexpression—File name of the graphics file to save

Note that SavePicture only saves images in BMP, WMF, and ICO formats (depending on the file type the
image came from originally); if the image came from a GIF or JPEG file, it’s saved in BMP format.
Graphics in an Image property are always saved as bitmap (BMP) files no matter what their original

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\562-567.html (3 of 4) [3/14/2001 1:54:21 AM]

format.

Here’s an example where we save the image from Picture1 to a file, \image.bmp, when the user clicks a
button:

Private Sub Command1_Click()
 SavePicture Picture1.Picture, "c:\image.bmp"
End Sub

Opening Files In Picture Boxes

How do you open image files in a picture box? You use the Picture property. A picture box is very
versatile and can display images from bitmap (.bmp), icon (.ico), metafile (.wmf), JPEG (.jpg), or GIF (.gif)
files—just load the file’s name into the Picture property.

You can use LoadPicture() to load in a picture like this, where we load in an image when the user clicks a
command button:

Private Sub Command1_Click()
 Picture1.Picture = LoadPicture("c:\vbbb\picturesandimages\image.bmp")
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\562-567.html (4 of 4) [3/14/2001 1:54:21 AM]

Using The Drive List Box Control

Usually you use the Common Dialogs File Open and File Save As to get file names and file paths from
the user, but sometimes that just won’t do. For example, you have a program where you want to let the
user select files but don’t want to use dialog boxes. In that and similar cases, you can use the Visual
Basic file controls: the drive list box, the directory list box, and the file list box. These controls are
intrinsic to Visual Basic (that is, they appear in the toolbox when you start Visual Basic).

The Drive List Box Control tool appears as the seventh tool down on the right in the Visual Basic
toolbox in Figure 17.9. Use this tool to draw a drive list box in a form, as shown at upper left in Figure
17.10.

Figure 17.9 The Drive List Box Control tool.

Figure 17.10 A program with a drive list box.

You get the currently selected drive in a drive list box by using its Drive property, and when the user
changes the drive in that control, a Change event is generated. Here’s an example—when the user
selects a new drive, we pass that new drive on to a directory list box, Dir1, using that drive as the new
root directory in Dir1:

Sub Drive1_Change()
 Dir1.Path = Drive1.Drive
End Sub

Using The Directory List Box Control

The directory list box control displays directories as a hierarchical set of folders. This control is one of
the file controls that are intrinsic to Visual Basic; its tool appears as the eighth tool down on the left in
Figure 17.11.

Figure 17.11 The Directory List Box Control tool.

To add a directory list box to a form, just use its tool in the toolbox. We’ve added a directory list box to
the program in Figure 17.10 (see earlier), at lower left.

The important property of the directory list box is the Path property, which holds the path of the
current directory. When the user changes the current path, a Change event is generated. For example,
when the user makes a change in a directory list box, Dir1, we can pass the new path to a file list box,
File1, this way in the Change event handler:

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\567-572.html (1 of 4) [3/14/2001 1:54:38 AM]

javascript:displayWindow('images/17-09.jpg',454,553)
javascript:displayWindow('images/17-09.jpg',454,553)
javascript:displayWindow('images/17-10.jpg',542,246)
javascript:displayWindow('images/17-10.jpg',542,246)
javascript:displayWindow('images/17-11.jpg',522,554)
javascript:displayWindow('images/17-11.jpg',522,554)

Sub Dir1_Change()
 File1.Path = Dir1.Path
End Sub

Using The File List Box Control

The file list box control lets you display the files in a directory as a list of names. This control’s tool
appears as the eighth tool down on the right in Figure 17.12. To add this control to a form, just draw it
as you want it with its tool in the toolbox.

Figure 17.12 The File List Box Control tool.

The important properties of the file list box are the Path and FileName properties. Let’s see an
example using the drive, directory, and file list boxes. When the user selects a file and clicks a button
labeled Display File, or double-clicks the file’s name in the file list box, we’ll display the contents of
the selected file in a text box.

We start by adding the controls we’ll need: a drive list box, Drive1; a directory list box, Dir1; a file list
box, File1; a command button, Command1, which is labeled Display File; and a text box with its
MultiLine property set to True and its Scrollbars property set to Both (if the file you are displaying is
too long for a text box, use a rich text box).

When the user changes the drive, we pass that new drive to the directory list box as the new directory in
Drive1_Change():

Sub Drive1_Change()
 Dir1.Path = Drive1.Drive
End Sub

When the user changes the directory, we pass that new path to the file list box in Dir1_Change():

Sub Dir1_Change()
 File1.Path = Dir1.Path
End Sub

When the user clicks the button, we want to display the contents of the selected file in the text box, and
we’ll do that in the command button’s Click event handler, Command1_Click(). We’ll also call the
button’s Click event handler to let the user open a file by double-clicking it in the file control:

Sub File1_DblClick()
 Command1_Click
End Sub

When the user wants to open a file, we put together the file’s name and path this way:

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\567-572.html (2 of 4) [3/14/2001 1:54:38 AM]

javascript:displayWindow('images/17-12.jpg',444,552)
javascript:displayWindow('images/17-12.jpg',444,552)

Sub Command1_Click()
 Dim FileName As String
 On Error GoTo FileError
 If (Right$(Dir1.Path, 1) = "\") Then
 FileName = File1.Path & File1.FileName
 Else
 FileName = File1.Path & "\" & File1.FileName
 End If
...

Then we simply open the file and display it in the text box, Text1:

Sub Command1_Click()
 Dim FileName As String
 On Error GoTo FileError
 If (Right$(Dir1.Path, 1) = "\") Then
 FileName = File1.Path & File1.FileName
 Else
 FileName = File1.Path & "\" & File1.FileName
 End If

 Open FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)
 Close #1
 Exit Sub

FileError:
 MsgBox "File Error!"
End Sub

That’s it—when you run the program, the user can use the file controls to open a file, as shown in
Figure 17.13. Now we’re using the Visual Basic file controls.

Figure 17.13 Displaying a file using the Visual Basic file controls.

The code for this example is located in the filecontrols folder on this book’s accompanying CD-ROM.

Creating And Deleting Directories

You can create a new directory with the MkDir statement and remove a directory with the RmDir
statement. For example, here’s how we create a new directory, C:\data, using MkDir when the user
clicks a command button, Command1 (if the directory already exists, Visual Basic generates an error):

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\567-572.html (3 of 4) [3/14/2001 1:54:38 AM]

javascript:displayWindow('images/17-13.jpg',542,246)
javascript:displayWindow('images/17-13.jpg',542,246)

Private Sub Command1_Click()
 MkDir "c:\data"
End Sub

Here’s another example. We remove the same directory using RmDir when the user clicks another
command button, Command2:

Private Sub Command2_Click()
 RmDir "c:\data"
End Sub

Changing Directories

To change the default directory (that is, the directory where Visual Basic will look for the files you
want to work with if you don’t specify a path), use ChDir . Here’s an example where we change the
default directory to C:\windows using ChDir when the user clicks a command button, Command1:

Private Sub Command1_Click()
 ChDir "c:\windows"
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\567-572.html (4 of 4) [3/14/2001 1:54:38 AM]

Copying A File

You can copy files using the Visual Basic FileSystemObject. This object provides you with access to the
computer’s file system and has methods like CopyFile to copy a file:

FileSystemObject.CopyFile source, destination [, overwrite]

Here, source is the source file name (including path), destination is the destination file name (also
including path), and overwrite is a Boolean that, if True, means you want to overwrite the destination file if
it already exists. You can use wildcards (in other words, the asterisk [*]).

CopyFile solves a tedious problem for the programmer—if all you want to do is copy a file, why should
you have to write all the code specifically to do that? You don’t, using CopyFile . Here’s an example
where we copy a file, file.txt, to file2.txt. Notice that we must first create a FileSystemObject:

Private Sub Command1_Click()
 Dim FileSystemObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 FileSystemObject.CopyFile "c:\file.txt", "c:\file2.txt"
End Sub

You can also do the same thing with the Visual Basic FileObject, where we use GetFile to get a FileObject
object and then use the FileObject’s Copy method:

Private Sub Command1_Click()
 Dim FileSystemObject, FileObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set FileObject = FileSystemObject.GetFile("c:\file.txt")
 FileObject.Copy "c:\file2.txt"
End Sub

Moving A File

The Visual Basic FileSystemObject lets you move a file from one directory to another using its MoveFile
method. This method takes only two arguments, the source and destination paths. Here’s an example where
we move a file, file.txt, from the C: to the D: drive; note that we must first create a FileSystemObject:

Private Sub Command1_Click()
 Dim FileSystemObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 FileSystemObject.MoveFile "c:\file.txt", "d:\file.txt"
End Sub

You can also do the same thing with the Visual Basic FileObject, where we use GetFile to get a FileObject
and then use the FileObject’s Move method:

Private Sub Command1_Click()

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\572-576.html (1 of 3) [3/14/2001 1:54:44 AM]

 Dim FileSystemObject, FileObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set FileObject = FileSystemObject.GetFile("c:\file.txt")
 FileObject.Move "d:\file.txt"
End Sub

Deleting A File

The Visual Basic FileSystemObject lets you delete a file using its DeleteFile method:

FileSystemObject.DeleteFile filespec [, force]

Here, filespec is the file you want to delete, and force is a Boolean that, if True, means you want to delete
read-only files as well. Let’s see an example. Here, we delete a file, file.txt, from the C: drive; note that we
must first create a FileSystemObject:

Private Sub Command1_Click()
 Dim FileSystemObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 FileSystemObject.DeleteFile "c:\file.txt"
End Sub

You can also do the same thing with the Visual Basic FileObject, where we use GetFile to get a FileObject
and then use the FileObject’s Delete method:

Private Sub Command1_Click()
 Dim FileSystemObject, FileObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set FileObject = FileSystemObject.GetFile("c:\file.txt")
 FileObject.Delete
End Sub

When Was A File Created? Last Modified? Last Accessed?

You can use Visual Basic FileObject to determine when a file was created, last modified, and last accessed.
The properties that are important here are DateCreated, DateLastModified, and DateLastAccessed.

Let’s see an example. Here, we use a multiline (that is, MultiLine = True) text box, Text1, to display
when a file, file.dat, was created, last modified, and last accessed. First, we get a FileObect for that file:

Private Sub Command1_Click()
 Dim FileSystemObject, FileObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set FileObject = FileSystemObject.GetFile("c:\file.dat")
...

The we display the file’s created, last modified, and last accessed dates in the text box:

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\572-576.html (2 of 3) [3/14/2001 1:54:44 AM]

Private Sub Command1_Click()
 Dim FileSystemObject, FileObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set FileObject = FileSystemObject.GetFile("c:\file.dat")
 Text1.Text = "c:\file.dat:" & vbCrLf & "was created " & _
 FileObject.DateCreated & vbCrLf & "was last modified: " & _
 FileObject.DateLastModified & vbCrLf & "was last accessed: " & _
 FileObject.DateLastAccessed & vbCrLf
End Sub

The result of this code appears in Figure 17.14. Using the FileObject, you can find out quite a bit of
information about a file.

Figure 17.14 Displaying a file’s creation, last modified, and last accessed dates.

Creating A TextStream

You can use TextStream objects to work with text files in Visual Basic. We’ll see how to work with
TextStream objects in the next few topics in this chapter. For example, you create a text stream with the
CreateTextFile method:

FileSystemObject.CreateTextFile(filename[, overwrite[, unicode]])

Here’s what the arguments we pass to CreateTextFile mean:

• filename—String which identifies the file to create.

• overwrite—Boolean value that indicates if an existing file can be overwritten. The value is True if
the file can be overwritten; False if it can’t be overwritten. If omitted, existing files are not
overwritten.

• unicode—Boolean value that indicates whether the file is created as a Unicode or an ASCII file.
The value is True if the file is created as a Unicode file; False if it’s created as an ASCII file. If
omitted, an ASCII file is assumed.

Here’s an example where we create a TextStream object corresponding to a file named file.txt:

Private Sub Command1_Click()
 Dim FileSystemObject, TextStream As Object

 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.CreateTextFile("c:\file.txt", True)
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\572-576.html (3 of 3) [3/14/2001 1:54:44 AM]

javascript:displayWindow('images/17-14.jpg',320,240)
javascript:displayWindow('images/17-14.jpg',320,240)

Now that we’ve created a TextStream, we can write to it, as we’ll see later in this chapter.

Opening A TextStream

To open a TextStream, you use the FileSystemObject’s OpenTextFile method:

FileSystemObject.OpenTextFile(filename[, iomode[, create[, format]]])

Here are what the arguments to OpenTextFile mean:

• filename—The file to open.

• iomode—Indicates input/output mode. Can be one of two constants, either ForReading or
ForAppending.

• create—Boolean value that indicates whether a new file can be created if the specified file doesn’t
exist. The value is True if a new file is created; False if it isn’t created. The default is False.

• format—One of three values used to indicate the format of the opened file. If omitted, the file is
opened as ASCII.

Here’s an example where we open a TextStream object corresponding to a file named file.txt:

Private Sub Command2_Click()
 Dim FileSystemObject, TextStream As Object

 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.OpenTextFile("c:\file.txt")
End Sub

After you’ve opened a TextStream object, you can read from it, as we’ll see later in this chapter.

Writing To A TextStream

To write to a TextStream object, you use one of these methods:

Write(string)
WriteLine([string])

Here’s an example where we create a file named file.txt and write a string, “Here is some text!” to that file.
First, we create a new TextStream:

Private Sub Command1_Click()
 Dim FileSystemObject, TextStream As Object

 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.CreateTextFile("c:\file.txt", True)
...

Then we write our line of text to the file and close that file:

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\576-579.html (1 of 3) [3/14/2001 1:54:52 AM]

Private Sub Command1_Click()
 Dim FileSystemObject, TextStream As Object

 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.CreateTextFile("c:\file.txt", True)
 TextStream.WriteLine ("Here is some text!")
 TextStream.Close
End Sub

Reading From A TextStream

To read from a TextStream object, you use one of these methods; note that the Read method lets you
specify how many characters to read:

Read(numbercharacters)
ReadAll
ReadLine

Each of these methods returns the text read. Let’s see an example. In this case, we’ll open a file, file.txt,
and read one line from it, displaying that line in a text box. First, we create a TextStream object for that
file:

Private Sub Command1_Click()
 Dim FileSystemObject, TextStream As Object

 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.OpenTextFile("c:\file.txt")
...

Next, we use the ReadLine method to read a line from the file and display it in a text box, Text1, and close
the TextStream:

Private Sub Command1_Click()
 Dim FileSystemObject, TextStream As Object

 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.OpenTextFile("c:\file.txt")

 Text1.Text = TextStream.ReadLine
 TextStream.Close
End Sub

Closing A TextStream

When you’re finished working with a TextStream object, you close it using the Close method. In the
following example, we write to a file, file.txt, using a TextStream object and then close that TextStream
(and therefore the file) using Close (this method takes no arguments):

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\576-579.html (2 of 3) [3/14/2001 1:54:52 AM]

Private Sub Command1_Click()
 Dim FileSystemObject, TextStream As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 Set TextStream = FileSystemObject.CreateTextFile("c:\file.txt", True)

 TextStream.WriteLine ("Here is some text!")
 TextStream.Close
End Sub

Visual Basic 6 Black Book:File Handling And File Controls

http://24.19.55.56:8080/temp/ch17\576-579.html (3 of 3) [3/14/2001 1:54:52 AM]

Chapter 18
Working With Graphics
If you need an immediate solution to:

Redrawing Graphics In Windows: AutoRedraw And Paint
Clearing The Drawing Area

Setting Colors

Drawing Text

Working With Fonts

Drawing Lines

Drawing Boxes

Drawing Circles

Drawing Ellipses

Drawing Arcs

Drawing Freehand With The Mouse

Filling Figures With Color

Filling Figures With Patterns

Setting Figure Drawing Style And Drawing Width

Drawing Points

Setting The Drawing Mode

Setting Drawing Scales

Using The Screen Object

Resizing Graphics When The Window Is Resized

Copying Pictures To And Pasting Pictures From The Clipboard

Printing Graphics

Layering Graphics With The AutoRedraw And ClipControls Properties

In Depth

This chapter is on one of the most popular topics in Visual Basic—graphics. Here, we’ll cover drawing
graphics in Visual Basic. (We won’t, however, deal with handling bitmapped images until the next
chapter.)

There’s a great deal of graphics power in Visual Basic, and we’ll see that power in this chapter. Here
are some of the topics we’ll cover:

• Drawing figures (boxes, circles, and so on)

• Filling figures with color

• Filling figures with patterns

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\581-585.html (1 of 4) [3/14/2001 1:54:55 AM]

• Setting the drawing mode (for example, XOR drawing)

• Setting the drawing width

• Setting the drawing style

• Using fonts

• Using the Screen object

• Using the Clipboard with graphics

• Printing graphics

• Resizing graphics

• Layering graphics

We’ve see some of these techniques before when we worked with picture boxes, but we’ll expand that
coverage in this chapter. And as a bonus, we’ll see how to work with the structured graphics control
that comes with the Internet Explorer, putting that control to work in Visual Basic.

Graphics Methods Vs. Graphics Controls

There are two principal ways of drawing graphics in Visual Basic: using graphics methods, such as the
ones we’ll see in this chapter, and using graphics controls (like the line and shape controls). Graphics
methods work well in situations where using graphical controls requires too much work. For example,
creating gridlines on a graph would require an array of line controls but only a small amount of code
using the Line method. In addition, when you want an effect to appear temporarily, you can write a
couple of lines of code for this temporary effect instead of using another control. Also, graphics
methods offer some visual effects that are not available in the graphical controls. For example, you can
only create arcs or paint individual pixels using the graphics methods.

All in all, the graphics methods we’ll use in this chapter are usually preferred by programmers when
they want to create graphics at runtime, and the graphics controls are preferred to create design
elements at design time.

About Visual Basic Coordinates

Because we’ll be drawing figures in forms and controls like picture boxes, we should know how
measurements and coordinates are set up in those objects. Visual Basic coordinate systems have the
origin (0, 0) at upper left and are specified as (x, y), where x is horizontal and y is vertical (note that y
is positive in the downwards direction). When we draw graphics in Visual Basic, we’ll be using this
coordinate system.

WARNING! Bear in mind that the origin is at upper left (for forms, that’s the upper left of the form’s
client area—the part that excludes borders, menu bars, and so on); that fact more than any other is
responsible for confusing Visual Basic programmers when they start working with graphics.

The default unit of measurement in Visual Basic is twips (or 1/1440s of an inch). That unit was
originally chosen to be small enough to be device-independent, but if you don’t like working with
twips, you can change to other measurement units like millimeters, inches, and so on, as we’ll see in
this chapter. You can also define your own measurement units, as we’ll also see.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\581-585.html (2 of 4) [3/14/2001 1:54:55 AM]

That’s it for the overview of graphics. It’s time to turn to our Immediate Solutions to start digging into
the graphics power that Visual Basic has to offer.

Immediate Solutions

Redrawing Graphics In Windows: AutoRedraw And Paint

The Testing Department is on the phone. Did you test out your new program, SuperDuperGraphicsPro,
in Windows? Of course, you say—why? Well, they say, when your program’s window is uncovered, it
doesn’t redraw its displayed graphics automatically. Can you fix that?

One of Visual Basic’s most popular aspects is that you can make a form or control redraw itself as
needed by setting its AutoRedraw property to True. What really happens is that Visual Basic keeps an
internal copy of your window’s display and refreshes the screen from that copy as needed. This solves
one of the biggest headaches of Windows programming in a neat way.

TIP: You must also set a form’s AutoRedraw property to True to make a form display graphics when
you draw those graphics in the form’s Load event handler. Note that AutoRedraw is set to False in
forms by default.

However, setting AutoRedraw to True can use a lot of system resources, notably memory, and you
might not want to do so in all cases. If not, you can use the Paint event to redraw your graphics,
because this event occurs every time a form or control like a picture box is drawn or redrawn. (Note
that if you set AutoRedraw to False, you are responsible for handling refreshes of your program’s
appearance yourself.)

Here’s an example. In this case, we draw a circle inscribed in the smaller dimension (width or height)
of a form when the form is drawn:

Private Sub Form_Paint()
 Form1.Circle (ScaleWidth / 2, ScaleHeight / 2), _
 Switch(ScaleWidth >= ScaleHeight, ScaleHeight / 2, _
 ScaleWidth < ScaleHeight, ScaleWidth / 2)
End Sub

The result appears in Figure 18.1.

Figure 18.1 Drawing a circle using the Paint event.

Clearing The Drawing Area

One of the first things to learn about drawing graphics is how to clear the drawing area. You do that
with the Cls method, which redraws the form or control in the current BackColor. Here’s an example
where we clear a picture box, Picture1, when the user clicks that picture box:

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\581-585.html (3 of 4) [3/14/2001 1:54:55 AM]

javascript:displayWindow('images/18-01.jpg',320,240)
javascript:displayWindow('images/18-01.jpg',320,240)

Private Sub Picture1_Click()
 Picture1.Cls
End Sub

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\581-585.html (4 of 4) [3/14/2001 1:54:55 AM]

Setting Colors

Here are some commonly used properties you can specify colors for and what they mean:

• BackColor—The background color of the control or form.

• ForeColor—The drawing color used to draw figures and text.

• BorderColor—The color of the border.

• FillColor—The color you want the figure filled in with.

To set color properties like these in Visual Basic, you need to know how to set colors in general. There
are four ways to do that:

• Using the RGB function

• Using the QBColor function to choose one of 16 Microsoft QuickBasic colors

• Using one of the intrinsic Visual Basic color constants

• Entering a color value directly

We’ll use the RGB function most often to specify colors. This function takes three colors values, 0 to
255, to specify the red, green, and blue values in the color you want like this: RGB(RRR, GGG, BBB),
where RRR, GGG, and BBB are the red, green, and blue color values, respectively.

Here are some examples showing how to use this function and the color created:

RGB(255, 0, 0) 'Red
RGB(0, 255, 0) 'Green
RGB(0, 0, 255) 'Blue
RGB(0, 0, 0) 'Black
RGB(255, 255, 255) 'White
RGB(128, 128, 128) 'Gray

The QBColor function returns one of these colors when you pass it the matching numbers, 0 to 15:

• Black—0

• Blue—1

• Green—2

• Cyan—3

• Red—4

• Magenta—5

• Yellow—6

• White—7

• Gray—8

• Light blue—9

• Light green—10

• Light cyan—11

• Light red—12

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\585-588.html (1 of 3) [3/14/2001 1:55:03 AM]

• Light magenta—13

• Light yellow—14

• Light white—15

You can also use one of the built-in Visual Basic color constants, like vbRed, to specify a color. The
standard Visual Basic color constants appear in Table 18.1. If you dig hard enough, you can even find
the colors Visual Basic uses for system objects; these values appear in Table 18.2.

Table 18.1 Visual Basic color constants.

Constant Value Description

vbBlack &H0 Black

vbRed &HFF Red

vbGreen &HFF00 Green

vbYellow &HFFFF Yellow

vbBlue &HFF0000 Blue

vbMagenta &HFF00FF Magenta

vbCyan &HFFFF00 Cyan

vbWhite &HFFFFFF White

Table 18.2 System color constants.

Constant Value Description

vbScrollBars &H80000000 Scroll bar color

vbDesktop &H80000001 Desktop color

vbActiveTitleBar &H80000002 Color of the title bar for the active
window

vbInactiveTitleBar &H80000003 Color of the title bar for the inactive
window

vbMenuBar &H80000004 Menu background color

vbWindowBackground &H80000005 Window background color

vbWindowFrame &H80000006 Window frame color

vbMenuText &H80000007 Color of text on menus

vbWindowText &H80000008 Color of text in windows

vbTitleBarText &H80000009 Color of text in caption, size box, and
scroll arrow

vbActiveBorder &H8000000A Border color of active window

vbInactiveBorder &H8000000B Border color of inactive window

vbApplicationWorkspace &H8000000C Background color of multiple document
interface (MDI) applications

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\585-588.html (2 of 3) [3/14/2001 1:55:03 AM]

vbHighlight &H8000000D Background color of items selected in a
control

vbHighlightText &H8000000E Text color of items selected in a control

vbButtonFace &H8000000F Color of shading on the face of
command buttons

vbButtonShadow &H80000010 Color of shading on the edge of
command buttons

vbGrayText &H80000011 Grayed (disabled) text

vbButtonText &H80000012 Text color on push buttons

vbInactiveCaptionText &H80000013 Color of text in an inactive caption

vb3DHighlight &H80000014 Highlight color for 3D display elements

vb3DDKShadow &H80000015 Darkest shadow color for 3D display
elements

vb3DLight &H80000016 Second lightest of the 3D colors after
vb3Dhighlight

vb3DFace &H8000000F Color of text face

vb3Dshadow &H80000010 Color of text shadow

vbInfoText &H80000017 Color of text in tool tips

You can also specify colors as 4-byte integers directly, if you want to. The range for full RGB color is
0 to 16,777,215 (&HFFFFFF&).The high byte of a number in this range equals 0. The lower 3 bytes,
from least to most significant byte, determine the amount of red, green, and blue. The red, green, and
blue components are each represented by a number between 0 and 255 (&HFF). This means that you
can specify a color as a hexadecimal number like this: &HBBGGRR&.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\585-588.html (3 of 3) [3/14/2001 1:55:03 AM]

Drawing Text

You can display text in forms and picture boxes with the Print method:

[object.]Print [outputlist] [{ ; | , }]

The upper-left corner of the text you print appears at the location (CurrentX, CurrentY) (CurrentX
and CurrentY are properties of forms or picture boxes). If you want to print multiple items on different
lines, separate them with commas. If you want to print multiple items on the same line, separate them
with semicolons.

Let’s see an example. Here, we draw text starting at the center of both a form and a picture box,
Picture1 (note that to draw graphics from the Form Load event, you must set the form and picture
box’s AutoRedraw property to True):

Private Sub Form_Load()
 CurrentX = ScaleWidth / 2
 CurrentY = ScaleHeight / 2
 Print "Hello from Visual Basic"

Picture1.CurrentX = Picture1.ScaleWidth / 2
 Picture1.CurrentY = Picture1.ScaleHeight / 2
 Picture1.Print "Hello from Visual Basic"
End Sub

The result of the preceding code appears in Figure 18.2. Now we’re printing text in forms and picture
boxes (we’ll print on the printer later in this chapter).

Figure 18.2 Drawing text in a form and picture box.

TIP: You can format text when you print it to forms, picture boxes, or the Printer object by determining
its width and height, and you do that with the TextWidth and TextHeight methods.

Working With Fonts

You have a lot of formatting options when working with text. In particular, you can use these font
properties in forms and picture boxes:

• FontBold
• FontItalic
• FontName
• FontSize
• FontStrikeThru

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\588-592.html (1 of 4) [3/14/2001 1:55:11 AM]

javascript:displayWindow('images/18-02.jpg',320,240)
javascript:displayWindow('images/18-02.jpg',320,240)

• FontTransparent
• FontUnderline

For example, we set the font in a form to bold and the font size to 12 in a picture box this way (note
that to draw graphics from the Form Load event, you must set the form and picture box’s
AutoRedraw property to True):

Private Sub Form_Load()
 CurrentX = ScaleWidth / 2
 CurrentY = ScaleHeight / 2
 FontBold = True
 Print "Hello from Visual Basic"

 Picture1.CurrentX = Picture1.ScaleWidth / 2
 Picture1.CurrentY = Picture1.ScaleHeight / 2
 Picture1.FontSize = 12
 Picture1.Print "Hello from Visual Basic"
End Sub

The result of this code appears in Figure 18.3.

Figure 18.3 Setting font properties in Visual Basic.

The Font Object

You can also create a Font object that holds all the properties of a font; here are the Font object’s
properties (note that whereas the font property is FontStrikeThru, the Font object property is
StrikeThrough, not StrikeThru):

• Bold
• Italic
• Name
• Size
• StrikeThrough
• Underline
• Weight

To create a Font object, you dimension it as a new object of type StdFont. For example, here’s how we
install 24-point Arial as the font in a text box, using a Font object:

Private Sub Command1_Click()
 Dim Font1 As New StdFont
 Font1.Size = 24

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\588-592.html (2 of 4) [3/14/2001 1:55:11 AM]

javascript:displayWindow('images/18-03.jpg',400,240)
javascript:displayWindow('images/18-03.jpg',400,240)

 Font1.Name = "Arial"
 Set Text1.Font = Font1
End Sub

Which Fonts Are Available?

You can also determine which fonts are available for either screen or printer by checking the Fonts
property of the Visual Basic Printer and Screen objects. This property holds an array (0-based) of the
available font’s names (note that this collection is not a collection of Font objects).

Here’s an example. To see all the fonts available on your display using Visual Basic, you can loop over
all fonts in the Screen object—the total number of fonts is stored in the FontCount property—and
display the font names in message boxes this way (note that this code may display a lot of message
boxes):

Private Sub Command1_Click()
 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To Screen.FontCount
 MsgBox Screen.Fonts(intLoopIndex)
 Next intLoopIndex
End Sub

TIP: You can format text when you print it to forms, picture boxes, or the Printer object by determining
its width and height, and you do that with the TextWidth and TextHeight methods.

Drawing Lines

You draw lines in forms and picture boxes with the Line method:

object.Line [Step] (x1, y1) [Step] (x2, y2), [color], [B][F]

Here are the arguments you pass to Line:

• Step—Keyword specifying that the starting point coordinates are relative to the current
graphics position given by the CurrentX and CurrentY properties.

• x1, y1—Single values indicating the coordinates of the starting point for the line or rectangle.
The ScaleMode property determines the unit of measure used. If omitted, the line begins at the
position indicated by CurrentX and CurrentY.

• Step—Keyword specifying that the end point coordinates are relative to the line starting point.

• x2, y2—Single values indicating the coordinates of the end point for the line being drawn.

• color—Long integer value indicating the RGB color used to draw the line. If omitted, the
ForeColor property setting is used. You can use the RGB function or QBColor function to
specify the color.

• B—If included, causes a box to be drawn using the coordinates to specify opposite corners of

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\588-592.html (3 of 4) [3/14/2001 1:55:11 AM]

the box.

• F—If the B option is used, the F option specifies that the box is filled with the same color used
to draw the box. You cannot use F without B. If B is used without F, the box is filled with the
current FillColor and FillStyle. The default value for FillStyle is transparent.

Let’s see an example. Here, we’ll draw lines crisscrossing a form and a picture box, Picture1, when the
user clicks a button:

Private Sub Command1_Click()
 Line (0, 0)-(ScaleWidth, ScaleHeight)
 Line (ScaleWidth, 0)-(0, ScaleHeight)

 Picture1.Line (0, 0)-(Picture1.ScaleWidth, Picture1.ScaleHeight)
 Picture1.Line (Picture1.ScaleWidth, 0)-(0, Picture1.ScaleHeight)
End Sub

The result of this code appears in Figure 18.4. Now we’re drawing lines in forms and picture boxes.

Figure 18.4 Drawing lines in forms and picture boxes.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\588-592.html (4 of 4) [3/14/2001 1:55:11 AM]

javascript:displayWindow('images/18-04.jpg',400,296)
javascript:displayWindow('images/18-04.jpg',400,296)

Drawing Boxes

You draw boxes in forms and picture boxes with the Line method, using the B argument:

object.Line [Step] (x1, y1) [Step] (x2, y2), [color], [B][F]

Here are the arguments you pass to Line:

• Step—Keyword specifying that the starting point coordinates are relative to the current graphics
position given by the CurrentX and CurrentY properties.

• x1, y1—Single values indicating the coordinates of the starting point for the line or rectangle. The
ScaleMode property determines the unit of measure used. If omitted, the line begins at the position
indicated by CurrentX and CurrentY.

• Step—Keyword specifying that the end point coordinates are relative to the line starting point.

• x2, y2—Single values indicating the coordinates of the end point for the line being drawn.

• color—Long integer value indicating the RGB color used to draw the line. If omitted, the ForeColor
property setting is used. You can use the RGB function or QBColor function to specify the color.

• B—If included, causes a box to be drawn using the coordinates to specify opposite corners of the box.

• F—If the B option is used, the F option specifies that the box is filled with the same color used to draw
the box. You cannot use F without B. If B is used without F, the box is filled with the current FillColor
and FillStyle. The default value for FillStyle is transparent.

Let’s see an example showing how to draw boxes in forms and picture boxes when the user clicks a command
button. In this case, we’ll draw a box in a form

Private Sub Command1_Click()

 Line (ScaleWidth / 4, ScaleHeight / 4)–(3 * ScaleWidth / 4, 3 * _
 ScaleHeight / 4), , B
…

and another box in a picture box:

Private Sub Command1_Click()
 Line (ScaleWidth / 4, ScaleHeight / 4)–(3 * ScaleWidth / 4, 3 * _
 ScaleHeight / 4), , B

 Picture1.Line (Picture1.ScaleWidth / 4, Picture1.ScaleHeight / 4)–_
 (3 * Picture1.ScaleWidth / 4, 3 * Picture1.ScaleHeight / 4), , B

End Sub

The result of this code appears in Figure 18.5. Now we’re drawing boxes in Visual Basic.

Figure 18.5 Drawing boxes in forms and picture boxes.

Drawing Circles

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\593-596.html (1 of 2) [3/14/2001 1:55:20 AM]

javascript:displayWindow('images/18-05.jpg',400,351)
javascript:displayWindow('images/18-05.jpg',400,351)

You use the Circle method to draw circles in forms and picture boxes:

object.Circle [Step] (x, y), radius, [color, [start, end, [aspect]]]

Here are the arguments you pass to Circle:

• Step—Keyword specifying that the center of the circle, ellipse, or arc is relative to the current
coordinates given by the CurrentX and CurrentY properties of object.

• x, y—Single values indicating the coordinates for the center point of the circle, ellipse, or arc. The
ScaleMode property of object determines the units of measure used.

• radius—Single value indicating the radius of the circle, ellipse, or arc. The ScaleMode property of
object determines the unit of measure used.

• color—Long integer value indicating the RGB color of the circle’s outline. If omitted, the value of the
ForeColor property is used. You can use the RGB function or QBColor function to specify the color.

• start, end—Single-precision values. When an arc or a partial circle or ellipse is drawn, start and end
specify (in radians) the beginning and end positions of the arc. The range for both is –2 pi radians to 2 pi
radians. The default value for start is 0 radians; the default for end is 2 * pi radians.

• aspect—Single-precision value indicating the aspect ratio of the circle. The default value is 1.0, which
yields a perfect (nonelliptical) circle on any screen.

As an example, we draw the biggest circle possible in both a form and a picture box, Picture1, when the user
clicks a command button, Command1, using this code, and using a Switch function to determine if the form’s
width or height is larger:

Private Sub Command1_Click()
 Circle (ScaleWidth / 2, ScaleHeight / 2), _
 Switch(ScaleWidth >= ScaleHeight, ScaleHeight / 2, _
 ScaleWidth < ScaleHeight, ScaleWidth / 2)

 Picture1.Circle (Picture1.ScaleWidth / 2, Picture1.ScaleHeight / 2), _
 Switch(Picture1.ScaleWidth >= Picture1.ScaleHeight, _
 Picture1.ScaleHeight / 2, Picture1.ScaleWidth < _
 Picture1.ScaleHeight, Picture1.ScaleWidth / 2)

End Sub

Running this code gives us the result you see in Figure 18.6.

Figure 18.6 Drawing circles in forms and picture boxes.

The code for this example is located in the drawcircle folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\593-596.html (2 of 2) [3/14/2001 1:55:20 AM]

javascript:displayWindow('images/18-06.jpg',400,331)
javascript:displayWindow('images/18-06.jpg',400,331)

Drawing Ellipses

You use the Circle method to draw ellipses in picture boxes and forms, setting the aspect argument to set the
ellipse’s aspect ratio:

object.Circle [Step] (x, y), radius, [color, [start, end, [aspect]]]

Here are the arguments you pass to Circle:

• Step—Keyword specifying that the center of the circle, ellipse, or arc is relative to the current
coordinates given by the CurrentX and CurrentY properties of object.

• x, y—Single values indicating the coordinates for the center point of the circle, ellipse, or arc. The
ScaleMode property of object determines the units of measure used.

• radius—Single value indicating the radius of the circle, ellipse, or arc. The ScaleMode property of
object determines the unit of measure used.

• color—Long integer value indicating the RGB color of the circle’s outline. If omitted, the value of the
ForeColor property is used. You can use the RGB function or QBColor function to specify the color.

• start, end—Single-precision values. When an arc or a partial circle or ellipse is drawn, start and end
specify (in radians) the beginning and end positions of the arc. The range for both is –2 pi radians to 2 pi
radians. The default value for start is 0 radians; the default for end is 2 * pi radians.

• aspect—Single-precision value indicating the aspect ratio of the circle. The default value is 1.0, which
yields a perfect (nonelliptical) circle on any screen.

Here’s how it works: the aspect ratio is the ratio of the vertical to horizontal axes in the ellipse, and the length of
the ellipse’s major (that is, longer) axis is the value you specify in the radius argument. As an example, we
draw an ellipse in both a form and a picture box, Picture1, with this code when the user clicks a command
button, Command1. In this case, we use a vertical to horizontal ratio of 0.8 for both ellipses:

Private Sub Command1_Click()

 Circle (ScaleWidth / 2, ScaleHeight / 2), _
 Switch(ScaleWidth >= ScaleHeight, ScaleHeight / 2, _
 ScaleWidth < ScaleHeight, ScaleWidth / 2), , , , 0.8

 Picture1.Circle (Picture1.ScaleWidth / 2, Picture1.ScaleHeight / 2), _
 Switch(Picture1.ScaleWidth >= Picture1.ScaleHeight, _
 Picture1.ScaleHeight / 2, Picture1.ScaleWidth < _
 Picture1.ScaleHeight, Picture1.ScaleWidth / 2), , , , 0.8

End Sub

Running the preceding code gives you the result you see in Figure 18.7. The program is a success. Now we’re
drawing ellipses in Visual Basic.

Figure 18.7 Drawing ellipses with Visual Basic.

Drawing Arcs

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\596-599.html (1 of 3) [3/14/2001 1:55:30 AM]

javascript:displayWindow('images/18-07.jpg',400,331)
javascript:displayWindow('images/18-07.jpg',400,331)

You use the Circle method to draw arcs, using the start, end, and aspect arguments:

object.Circle [Step] (x, y), radius, [color, [start, end, [aspect]]]

Here are the arguments you pass to Circle:

• Step—Keyword specifying that the center of the circle, ellipse, or arc is relative to the current
coordinates given by the CurrentX and CurrentY properties of object.

• x, y—Single values indicating the coordinates for the center point of the circle, ellipse, or arc. The
ScaleMode property of object determines the units of measure used.

• radius—Single value indicating the radius of the circle, ellipse, or arc. The ScaleMode property of
object determines the unit of measure used.

• color—Long integer value indicating the RGB color of the circle’s outline. If omitted, the value of the
ForeColor property is used. You can use the RGB function or QBColor function to specify the color.

• start, end—Single-precision values. When an arc or a partial circle or ellipse is drawn, start and end
specify (in radians) the beginning and end positions of the arc. The range for both is –2 pi radians to 2 pi
radians. The default value for start is 0 radians; the default for end is 2 * pi radians.

• aspect—Single-precision value indicating the aspect ratio of the circle. The default value is 1.0, which
yields a perfect (nonelliptical) circle on any screen.

In Visual Basic, an arc is part of an ellipse. To draw an arc, you proceed as though you were going to draw an
ellipse, including specifying the origin, major radius (in the radius argument), color, and aspect ratio. Then you
specify values for the beginning and end of the arc, in radians (in other words, radians go from 0 to 2 * pi for a
full circle).

Let’s see an example. In this case, we draw a convex arc in a form and a concave arc in a picture box, Picture1,
when the user clicks a command button, Command1:

Private Sub Command1_Click()

 Circle (ScaleWidth / 2, ScaleHeight / 2), _
 Switch(ScaleWidth >= ScaleHeight, ScaleHeight / 2, _
 ScaleWidth < ScaleHeight, ScaleWidth / 2), , 0, 3.14, 0.8

 Picture1.Circle (Picture1.ScaleWidth / 2, Picture1.ScaleHeight / 2), _
 Switch(Picture1.ScaleWidth >= Picture1.ScaleHeight, _
 Picture1.ScaleHeight / 2, Picture1.ScaleWidth < _
 Picture1.ScaleHeight, Picture1.ScaleWidth / 2), , 3.14, 6.28, 0.8

End Sub

The result of this code appears in Figure 18.8. Now we’re drawing arcs in Visual Basic.

Figure 18.8 Drawing ellipses in forms and picture boxes.

The code for this example is located in the drawarcs folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\596-599.html (2 of 3) [3/14/2001 1:55:30 AM]

javascript:displayWindow('images/18-08.jpg',400,331)
javascript:displayWindow('images/18-08.jpg',400,331)

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\596-599.html (3 of 3) [3/14/2001 1:55:30 AM]

Drawing Freehand With The Mouse

The Testing Department is on the phone. Your new program, SuperDuperGraphicsPro, is fine, but how
about letting the user draw freehand with the mouse? Hmm, you think, how does that work?

As the user moves the mouse, you can use the Line statement to connect the mouse locations passed to
your program in the MouseMove event handler. Note that you are not passed every pixel the mouse
travels over, so you must connect the dots, so to speak, rather than setting individual pixels as a lot of
programmers think.

Here’s an example where we draw freehand with the mouse. Because we should only draw after the
mouse button has gone down, we set up a Boolean flag, blnDrawFlag, in the (General) part of the
form:

Dim blnDrawFlag As Boolean

We set that flag to False when the form first loads:

Private Sub Form_Load()
 blnDrawFlag = False
End Sub

When the user presses the mouse button, we set the current drawing location (CurrentX, CurrentY) to
the location of the mouse (so we don’t start drawing from the origin of the form by mistake), and set
blnDrawFlag to True in the MouseDown event handler:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 CurrentX = X
 CurrentY = Y
 blnDrawFlag = True
End Sub

When the user moves the mouse, we check if the blnDrawFlag is True in the MouseMove event, and
if so, draw a line from the current drawing location to the current (X, Y) position (if you omit the first
coordinate of a line, Visual Basic uses the current drawing location):

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 If blnDrawFlag Then Line -(X, Y)
End Sub

When the mouse button goes up, we set blnDrawFlag to False in the MouseUp event:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 blnDrawFlag = False

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\599-604.html (1 of 4) [3/14/2001 1:55:52 AM]

End Sub

Running this program results in the kind of display you see in Figure 18.9, where we’re letting the user
draw with the mouse. Note that we’ve also changed the mouse cursor into a cross in this drawing
example, by setting the form’s MousePointer property to 2.

Figure 18.9 Drawing freehand with the mouse.

Now we’re drawing freehand in Visual Basic. The code for this example is located in the drawfreehand
folder on this book’s accompanying CD-ROM.

Filling Figures With Color

To fill figures with color, you can use the FillColor property of forms and picture boxes, along with the
FillStyle property to set the type of fill you want.

Let’s see an example. Here, we’ll draw a circle and a box in a form in the default drawing color (black)
and fill those figures with solid blue when the user clicks a button, Command1. First, we set the
form’s FillColor property to blue:

Private Sub Command1_Click()
 FillColor = RGB(0, 0, 255)
…

Then we specify we want figures colored in solidly by setting the FillStyle property to vbSolid (for
more on FillStyle, see the next topic in this chapter):

Private Sub Command1_Click()
 FillColor = RGB(0, 0, 255)
 FillStyle = vbFSSolid
…

Finally we draw the box and the circle:

Private Sub Command1_Click()
 FillColor = RGB(0, 0, 255)
 FillStyle = vbFSSolid
 Line (0, 0)-(ScaleWidth / 2, ScaleHeight / 2), , B
 Circle (3 * ScaleWidth / 4, 3 * ScaleHeight / 4), ScaleHeight / 4
End Sub

That’s it—now the preceding code will draw a box and a circle with a black border, filled in blue, as
shown in Figure 18.10.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\599-604.html (2 of 4) [3/14/2001 1:55:52 AM]

javascript:displayWindow('images/18-09.jpg',320,240)
javascript:displayWindow('images/18-09.jpg',320,240)

Figure 18.10 Filling figures with color.

TIP: If you use the F argument when drawing boxes with the Line method, Visual Basic will use the
color you specify for the box’s drawing color (and if you didn’t specify a color, it will use the current
ForeGround color) instead of the FillColor.

Filling Figures With Patterns

You can use the form and picture box FillStyle property to set the fill pattern in Visual Basic graphics.
Here are the possibilities:

• VbFSSolid—0; solid

• VbFSTransparent—1 (the default); transparent

• VbHorizontalLine—2; horizontal line

• VbVerticalLine—3; vertical line

• VbUpwardDiagonal—4; upward diagonal

• VbDownwardDiagonal—5; downward diagonal

• VbCross—6; cross

• VbDiagonalCross—7; diagonal cross

Figure 18.11 shows what the fill patterns look like. The default, VbFSTransparent, means that by
default figures are not filled in.

Figure 18.11 The Visual Basic fill patterns.

Setting Figure Drawing Style And Drawing Width

The Aesthetic Design Department is on the phone. Can’t you do something about the graphics figures
in your program? Maybe make them—dotted? You think, dotted?

Visual Basic can help: just set the DrawStyle property in forms or picture boxes. Here are the possible
values for that property:

• vbSolid—1 (the default); solid (the border is centered on the edge of the shape)

• vbDash—2; dash

• vbDot—3; dot

• vbDashDot—4; dash-dot

• vbDashDotDot—5; dash-dot-dot

• vbInvisible—5; invisible

• vbInsideSolid—6; inside solid (the outer edge of the border is the outer edge of the figure)

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\599-604.html (3 of 4) [3/14/2001 1:55:52 AM]

javascript:displayWindow('images/18-10.jpg',320,240)
javascript:displayWindow('images/18-10.jpg',320,240)
javascript:displayWindow('images/18-11.jpg',437,209)
javascript:displayWindow('images/18-11.jpg',437,209)

You can also set the drawing width with the DrawWidth property.

Here’s an example where we set the DrawStyle property to dashed and draw two figures in a form, a
box and a circle:

Private Sub Command1_Click()
 DrawStyle = vbDash
 Line (0, 0)-(ScaleWidth / 2, ScaleHeight / 2), , B
 Circle (3 * ScaleWidth / 4, 3 * ScaleHeight / 4), ScaleHeight / 4
End Sub

The result of the preceding code appears in Figure 18.12.

Figure 18.12 Drawing dashed figures.

TIP: You cannot use different drawing styles if the drawing width is not set to 1.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\599-604.html (4 of 4) [3/14/2001 1:55:52 AM]

javascript:displayWindow('images/18-12.jpg',320,240)
javascript:displayWindow('images/18-12.jpg',320,240)

Drawing Points

To draw individual points, you use PSet in forms and picture boxes like this:

object.PSet [Step] (x, y), [color]

Here are the arguments you pass to PSet:
• Step—Keyword specifying that the coordinates are relative to the current graphics position
given by the CurrentX and CurrentY properties.

• x, y—Single values indicating the horizontal (x-axis) and vertical (y-axis) coordinates of the
point to set.

• color—Long integer value indicating the RGB color specified for the point. If omitted, the
current ForeColor property setting is used. You can use the RGB function or QBColor function
to specify the color.

You can also use the Point method to retrieve the color of a point at a specific (x, y) location.

Setting The Drawing Mode

You draw with pens in Windows. Every drawing operation uses these pens. When you set the drawing
width, you’re really setting the width of the pen; when you set the drawing color, you’re setting the
color of the pen.

You can also use the DrawMode property to specify how the current pen interacts with the graphics it
already finds in a form or picture box. Here are the possible settings for the pen’s drawing mode:

• vbBlackness—1, Blackness

• vbNotMergePen—2, Not Merge Pen; inverse of setting 15 (Merge Pen)

• vbMaskNotPen—3, Mask Not Pen; combination of the colors common to the background
color and the inverse of the pen

• vbNotCopyPen—4, Not Copy Pen; inverse of setting 13 (Copy Pen)

• vbMaskPenNot—5, Mask Pen Not; combination of the colors common to both the pen and
the inverse of the display

• vbInvert—6, Invert; inverse of the display color

• vbXorPen—7, XOR Pen; combination of the colors in the pen and in the display color, but not
in both

• vbNotMaskPen—8, Not Mask Pen; inverse of setting 9 (Mask Pen)

• vbMaskPen—9, Mask Pen; combination of the colors common to both the pen and the display

• vbNotXorPen—10, Not XOR Pen; inverse of setting 7 (XOR Pen)

• vbNop—11 Nop, No operation; output remains unchanged (in effect, this setting turns
drawing off)

• vbMergeNotPen—12, Merge Not Pen; combination of the display color and the inverse of the
pen color

• vbCopyPen—13, Copy Pen (the default); color specified by the ForeColor property

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\604-606.html (1 of 2) [3/14/2001 1:55:56 AM]

• vbMergePenNot—14, Merge Pen Not; combination of the pen color and the inverse of the
display color

• vbMergePen—15, Merge Pen; combination of the pen color and the display color

• vbWhiteness—16, Whiteness

For example, we can set the pen to be an invert pen with this code and draw over some lines. The pen
will invert the pixels it finds:

Private Sub Form_Load()
 Dim intLoopIndex As Integer

 For intLoopIndex = 1 To 9
 DrawWidth = intLoopIndex
 Line (0, intLoopIndex * ScaleHeight / 10)–(ScaleWidth, _
 intLoopIndex * ScaleHeight / 10)
 Next intLoopIndex

 DrawMode = vbInvert
 DrawWidth = 10
 Line (0, 0)-(ScaleWidth, ScaleHeight)
 Line (0, ScaleHeight)-(ScaleWidth, 0)
End Sub

The result of this code appears in Figure 18.13; the two diagonal lines are drawn with the inverted pen.

Figure 18.13 Drawing with the Invert pen.

TIP: The XOR (exclusive OR) pen is a popular one, because when you draw with it twice in the same
location, the display is restored to its original condition. This happens because if you XOR number A to
number B twice, number B is restored. Programmers use this to draw figures they know they’ll need to
erase, such as when letting the user stretch a graphics figure with the mouse. In such a case, each figure
you draw will have to be erased before you can draw the next one to give the illusion of stretching the
figure. What programmers usually do is to draw the stretched figure with the XOR pen, and when it’s
time to erase it, they draw it again with the same pen, thereby restoring the screen.

The code for this example is located in the drawinvert folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\604-606.html (2 of 2) [3/14/2001 1:55:56 AM]

javascript:displayWindow('images/18-13.jpg',320,240)
javascript:displayWindow('images/18-13.jpg',320,240)

Setting Drawing Scales

Forms and picture boxes have a number of scale properties, and perhaps the most popular one is
ScaleMode, which sets the units of measurement in a picture box. Here are the possible values for
ScaleMode (note that when you set the scale mode of a picture box, all measurements are in those new
units, including coordinates passed to your program, like mouse down locations):

• vbUser—0; indicates that one or more of the ScaleHeight, ScaleWidth, ScaleLeft, and
ScaleTop properties are set to custom values

• vbTwips—1 (the default); twip (1440 twips per logical inch; 567 twips per logical centimeter)

• vbPoints—2; point (72 points per logical inch)

• vbPixels—3; pixel (smallest unit of monitor or printer resolution)

• vbCharacters—4; character (horizontal equals 120 twips per unit; vertical equals 240 twips per
unit)

• vbInches—5; inch

• vbMillimeters—6; millimeter

• vbCentimeters—7; centimeter

• vbHimetric—8; HiMetric

• vbContainerPosition—9; units used by the control’s container to determine the control’s
position

• vbContainerSize—10; units used by the control’s container to determine the control’s size

For example, to report the mouse location in pixels in a form using two text boxes, Text1 and Text2, we
set the form’s ScaleMode property to vbPixels when the form loads:

Private Sub Form_Load()
 ScaleMode = vbPixels
End Sub

This means that the X and Y values for the mouse location passed to us will be in pixels, so we can
display those coordinates in the text boxes this way:

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As _
 Single, Y As Single)
 Text1.Text = "Mouse x location (in pixels): " & Str(X)
 Text2.Text = "Mouse y location (in pixels): " & Str(Y)
End Sub

The result of the preceding code appears in Figure 18.14.

Figure 18.14 Displaying mouse location in pixels.

If you set the scale mode to vbUser, you can define your own units by setting the dimensions of the

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\606-609.html (1 of 3) [3/14/2001 1:56:00 AM]

javascript:displayWindow('images/18-14.jpg',320,240)
javascript:displayWindow('images/18-14.jpg',320,240)

picture box using the ScaleLeft, ScaleTop, ScaleWidth, and ScaleHeight properties. This can be very
useful if you’re plotting points and want to use a picture box as a graph.

TIP: The ScaleWidth and ScaleHeight properties of a picture box hold the image’s actual dimensions (in
units determined by the ScaleMode property), not the Width and Height properties, which hold the
control’s width and height (including the border).

The code for this example is located in the pixelmouse folder on this book’s accompanying CD-ROM.

Using The Screen Object

The Visual Basic Screen object offers you a lot of information about the current display. Here are that
object’s properties:

• TwipsPerPixelX—Twips per pixel horizontally

• TwipsPerPixelY—Twips per pixel vertically

• Height—Screen height

• Width—Screen width

• Fonts—Collection of names of the available fonts

• FontCount—Total number of screen fonts available

• ActiveControl—Currently active control

• ActiveForm—Currently active form

• MouseIcon—Returns or sets a custom mouse icon

• MousePointer—Returns or sets a value indicating the type of mouse pointer displayed when
the mouse is over a particular part of an object at runtime

Resizing Graphics When The Window Is Resized

The Testing Department is on the phone. When the user resizes your SuperDuperGraphicsPro program,
the graphics in the program don’t resize themselves. You ask, should they? They say, yes.

You can use the Resize event to catch window or picture box resizes. Let’s see an example. Here, we
add a new subroutine, DrawBox, to a form. This subroutine draws a rectangle in a form:

Private Sub DrawBox()
 Line (ScaleWidth / 4, ScaleHeight / 4)–(3 * ScaleWidth / 4, _
 3 * ScaleHeight / 4), , B
End Sub

We can call DrawBox in the Load event to draw the box the first time (set the form’s AutoRedraw
property to True to draw graphics in the Form Load event):

Private Sub Form_Load()
 DrawBox
End Sub

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\606-609.html (2 of 3) [3/14/2001 1:56:00 AM]

When the user resizes the form, we clear the form and redraw the box in the Form Resize event:

Private Sub Form_Resize()
 Cls
 DrawBox
End Sub

Now the program resizes its graphics to match the user’s actions. The code for this example is located in
the resizer folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\606-609.html (3 of 3) [3/14/2001 1:56:00 AM]

Copying Pictures To And Pasting Pictures From The Clipboard

The users love your new graphics program, SuperDuperGraphicsPro, but would like to export the
images they create to other programs. How can you do that?

You can copy the images to the Clipboard, letting the user paste them into other programs. To place
data in the Clipboard, you use SetData, and to retrieve data from the Clipboard, you use GetData.

An example will make this clearer. Here, we’ll paste a picture from Picture1 to Picture2 using two
buttons, Command1 and Command2. When the user clicks Command1, we’ll copy the picture from
Picture1 to the Clipboard; when the user clicks Command2, we’ll paste the picture to Picture2.

To place the image in Picture1 into the Clipboard, we use SetData:

Clipboard.SetData data, [format]

Here are the possible values for the format parameter for images:

• vbCFBitmap—2; bitmap (BMP) files

• vbCFMetafile—3; metafile (WMF) files

• vbCFDIB—8; device-independent bitmap (DIB)

• vbCFPalette—9; color palette

If you omit the format parameter, Visual Basic will determine the correct format, so we’ll just copy the
picture from Picture1.Picture to the Clipboard this way:

Private Sub Command1_Click()
 Clipboard.SetData Picture1.Picture
End Sub

To paste the picture, use GetData():

Clipboard.GetData ([format])

The format parameter here is the same as for SetData(), and as before, if you don’t specify the format,
Visual Basic will determine it, so when the user clicks the second button, we paste the image into
Picture2 this way:

Private Sub Command2_Click()
 Picture2.Picture = Clipboard.GetData()
End Sub

That’s all it takes—when you run the program and click the Copy and then the Paste button, the image
is copied to the Clipboard and then pasted into the second picture box. Now we’re using the Clipboard
with picture boxes.

Printing Graphics

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\609-611.html (1 of 2) [3/14/2001 1:56:04 AM]

Visual Basic has two ways of printing both text and graphics:

• Printing entire forms using the PrintForm method

• Printing with the Printer object and using graphical methods as well as the NewPage and
EndDoc methods

The PrintForm Method

The PrintForm method sends an image of a given form to the printer, complete with menu bar, title
bar, and so on. To print information from your application with PrintForm, you must first display that
information on a form and then print that form with the PrintForm method like this:

[form.]PrintForm

If you omit the form name, Visual Basic prints the current form. Note that if a form contains graphics,
those graphics print only if the form’s AutoRedraw property is set to True.

The Printer Object

The Printer object represents the default printer and supports text and graphics methods like Print,
PSet, Line, PaintPicture, and Circle. You use these methods on the Printer object just as you would
on a form or picture box. The Printer object also has all the font properties we’ve seen earlier in this
chapter.

When you finish placing the information on the Printer object, you use the EndDoc method to send the
output to the printer. You can also print multiple-page documents by using the NewPage method on the
Printer object.

TIP: When applications close, they automatically use the EndDoc method to send any pending
information on the Printer object.

The Printers Collection

The Printers collection is an object that contains all the printers that are available, and each printer in
the collection has a unique (0-based) index for identification. Let’s see an example. Here, we select the
first printer from the Printers collection to be the current printer by loading that printer into the Printer
object:

Private Sub Command1_Click()
 Set Printer = Printers(0)
End Sub

Using the Printers collection in this way lets you print to printers other than the default.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\609-611.html (2 of 2) [3/14/2001 1:56:04 AM]

Layering Graphics With The AutoRedraw And ClipControls Properties

When you create graphics in Visual Basic, bear in mind that graphical controls and labels, nongraphical
controls, and graphics methods appear on different layers. The behavior of these layers depends on
three things: the AutoRedraw property, the ClipControls property, and whether graphics methods
appear inside or outside the Paint event. Usually the layers of a form or other container are as follows:

• Front layer—Nongraphical controls like command buttons, checkboxes, and file controls.

• Middle layer—Graphical controls and labels.

• Back layer—Drawing space for the form or container. This is where the results of graphics
methods appear.

Anything in one layer covers anything in the layer behind it, so graphics you create with the graphical
controls appear behind the other controls on the form, and all graphics you create with the graphics
methods appear below all graphical and nongraphical controls. Combining settings for AutoRedraw
and ClipControls and placing graphics methods inside or outside the Paint event affects layering and
the performance of the application. You can find the effects created by different combinations of
AutoRedraw and ClipControls and placement of graphics methods in Table 18.3.

Table 18.3 Layering with AutoRedraw and ClipControls.

AutoRedraw ClipControls
Methods In/Out Paint
Event Description

True True (default) Paint event ignored Normal layering.

True False Paint event ignored Normal layering. Forms with
many controls that do not overlap
may paint faster because no
clipping region is calculated or
created.

False (default) True (default) In Normal layering.

False True Out Nongraphical controls in front.
Graphics methods and graphical
controls appear mixed in the
middle and back layers. Not
recommended by Microsoft.

False False In Normal layering, affecting only
pixels that were previously
covered or that appear when
resizing a form.

False False Out Graphics methods and all controls
appear mixed in the three layers.
Not recommended by Microsoft.

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\611-612.html (1 of 2) [3/14/2001 1:56:05 AM]

Visual Basic 6 Black Book:Working With Graphics

http://24.19.55.56:8080/temp/ch18\611-612.html (2 of 2) [3/14/2001 1:56:05 AM]

Chapter 19
Working With Images
If you need an immediate solution to:
Adding Images To Controls

Adding Images To Forms

Using Image Controls

Using Picture Boxes

AutoSizing Picture Boxes

Loading Images In At Runtime

Clearing (Erasing) Images

Storing Images In Memory Using The Picture Object

Using Arrays Of Picture Objects

Adding Picture Clip Controls To A Program

Selecting Images In A Picture Clip Control Using Coordinates

Selecting Images In A Picture Clip Control Using Rows And Columns

Flipping Images

Stretching Images

Creating Image Animation

Handling Images Bit By Bit

Creating Grayscale Images

Lightening Images

Creating “Embossed” Images

Creating “Engraved” Images

Sweeping Images

Blurring Images

Freeing Memory Used By Graphics

In Depth

Visual Basic has quite an array of techniques for dealing with images. In this chapter, we’ll work with
bitmapped images in our programs, creating some powerful effects. We’ll see how to load images in,
display them in a variety of ways, including flipping them and stretching them, creating image effects,
and saving them back to disk.

Images can be an asset to your program, enhancing the visual interface a great deal. We won’t work on
creating images here—instead, we’ll work on reading them in, working on them, and displaying them
from image files on disk.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\613-617.html (1 of 4) [3/14/2001 1:56:11 AM]

There are a number of different image formats that you use today: bitmap (.bmp), GIF, JPEG, WMF
(Windows metafile format), enhanced WMF, icon (.ico), compressed bitmap (.rle), and more. Visual
Basic can handle all these formats.

However, you’ll notice some anachronisms that have crept in over the years that indicate Visual
Basic’s historical development—for example, the picture clip control, which we’ll see in this chapter,
can only handle bitmaps with a maximum of 16 colors. This control is still a useful one, but it has
largely been superseded by the more powerful image list control (which we cover in its own chapter in
this book).

Picture Boxes Vs. Image Controls

The main controls that programmers use to display images are image controls and picture boxes. That’s
not to say there aren’t other ways to display, of course: you can load images into many controls, like
buttons, and even display them in forms, as we’ll see in this chapter. However, when programmers
think of displaying and working with images, they often think of picture boxes and image controls.

It’s worth noting the difference between these controls. The image control really has one main purpose:
to display images. If that’s your goal, the image control is a good choice. On the other hand, picture
boxes offer you a great deal more, if you need it. You can even think of picture boxes as mini-paint
programs, because they include methods to let you draw text (on top of the current image in the picture
box, which is good if you want to label elements in that image), draw circles, lines, boxes, and so on.

Note, however, that the added power of picture boxes comes with an added cost in terms of heavier use
of system resources. If you don’t need a picture box’s added functionality, use an image control. For
more on this topic, take a look at Chapter 10.

Image Effects: Working With Images Bit By Bit

In this chapter, we’ll have some fun seeing how to work with images bit by bit. There are two main
ways of doing that in Visual Basic: sticking with the Visual Basic methods, and using Windows
methods directly.

We’ll stick with the Visual Basic methods, which, although slower, are vastly easier to use and get the
job done well. However, you should know that we’ll take a look at the Windows way of doing things
later in the book, in the chapter on connecting to Windows directly. (And you may have noticed our
bitmapped menu item example in the chapter on menus works directly with Windows to create a
bitmap object that it loads into a menu.)

We’ll see quite a few image effects in this chapter: embossing images, engraving images, grayscale
images, image lightening, blurring images, making an image seem to sweep from upper left to lower
right, and more. All these effects are powerful techniques that you might not expect from Visual Basic.

That’s it for the overview of images for the moment—it’s time to turn to the Immediate Solutions.

Immediate Solutions

Adding Images To Controls

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\613-617.html (2 of 4) [3/14/2001 1:56:11 AM]

The Aesthetic Design Department is calling again. Can’t you add some images to the controls in your
program? That would make it look so much nicer.

These days, you can add images to many Visual Basic controls. For example, you can now display
images in checkboxes, command buttons, and option buttons if you first set their Style property to
Graphical (Style = 1), then place the name of the image file you want to use in the control’s Picture
property. As an example, we display a bitmapped image in a command button in Figure 19.1.

Figure 19.1 Displaying an image in a button.

At runtime, you can load a picture into the control’s Picture property using the LoadPicture function:

Private Sub Command1_Click()
 Command1.Picture = LoadPicture("c:\image.bmp")
End Sub

Besides buttons, you can also display images in the Visual Basic image combo box—see Chapter 8.
We also used a few advanced techniques to display an image in a menu item in Chapter 5.

The Windows common controls can also display images, including such controls as tree views, list
views, and tab strips. There, you load the images you want into an image list control, and then connect
that image list to the control using the control’s ImageList property. For more information, see Chapter
16, and the chapters on the various Windows common controls.

Adding Images To Forms

The Aesthetic Design Department is on the phone again. The form in your program looks pretty drab.
How about spicing it up with an image of the company founder? Hmm, you wonder, how would you do
that?

You can load an image into a form using the form’s Picture property, both at design time or at runtime.
As an example, we’ve placed an image in the form you see in Figure 19.2. Note that the controls on
that form are layered on top of the form’s image.

Figure 19.2 Displaying an image in a form.

At runtime, you can use the LoadPicture function to read in an image and display it in a form like this:

Private Sub Command1_Click()
 Form1.Picture = LoadPicture("c:\image.bmp")
End Sub

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\613-617.html (3 of 4) [3/14/2001 1:56:11 AM]

javascript:displayWindow('images/19-01.jpg',320,240)
javascript:displayWindow('images/19-01.jpg',320,240)
javascript:displayWindow('images/19-02.jpg',412,215)
javascript:displayWindow('images/19-02.jpg',412,215)

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\613-617.html (4 of 4) [3/14/2001 1:56:11 AM]

The code for the example you see in Figure 19.2 is located in the imageform folder on this book’s
accompanying CD-ROM.

TIP: Note that if you just want to set the background color of a form to some uniform color, you should
use the form’s BackColor property instead of loading an image in.

Using Image Controls

You use image controls to display images. Although that might seem obvious, it’s usually the deciding
factor in whether or not to use an image control or a picture box. Image controls are simple controls
that don’t use many system resources, whereas picture boxes are more powerful controls that do. When
you just have an image to display, this is the control to use.

You load an image into an image control using its Picture property at design time or runtime. When
you load an image in at runtime, use the LoadPicture function this way:

Private Sub Command1_Click()
 Image1.Picture = LoadPicture("c:\image.bmp")
End Sub

As you can see in the image control in Figure 19.3, image controls have no border by default, although
you can add one using the BorderStyle property. In addition, image controls size themselves to the
image they display automatically, unless you set their Stretch property to True, in which case they size
the image to fit themselves.

Figure 19.3 An image control and a picture box.

Image controls support events like Click, DblClick, MouseDown, MouseMove, and MouseUp.
However, they do not support all the events that picture boxes support, such as Key events. In general,
you use image controls for one purpose only: to display an image (which can include stretching that
image). Both image controls and picture boxes can read in images in all the popular formats: GIF,
JPEG, BMP, and so on.

For a lot more information on image controls, take a look at Chapter 10.

Using Picture Boxes

Picture boxes are like mini-paint programs. Not only can they display images—they can also create or
modify them. You can use the built-in methods of picture boxes to draw text, ellipses, lines, boxes, and
more, on top of the images they display.

You load an image into a picture box using its Picture property at design time or runtime. When you
load an image in at runtime, use the LoadPicture function this way:

Private Sub Command1_Click()

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\617-621.html (1 of 4) [3/14/2001 1:56:18 AM]

javascript:displayWindow('images/19-03.jpg',320,240)
javascript:displayWindow('images/19-03.jpg',320,240)

 Picture1.Picture = LoadPicture("c:\image.bmp")
End Sub

As you can see in Figure 19.3, picture boxes display a border by default, although you can remove it
with the control’s BorderStyle property. By default, picture boxes display their images starting at the
picture box’s upper-left corner (leaving uncovered space at the lower-right blank), but you can change
that by setting the AutoSize property to True. When you set AutoSize to True, the picture box sizes
itself to fit its displayed image.

You can use a picture box’s PaintPicture method to draw an image at different locations in a picture
box, and even flip it as we’ll see in this chapter. Both image controls and picture boxes can read in
images in all the popular formats: GIF, JPEG, BMP, and so on.

For a lot more information on picture boxes, take a look at Chapter 10.

AutoSizing Picture Boxes

Image controls size themselves automatically to fit the image they’re displaying—but picture boxes
don’t, by default. You can, however, make them resize themselves to fit the image they’re displaying
by setting the picture box’s AutoSize property to True. You can set AutoSize to True either at design
time or at runtime.

Loading Images In At Runtime

You know that you use the Picture property to load images into image controls and picture boxes, but
how does that work at runtime? This code doesn’t seem to work:

Private Sub Command1_Click()
 Image1.Picture = "c:\image.bmp" 'Error!
End Sub

You have to use the Visual Basic LoadPicture function here. That looks like this when we load an
image into an image control:

Private Sub Command1_Click()
 Image1.Picture = LoadPicture("c:\image.bmp")
End Sub

Here’s how we load that image into a picture box:

Private Sub Command1_Click()
 Picture1.Picture = LoadPicture("c:\image.bmp")
End Sub

You can also load an image into a Visual Basic Picture object. Let’s see an example of how that works.
First, we create a Picture object, picObject1:

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\617-621.html (2 of 4) [3/14/2001 1:56:18 AM]

Private Sub Command1_Click()
 Dim picObject1 As Picture
…
End Sub

Next, we load the image into that Picture object using LoadPicture:

Private Sub Command1_Click()
 Dim picObject1 As Picture
 Set picObject1 = LoadPicture("c:\image.bmp")
…
End Sub

Finally, we just set a picture box’s Picture property to the Picture object, and that’s it:

Private Sub Command1_Click()
 Dim picObject1 As Picture
 Set picObject1 = LoadPicture("c:\image.bmp")
 Set Picture1.Picture = picObject1
End Sub

If, on the other hand, you want to save an image to disk, use the picture box’s SavePicture method.

Clearing (Erasing) Images

One of the handiest things to know about handling images is how to clear an image in a form or picture
box. You use the Cls method (which originally stood for “Clear Screen”) to do that (image controls
don’t have a Cls method).

For example, here’s how we erase an image in a picture box when the user clicks that picture box:

Private Sub Picture1_Click()
 Picture1.Cls
End Sub

Storing Images In Memory Using The Picture Object

You want to load a number of images into your program, SuperDuperGraphicsPro, and store them in
the background, invisibly. How do you do that?

Visual Basic offers a number of ways of loading in images and storing them unobserved (all of them
covered in this book, of course). You can use the image list control to store images, or the picture clip
controls (picture clips are covered in this chapter). You can even load images into picture boxes and
make those picture boxes invisible (by setting their Visible properties to False). And you can use
Picture objects. In fact, in some ways, you can think of the Picture object as an invisible picture box
that takes up far fewer system resources (although Picture objects don’t have drawing methods like
Line or Circle, like picture boxes). The Picture object supports bitmaps, GIF images, JPEG images,

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\617-621.html (3 of 4) [3/14/2001 1:56:18 AM]

metafiles, and icons.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\617-621.html (4 of 4) [3/14/2001 1:56:18 AM]

Let’s see an example to show how the Picture object works. First, we create a Picture object, picObject1:

Private Sub Command1_Click()
 Dim picObject1 As Picture
…
End Sub

Then we load the image into that Picture object using LoadPicture:

Private Sub Command1_Click()
 Dim picObject1 As Picture
 Set picObject1 = LoadPicture("c:\image.bmp")
…
End Sub

Finally, we just set a picture box’s Picture property to the Picture object, and that’s it:

Private Sub Command1_Click()
 Dim picObject1 As Picture
 Set picObject1 = LoadPicture("c:\image.bmp")
 Set Picture1.Picture = picObject1
End Sub

You can also use the Render method to draw images with the Picture object (although PaintPicture is
Microsoft’s preferred method these days).

The Render Method

Here’s how you use the Render method to draw images with the Picture object:

PictureObject.Render (hdc, xdest, ydest, destwid, desthgt, xsrc, ysrc, _
 srcwid, srchgt, wbounds)

Here are what the arguments for Render mean:

• hdc—The handle to the destination object’s device context, such as Picture1.hDC.

• xdest—The x-coordinate of the upper-left corner of the drawing region in the destination object. This
coordinate is in the scale units of the destination object.

• ydest—The y-coordinate of the upper-left corner of the drawing region in the destination object. This
coordinate is in the scale units of the destination object.

• destwid—The width of the drawing region in the destination object, expressed in the scale units of the
destination object.

• desthgt—The height of the drawing region in the destination object, expressed in the scale units of the
destination object.

• xsrc—The x-coordinate of the upper-left corner of the drawing region in the source object. This
coordinate is in HiMetric units.

• ysrc—The y-coordinate of the upper-left corner of the drawing region in the source object. This
coordinate is in HiMetric units.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\621-625.html (1 of 3) [3/14/2001 1:56:28 AM]

• srcwid—The width of the drawing region in the source object, expressed in HiMetric units.

• srchgt—The height of the drawing region in the source object, expressed in HiMetric units.

• wbounds—The bounds of a metafile. This argument should be passed a value of Null unless drawing
to a metafile, in which case the argument is passed a user-defined type corresponding to a RECTL
structure.

TIP: Note that some of the arguments to Render must be in HiMetric units. Here’s an important note: You can
convert from one set of units to another using the Visual Basic ScaleX and ScaleY functions, so use those
functions to convert from twips or pixels to HiMetric.

Using Arrays Of Picture Objects

You can use an array of Picture objects to keep a series of graphics in memory without using a form that
contains multiple picture box or image controls. This is good for creating animation sequences or other
applications where rapid image changes are required.

Let’s see an example. Here, we’ll create an array of Picture objects and load images into them. We start by
setting up an array of two Picture objects as a form-wide array:

Dim picObjects(1 To 2) As Picture

Then when the form loads, we read in two image files into the array:

Private Sub Form_Load()
 Set picObjects(1) = LoadPicture("c:\vbbb\pictureanimation\image1.bmp")
 Set picObjects(2) = LoadPicture("c:\vbbb\pictureanimation\image2.bmp")
End Sub

Now the images in the array will be available for use in our program (and we’ll use them in a later topic in this
chapter—see “Creating Image Animation”).

Adding Picture Clip Controls To A Program

One way of storing images in a Visual Basic program is to use a picture clip control. This control stores a
number of images as one large bitmap, and to get the image you want, you have to clip it out of that bitmap. If
that sounds a little less convenient to you than using an image list control or array of Picture objects, you’re
right—it is. Picture clips were first made available long ago in Visual Basic and don’t support all the
convenience of more modern controls. However, programmers still use them, and we’ll cover them here.

TIP: One excellent reason to use picture clip controls besides storing images is to edit existing images, because
picture clip controls let you clip rectangular sections of image from exiting images.

To add a picture clip control to a program, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box.

3. Select the Microsoft PictureClip Control item.

4. Close the Components dialog box by clicking on OK.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\621-625.html (2 of 3) [3/14/2001 1:56:28 AM]

5. This adds the Picture Clip Control’s tool to the Visual Basic toolbox; that tool is at the bottom right
in Figure 19.4. Use that tool to draw a picture clip control in your program; because the control is
invisible at runtime, size and placement of the control don’t matter.

Figure 19.4 The Picture Clip Control tool.

Now we add an image that consists of three images added together to the picture clip control, as you can see in
Figure 19.5. When you want to get a picture from a picture clip control, you specify the (x, y) coordinates of
the bitmap section you want, and its height and width. You can also divide the image up into rows and
columns, as we’ll see in a few topics.

Figure 19.5 Adding a picture clip control to a program.

To put the picture clip control to work, see the next few topics in this chapter.

Selecting Images In A Picture Clip Control Using Coordinates

You’ve placed all the images you want to store into a picture clip control as one large bitmap. How can you
get your images back out again?

There are two ways to get images out of a picture clip control (three, if you count accessing the whole bitmap
with the control’s Picture property): by specifying the image’s coordinates in the whole bitmap, or by
breaking the bitmap into rows and columns and accessing the image by row and column. After you specify an
image, you can retrieve it using the picture clip’s Clip property. We’ll see how to use bitmap coordinates in
this topic, and rows and columns in the next topic.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\621-625.html (3 of 3) [3/14/2001 1:56:28 AM]

javascript:displayWindow('images/19-04.jpg',459,556)
javascript:displayWindow('images/19-04.jpg',459,556)
javascript:displayWindow('images/19-05.jpg',707,492)
javascript:displayWindow('images/19-05.jpg',707,492)

An example will make this clearer. Here, we’ll use a picture clip control to hold the three images from the
previous topic in this chapter, and flip through them when the user clicks a command button. We’ll need a
picture clip control, PictureClip1; a command button, Command1, labeled “Clip next image”; and a
picture box, Picture1, to display the images in (set Picture1’s AutoSize property to True so it will resize
itself to match the images).

We start by storing the dimensions of each of the three images in the entire bitmap as constants and
storing the currently displayed image in an index, intImageIndex:

Const intImageWidth = 137
Const intImageHeight = 70
Dim intImageIndex As Integer

To use coordinates to specify images in a picture clip control, you use ClipX and ClipY to indicate the
upper-left point of the image, and ClipWidth and ClipHeight to indicate the image’s width and height.
When the form in our example loads, then, we can display the first image by setting these properties to
match that image, and then set Picture1’s Picture property to the picture clip control’s Clip property:

Private Sub Form_Load()
 PictureClip1.ClipX = 0
 PictureClip1.ClipY = 0
 PictureClip1.ClipWidth = intImageWidth
 PictureClip1.ClipHeight = intImageHeight
 Picture1.Picture = PictureClip1.Clip
End Sub

Now the picture box displays the first image. When the user clicks the command button, Command1, we
increment the image index, intImageIndex:

Private Sub Command1_Click()
 intImageIndex = intImageIndex + 1
 If intImageIndex >= 3 Then intImageIndex = 0
…
End Sub

Then we reset the ClipX property to point to the new image and display it in the picture box (note that
we’re just working with a strip of images here; if you were working with a grid of images, you’d also
have to calculate ClipY):

Private Sub Command1_Click()
 intImageIndex = intImageIndex + 1
 If intImageIndex >= 3 Then intImageIndex = 0
 PictureClip1.ClipX = intImageIndex * intImageWidth
 Picture1.Picture = PictureClip1.Clip
End Sub

That’s all we need. Run the program now, as shown in Figure 19.6. When the user clicks the Clip Next

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\625-629.html (1 of 4) [3/14/2001 1:56:34 AM]

Image button, the next image appears in the picture box. Our picture clip example is a success.

Figure 19.6 Using coordinates in a picture clip control to retrieve images.

The code for this example, picclip.frm version 1 (version 2, which appears on the CD-ROM, will include
the use of rows and columns and will be developed in the next topic), appears in Listing 19.1.

Listing 19.1 picclip.frm version 1

VERSION 6.00
Object = "{27395F88-0C0C-101B-A3C9-08002B2F49FB}#1.1#0"; "PICCLP32.OCX"
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 2370
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 2370
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton Command2
 Caption = "Get next cell"
 Height = 495
 Left = 3120
 TabIndex = 2
 Top = 1560
 Width = 1215
 End
 Begin VB.CommandButton Command1
 Caption = "Clip next image"
 Height = 495
 Left = 240
 TabIndex = 1
 Top = 1560
 Width = 1215
 End
 Begin VB.PictureBox Picture1
 AutoSize = –1 'True
 Height = 975
 Left = 1200
 ScaleHeight = 915
 ScaleWidth = 2235
 TabIndex = 0

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\625-629.html (2 of 4) [3/14/2001 1:56:34 AM]

javascript:displayWindow('images/19-06.jpg',215,184)
javascript:displayWindow('images/19-06.jpg',215,184)

 Top = 240
 Width = 2295
 End
 Begin PicClip.PictureClip PictureClip1
 Left = 120
 Top = 2040
 _ExtentX = 10874
 _ExtentY = 1852
 _Version = 393216
 Picture = "picclip.frx":0000
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Const intImageWidth = 137
Const intImageHeight = 70
Dim intImageIndex As Integer

Private Sub Command1_Click()
 intImageIndex = intImageIndex + 1
 If intImageIndex >= 3 Then intImageIndex = 0
 PictureClip1.ClipX = intImageIndex * intImageWidth
 Picture1.Picture = PictureClip1.Clip
End Sub

Private Sub Form_Load()
 PictureClip1.ClipX = 0
 PictureClip1.ClipY = 0
 PictureClip1.ClipWidth = intImageWidth
 PictureClip1.ClipHeight = intImageHeight
 Picture1.Picture = PictureClip1.Clip
End Sub

Selecting Images In A Picture Clip Control Using Rows And Columns

In the previous topic, we saw how to select images in a picture clip control using coordinates in the single
large bitmap that picture clip controls use to store images. You can also divide that bitmap up into rows
and columns and access images that way.

In fact, using rows and columns is often much easier than using coordinates, because you don’t have to
figure things out using actual pixel values. Let’s see an example. We’ll just add some code to the picture
clip control example we developed in the previous topic (picclip.frm). To start, we divide the picture clip
control’s bitmap into rows and columns with the Rows and Columns properties. Because there are three
adjacent images in our bitmap (see Figure 19.5), we have one row and three columns, so we set the Rows

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\625-629.html (3 of 4) [3/14/2001 1:56:34 AM]

and Columns properties this way when the form loads:

Private Sub Form_Load()
 PictureClip1.ClipX = 0
 PictureClip1.ClipY = 0
 PictureClip1.ClipWidth = intImageWidth
 PictureClip1.ClipHeight = intImageHeight
 PictureClip1.Rows = 1
 PictureClip1.Cols = 3
 Picture1.Picture = PictureClip1.Clip
End Sub

Now we add a new command button, Command2, to the form, and label it “Get next cell”. When the user
clicks this button, we can increment the image index, intImageIndex:

Private Sub Command2_Click()
 intImageIndex = intImageIndex + 1
 If intImageIndex >= 3 Then intImageIndex = 0
 …
End Sub

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\625-629.html (4 of 4) [3/14/2001 1:56:34 AM]

Then we use the picture clip control’s GraphicCell array to get the new image, placing that image in the
picture control’s Picture property:

Private Sub Command2_Click()
 intImageIndex = intImageIndex + 1
 If intImageIndex >= 3 Then intImageIndex = 0
 Picture1.Picture = PictureClip1.GraphicCell(intImageIndex)
End Sub

That’s all we need—now the user can click the new button, Get Next Cell, to cycle through the images in the
picture clip control, as shown in Figure 19.7. Our picture clip control example is a success.

Figure 19.7 Using rows and columns in a picture clip control to retrieve images.

The code for this example is located in the picclip folder on this book’s accompanying CD-ROM.

Flipping Images

You can gain a lot of control over how images are displayed by the PaintPicture method, which lets you flip,
translate, or resize images:

object.PaintPicture picture, x1, y1, [width1, height1, [x2, y2, [width2, _
 height2, [opcode]]]]

You can use this method to stretch or flip images in forms, picture boxes, and the Printer object. Here’s what
the arguments passed to PaintPicture mean:

• picture—The source of the graphic to be drawn onto the object; should be a Picture property.

• x1, y1—Single-precision values indicating the destination coordinates (x-axis and y-axis) on the
object for the picture to be drawn. The ScaleMode property of the object determines the unit of measure
used.

• width1—Single-precision value indicating the destination width of the picture. The ScaleMode
property of the object determines the unit of measure used. If the destination width is larger or smaller
than the source width (width2), the picture is stretched or compressed to fit. If omitted, the source width
is used.

• height1—Single-precision value indicating the destination height of the picture. The ScaleMode
property of the object determines the unit of measure used. If the destination height is larger or smaller
than the source height (height2), the picture is stretched or compressed to fit. If omitted, the source
height is used.

• x2, y2—Single-precision values indicating the coordinates (x-axis and y-axis) of a clipping region
within the picture. The ScaleMode property of the object determines the unit of measure used. If
omitted, 0 is assumed.

• width2—Single-precision value indicating the source width of a clipping region within the picture.
The ScaleMode property of the object determines the unit of measure used. If omitted, the entire source
width is used.

• height2—Single-precision value indicating the source height of a clipping region within the picture.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\629-633.html (1 of 3) [3/14/2001 1:56:44 AM]

javascript:displayWindow('images/19-07.jpg',205,168)
javascript:displayWindow('images/19-07.jpg',205,168)

The ScaleMode property of the object determines the unit of measure used. If omitted, the entire source
height is used.

• opcode—Long value or code that is used only with bitmaps. It defines a bit-wise operation (such as
vbMergeCopy) that is performed on the picture as it is drawn on the object.

You can flip a bitmap horizontally or vertically by using negative values for the destination height (height1)
and/or the destination width (width1). Let’s see an example. Here’s how we flip the image in the current form
horizontally and display it in Picture2:

Private Sub Form_Load()
 PaintPicture Picture, Picture1.ScaleWidth, 0, _
 –1 * ScaleWidth, ScaleHeight
End Sub

If we load the image we used in Figure 19.2 into a form and use the preceding code, we’ll get the results you
see in Figure 19.8. Now we’re flipping images.

Figure 19.8 Flipping an image in a form.

The code for this example appears in the imageflip folder on this book’s accompanying CD-ROM.

Stretching Images

The Aesthetic Design Department is calling. The image of the company founder you’ve put into your program
looks fine, but why is it so small? Can’t you enlarge it?

You can use the PaintPicture method to stretch images in forms, picture boxes, and the Printer object. Here’s
how that method works:

object.PaintPicture picture, x1, y1, [width1, height1, [x2, y2, [width2, _
 height2, [opcode]]]]

Here’s what the arguments passed to PaintPicture mean:

• picture—The source of the graphic to be drawn onto the object; should be a Picture property.

• x1, y1—Single-precision values indicating the destination coordinates (x-axis and y-axis) on the
object for the picture to be drawn. The ScaleMode property of the object determines the unit of measure
used.

• width1—Single-precision value indicating the destination width of the picture. The ScaleMode
property of the object determines the unit of measure used. If the destination width is larger or smaller
than the source width (width2), the picture is stretched or compressed to fit. If omitted, the source width
is used.

• height1—Single-precision value indicating the destination height of the picture. The ScaleMode
property of the object determines the unit of measure used. If the destination height is larger or smaller
than the source height (height2), the picture is stretched or compressed to fit. If omitted, the source
height is used.

• x2, y2—Single-precision values indicating the coordinates (x-axis and y-axis) of a clipping region

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\629-633.html (2 of 3) [3/14/2001 1:56:44 AM]

javascript:displayWindow('images/19-08.jpg',410,214)
javascript:displayWindow('images/19-08.jpg',410,214)

within the picture. The ScaleMode property of the object determines the unit of measure used. If
omitted, 0 is assumed.

• width2—Single-precision value indicating the source width of a clipping region within the picture.
The ScaleMode property of the object determines the unit of measure used. If omitted, the entire source
width is used.

• height2—Single-precision value indicating the source height of a clipping region within the picture.
The ScaleMode property of the object determines the unit of measure used. If omitted, the entire source
height is used.

• opcode—Long value or code that is used only with bitmaps. It defines a bit-wise operation (such as
vbMergeCopy) that is performed on the picture as it is drawn on the object.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\629-633.html (3 of 3) [3/14/2001 1:56:44 AM]

For example, here’s how we stretch an image to fill a picture box (here, the picture we’re stretching is the
picture that already is displayed in the picture box—we’re just sizing it to fill the picture box by making its
width and height the width and height of the picture box):

Private Sub Form_Load()
 Picture1.PaintPicture Picture1.Picture, 0, 0, Picture1.ScaleWidth,_
 Picture1.ScaleHeight
End Sub

In Figure 19.9, we’re applying this code to the picture in the picture box.

Figure 19.9 Stretching an image in an image control.

What About Image Controls?

You can stretch (or flip) an image in a picture box, form, or the Printer object using the PaintPicture method,
but you can’t use PaintPicture with image controls. Is there still some way of producing interesting graphics
effects in an image control?

You can use the image control Stretch property. By default, image controls shape themselves to fit the images
inside them (after all, their primary purpose is to display images), but if you set the Stretch property to True
(the default is False), the image control will stretch the image to fit the control. As an example, we’re
stretching an image in the image control in Figure 19.9.

You can also stretch an image in an image control by resizing the control (using its Width and Height
properties) at runtime as long as the control’s Stretch property is True. The code for the example is located in
the imagestretch folder on this book’s accompanying CD-ROM.

Creating Image Animation

One way to create image animation is to use a picture box and keep changing its Picture property to display
successive frames of an animation. You can store the images themselves in the program, such as using an
image list control or an array of Picture objects. We’ve seen how to create animation earlier in this book in our
chapter on Visual Basic timers using image lists; here, we can do the same thing using an array of Picture
objects.

We add a timer control, Timer1, to the program and set its Interval property to 1000 (the Interval property is
measured in milliseconds, 1/1000s of a second), which means the Timer1_Timer() event handler will be
called once a second. We also add a picture box, Picture1, in which to display images and a command button,
Command1, with the caption “Start animation” to start the animation.

For the purposes of this example, we will just switch back and forth between two images in the picture box.
These two images are the two images in the Picture object array, picObjects, which we store in the form’s
(General) section:

Dim picObjects(1 To 2) As Picture

We load those images when the form first loads:

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\633-637.html (1 of 4) [3/14/2001 1:56:54 AM]

javascript:displayWindow('images/19-09.jpg',383,276)
javascript:displayWindow('images/19-09.jpg',383,276)

Private Sub Form_Load()
 Set picObjects(1) = LoadPicture("c:\vbbb\pictureanimation\image1.bmp")
 Set picObjects(2) = LoadPicture("c:\vbbb\pictureanimation\image2.bmp")
End Sub

To switch back and forth, we use a static Boolean flag named blnImage1 like this, alternating between images
in the Picture object array in Timer1_Timer:

Private Sub Timer1_Timer()
 Static blnImage1 As Boolean

 If blnImage1 Then
 Picture1.Picture = picObjects(1)
 Else
 Picture1.Picture = picObjects(2)
 End If
…

At the end of Timer1_Timer, we toggle the blnImage1 flag this way:

Private Sub Timer1_Timer()
 Static blnImage1 As Boolean
 If blnImage1 Then
 Picture1.Picture = picObjects(1)
 Else
 Picture1.Picture = picObjects(2)
 End If

 blnImage1 = Not blnImage1
End Sub

All that’s left is to start the animation when the user clicks the command button, and we do that like this, by
enabling the timer:

Private Sub Command1_Click()
 Timer1.Enabled = True
End Sub

And that’s all we need—now we’re supporting animation using picture boxes and Picture object arrays. The
result of this code appears in Figure 19.10.

Figure 19.10 Image animation with a picture box.

The code for this example is located in the pictureanimation folder on this book’s accompanying CD-ROM.

Handling Images Bit By Bit

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\633-637.html (2 of 4) [3/14/2001 1:56:54 AM]

javascript:displayWindow('images/19-10.jpg',283,217)
javascript:displayWindow('images/19-10.jpg',283,217)

The Aesthetic Design Department is calling again. How about adding some special effects to the images in
your program, SuperDuperGraphicsPro? Doesn’t that mean working with images bit by bit, you ask?
Probably, they say.

We can use Visual Basic methods to work bit by bit with images. Does that mean we’ll actually use the PSet
(sets a pixel) and Point (reads a pixel) methods to handle whole images? Exactly.

We’ll see this in action over the next few topics. In this topic, we’ll see how to read an image in from one
picture box, Picture1, and write it out to another, Picture2, when the user clicks a command button,
Command1. To be able to work pixel by pixel, set each picture box’s ScaleMode property to vbPixel (3).

We start by setting up an array, Pixels, to hold the colors of each pixel for an image up to 500 × 500 (to be
more efficient, you can redimension your storage array with ReDim when you know the actual size of the
image you’re to work with) in the (General) declarations area of the form:

Const intUpperBoundX = 500
Const intUpperBoundY = 500
Dim Pixels(1 To intUpperBoundX, 1 To intUpperBoundY) As Long

The first task is to read the pixels in from Picture1, and we start by setting up loops over all the pixels in that
image:

Private Sub Command1_Click()
 Dim x, y As Integer

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
…
 Next y
 Next x

Then we read each pixel from Picture1 using the Point method and store the pixels in the Pixels array we’ve
set up:

Private Sub Command1_Click()
 Dim x, y As Integer

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Pixels(x, y) = Picture1.Point(x, y)
 Next y
 Next x

Now we’ve stored the image in the Pixels array. To copy that image to Picture2, we just use that control’s
PSet method, pixel by pixel:

Private Sub Command1_Click()
 Dim x, y As Integer

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\633-637.html (3 of 4) [3/14/2001 1:56:54 AM]

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Pixels(x, y) = Picture1.Point(x, y)
 Next y
 Next x

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Picture2.PSet (x, y), Pixels(x, y)
 Next y
 Next x

End Sub

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\633-637.html (4 of 4) [3/14/2001 1:56:54 AM]

Does this work? It certainly does (although it might take a little time to execute), as you can see in Figure
19.11, where we copy the image in the top picture box (Picture1) to the bottom picture box (Picture2).

Figure 19.11 Copying an image bit by bit.

The code for this example is located in the imagecopy folder on this book’s accompanying CD-ROM.
Now that we’ve seen how to work with an image bit by bit, we’ll see how to implement some image
effects in the next few topics.

Creating Grayscale Images

We’ve seen how to work with images bit by bit in the previous topic. We’ll augment that in this topic,
where we see how to convert color images to grayscale images.

We do this by reading an image into a pixel array, then by converting each of those pixels to gray and
writing the pixel array out to a new image. Let’s see how this works. We’ll convert the image in a picture
box, Picture1, to grayscale, and display it in a new picture box, Picture2, when the user clicks a
command button, Command1. To be able to work pixel by pixel, set each picture box’s ScaleMode
property to vbPixel (3).

First, we set up storage space for the image in an array named Pixels, declared in the form’s (General)
section:

Const intUpperBoundX = 300
Const intUpperBoundY = 300
Dim Pixels(1 To intUpperBoundX, 1 To intUpperBoundY) As Long

When the user clicks the command button, we store the image in Picture1 into the array Pixels:

Private Sub Command1_Click()
 Dim x, y As Integer

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Pixels(x, y) = Picture1.Point(x, y)
 Next y
 Next x

Now we’re free to work with the image’s pixels in a new loop (to be efficient, this new loop should be
incorporated into the first loop where we read the pixels in, but here we’ll use a new loop to make the
image-handling process clear). In that new loop, we first separate out the color values (red, green, and
blue) for each pixel. To create a grayscale image, you average those color values and then use the
resulting average as the red, green, and blue color values in the new image.

The Point method returns a Long integer holding the red, green, and blue color values (which range from
0 to 255) in hexadecimal: &HBBGGRR. That means we can separate out the red, green, and blue color

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\637-641.html (1 of 4) [3/14/2001 1:57:04 AM]

javascript:displayWindow('images/19-11.jpg',320,240)
javascript:displayWindow('images/19-11.jpg',320,240)

values, storing them as the bytes bytRed, bytGreen, and bytBlue this way:

Private Sub Command1_Click()
 Dim x, y As Integer
 Dim bytRed, bytGreen, bytBlue As Integer

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Pixels(x, y) = Picture1.Point(x, y)
 Next y
 Next x

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 bytRed = Pixels(x, y) And &HFF
 bytGreen = ((Pixels(x, y) And &HFF00) / &H100) Mod &H100
 bytBlue = ((Pixels(x, y) And &HFF0000) / &H10000) Mod &H100
…

To convert each pixel to grayscale, we just average its color values. Finally, we display the new image in
a second picture box, Picture2:

Private Sub Command1_Click()
 Dim x, y As Integer
 Dim bytRed, bytGreen, bytBlue, bytAverage As Integer
…
 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 bytRed = Pixels(x, y) And &HFF
 bytGreen = ((Pixels(x, y) And &HFF00) / &H100) Mod &H100
 bytBlue = ((Pixels(x, y) And &HFF0000) / &H10000) Mod &H100

 bytAverage = (bytRed + bytGreen + bytBlue) / 3
 Pixels(x, y) = RGB(bytAverage, bytAverage, bytAverage)
 Next y
 Next x

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Picture2.PSet (x, y), Pixels(x, y)
 Next y
 Next x

End Sub

The result of this code appears in Figure 19.12. Although the effect is not terribly obvious in a book with

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\637-641.html (2 of 4) [3/14/2001 1:57:04 AM]

black-and-white images, we’re converting an image from color to grayscale in that figure.

Figure 19.12 Converting an image to grayscale.

The code for this example is located in the imagegrayscale folder on this book’s accompanying
CD-ROM.

Lightening Images

The Testing Department is calling. Some of the users of your SuperDuperGraphicsPro program are
saying the images in that program are too dark—can you let them lighten them? Hmm, you think—how
does that work?

You can lighten images by adding the same positive number to each color value (red, green, and blue) of
each pixel. Let’s see how this works in an example. Here, we’ll take the image in a picture box, Picture1,
and add a value specified by the user to each color value when the user clicks a command button,
Command1, displaying the result in a second picture box, Picture2. To be able to work pixel by pixel,
set each picture box’s ScaleMode property to vbPixel (3). We’ll also have a text box, Text1, that will
hold the value the user wants to add to each color value to lighten it.

We start by setting up the storage we’ll need for the image:

Const intUpperBoundX = 200
Const intUpperBoundY = 200
Dim Pixels(1 To intUpperBoundX, 1 To intUpperBoundY) As Long

Next, we place the value the user wants added to each color value in a new variable named intAddOn
when the user clicks the command button:

Private Sub Command1_Click()
 Dim intAddOn As Integer

 intAddOn = Val(Text1.Text)

Now we read the image in Picture1 into the array named Pixels:

Private Sub Command1_Click()
 Dim x, y, intAddOn As Integer

 intAddOn = Val(Text1.Text)

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Pixels(x, y) = Picture1.Point(x, y)
 Next y

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\637-641.html (3 of 4) [3/14/2001 1:57:04 AM]

javascript:displayWindow('images/19-12.jpg',249,229)
javascript:displayWindow('images/19-12.jpg',249,229)

 Next x

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\637-641.html (4 of 4) [3/14/2001 1:57:04 AM]

Next, we get the red, green, and blue color values for each pixel and add the value in intAddOn to those color
values, making sure they don’t go higher than 255 (of course, you can also darken images by subtracting values
here, although you should make sure the resulting color values don’t go below 0):

Private Sub Command1_Click()
 Dim x, y, intAddOn As Integer
 Dim bytRed, bytGreen, bytBlue As Integer
…
 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 bytRed = Pixels(x, y) And &HFF
 bytGreen = ((Pixels(x, y) And &HFF00) / &H100) Mod &H100
 bytBlue = ((Pixels(x, y) And &HFF0000) / &H10000) Mod &H100

 bytRed = bytRed + intAddOn
 If bytRed > 255 Then bytRed = 255
 bytGreen = bytGreen + intAddOn
 If bytGreen > 255 Then bytGreen = 255
 bytBlue = bytBlue + intAddOn
 If bytBlue > 255 Then bytBlue = 255

 Pixels(x, y) = RGB(bytRed, bytGreen, bytBlue)
 Next y
 Next x
End Sub

Finally, we just copy the new pixels to the second picture box, Picture2:

Private Sub Command1_Click()
 Dim x, y, intAddOn As Integer
 …
 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Picture2.PSet (x, y), Pixels(x, y)
 Next y
 Next x

End Sub

The result of this code appears in Figure 19.13. Now we’re lightening images pixel by pixel in Visual Basic.

Figure 19.13 Lightening an image pixel by pixel.

The code for this example is located in the imagelighten folder on this book’s accompanying CD-ROM.

Creating “Embossed” Images

You can create a striking visual effect by embossing an image, which makes it appear to be raised in 3D. Using the
technique developed in the previous few topics, we can work pixel by pixel in an image to emboss it.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\641-645.html (1 of 4) [3/14/2001 1:57:21 AM]

javascript:displayWindow('images/19-13.jpg',228,229)
javascript:displayWindow('images/19-13.jpg',228,229)

Let’s see how this works in an example. Here, we’ll take the image in a picture box, Picture1, and emboss the
image in it when the user clicks a button, Command1, displaying the result in a second picture box, Picture2. To be
able to work pixel by pixel, set each picture box’s ScaleMode property to vbPixel (3).

We start by storing the image in Picture1 in an array named Pixels:

Const intUpperBoundX = 300
Const intUpperBoundY = 300
Dim Pixels(1 To intUpperBoundX, 1 To intUpperBoundY) As Long
Private Sub Command1_Click()
 Dim x, y As Integer

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Pixels(x, y) = Picture1.Point(x, y)
 Next y
 Next x
 …

Now we’ll emboss the image in the Pixels array. Embossing is the process of plotting the difference between a pixel
and a pixel above and to the left of it; this difference is added to 128 to make the whole image appear gray. Here’s
one important note: when we’re setting a pixel, we use both it and the pixel to the upper-left of it, which means that
to avoid incorporating pixels we’ve already set, we will proceed from the bottom-right of the array, not the
upper-left. Here’s how that process looks in code:

Private Sub Command1_Click()
 Dim bytRed, bytGreen, bytBlue, bytAverage As Integer
…
 For x = intUpperBoundX To 2 Step –1
 For y = intUpperBoundY To 2 Step –1
 bytRed = ((Pixels(x – 1, y – 1) And &HFF) – (Pixels(x, y) And _
 &HFF)) + 128
 bytGreen = (((Pixels(x – 1, y – 1) And &HFF00) / &H100) Mod _
 &H100 – ((Pixels(x, y) And &HFF00) / &H100) Mod &H100) + 128
 bytBlue = (((Pixels(x – 1, y – 1) And &HFF0000) / &H1000) Mod _
 &H100 – ((Pixels(x, y) And &HFF0000) / &H10000) Mod &H100)_
 + 128

 bytAverage = (bytRed + bytGreen + bytBlue) / 3
 Pixels(x, y) = RGB(bytAverage, bytAverage, bytAverage)
 Next y
 Next x

End Sub

Note that we also average all the color values together so that the resulting image is a grayscale image. When we’re
done, we just copy the image to the second picture box, Picture2:

Private Sub Command1_Click()
 Dim bytRed, bytGreen, bytBlue, bytAverage As Integer
…

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\641-645.html (2 of 4) [3/14/2001 1:57:21 AM]

 For x = 1 To intUpperBoundX
 For y = 1 To intUpperBoundY
 Picture2.PSet (x – 2, y – 2), Pixels(x, y)
 Next y
 Next x

End Sub

Running this program gives the result you see in Figure 19.14. Now we’re embossing images in Visual Basic.

Figure 19.14 Embossing an image pixel by pixel.

The code for this example is located in the imageemboss folder on this book’s accompanying CD-ROM.

Creating “Engraved” Images

In the previous topic, we created embossed images by taking the difference between a pixel and the pixel to the
upper-left of it and adding 128 to the result to create a grayscale image. We can also create engraved images by
taking the difference between a pixel and the pixel to its lower-right and adding 128 to the result.

The code to create engraved images is the same as that to create embossed images, except that we work in the
reverse direction and use the pixel to the lower-right, not the upper-left. Here’s the new image effect loop:

 For x = 2 To intUpperBoundX – 1
 For y = 2 To intUpperBoundY – 1
 bytRed = ((Pixels(x + 1, y + 1) And &HFF) – (Pixels(x, y) And _
 &HFF)) + 128
 bytGreen = (((Pixels(x + 1, y + 1) And &HFF00) / &H100) _
 Mod &H100 – ((Pixels(x, y) And &HFF00) / &H100) Mod &H100)_
 + 128
 bytBlue = (((Pixels(x + 1, y + 1) And &HFF0000) / &H10000)_
 Mod &H100 – ((Pixels(x, y) And &HFF0000) / &H10000) Mod_
 &H100) + 128

 bytAverage = (bytRed + bytGreen + bytBlue) / 3
 Pixels(x, y) = RGB(bytAverage, bytAverage, bytAverage)
 Next y
 Next x

When you put this code to work, you see the result as in Figure 19.15. Now we’re engraving images in Visual Basic.
(To be able to work pixel by pixel, make sure you set each picture box’s ScaleMode property to vbPixel (3).)

Figure 19.15 Engraving images by working pixel by pixel.

The code for this example is located in the imageengrave folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\641-645.html (3 of 4) [3/14/2001 1:57:21 AM]

javascript:displayWindow('images/19-14.jpg',234,229)
javascript:displayWindow('images/19-14.jpg',234,229)
javascript:displayWindow('images/19-15.jpg',231,229)
javascript:displayWindow('images/19-15.jpg',231,229)

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\641-645.html (4 of 4) [3/14/2001 1:57:21 AM]

Sweeping Images

When we created embossed and engraved images in the previous two topics, we were careful to set up our
embossing or engraving loop so that when setting a pixel, we did not make use of other pixels that we had already
set in the same loop. The reason for that is that we only wanted to plot the difference between adjacent pixels—that
is, the difference between two pixels only—to create embossed or engraved images.

If we had not restricted our operation to two pixels we had not already worked on, and instead worked on pixels
we had already set earlier, we could end up propagating a pixel’s color values among several other pixels. That is,
one pixel’s setting could affect many other pixels.

In fact, there are times when you want to have that happen—for example, you might want to make an image
appear as though it is sweeping from upper-left to lower-right, giving the illusion of motion. In that case, you’d
copy pixels with the ones to the upper-left over and over, progressively blending them together to create the effect
you see in Figure 19.16, where it looks as though the text has a fading trail of color behind it.

Figure 19.16 Sweeping an image by working pixel by pixel.

Seeing the code that gives us the image in Figure 19.16 will help make this effect easier to understand. As with the
previous few topics in this chapter, we load the image in a picture box, Picture1, into an array named Pixels. Then
we move from lower-right to upper-left, averaging each pixel with the one to the lower-right:

 For x = intUpperBoundX – 1 To 1 Step –1
 For y = intUpperBoundY – 1 To 1 Step –1
 bytRed = Abs((Pixels(x + 1, y + 1) And &HFF) + (Pixels(x, y)_
 And &HFF)) / 2
 bytGreen = Abs(((Pixels(x + 1, y + 1) And &HFF00) / &H100)_
 Mod &H100 + ((Pixels(x, y) And &HFF00) / &H100) Mod_
 &H100) / 2
 bytBlue = Abs(((Pixels(x + 1, y + 1) And &HFF0000) / &H10000) _
 Mod &H100 + ((Pixels(x, y) And &HFF0000) / &H10000) Mod_
 &H100) / 2
 Pixels(x, y) = RGB(bytRed, bytGreen, bytBlue)
 Next y
 Next x

That’s all it takes—now we copy the image into the second picture box, Picture2. (To be able to work pixel by
pixel, make sure you set each picture box’s ScaleMode property to vbPixel (3).) By combining successive pixels
as we do in this example, we create the sweeping effect you see in Figure 19.16. Now we’re creating complex
images using image handling techniques.

The complete code for this example is located in the imagesweep folder on this book’s accompanying CD-ROM.

Blurring Images

The Aesthetic Design Department is calling again. If you’re going to add image effects to your program,
SuperDuperGraphicsPro, why not let the user blur images?

You can blur images by averaging pixels. To see how this works, we load the pixels from a picture box, Picture1,
and blur them, then display the result in another picture box, Picture2. To be able to work pixel by pixel, set each

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\645-648.html (1 of 3) [3/14/2001 1:57:33 AM]

javascript:displayWindow('images/19-16.jpg',320,240)
javascript:displayWindow('images/19-16.jpg',320,240)

picture box’s ScaleMode property to vbPixel (3).

As with the code in the previous few topics in this chapter, we load the pixels from Picture1 into an array named
Pixels. To blur the pixels, you average them together; here, we just average each pixel with the next pixel to the
right , but you can set up any blurring region you like (such as all eight pixels that surround the current pixel). This
is the way our blurring process looks in code:

 For x = 1 To intUpperBoundX – 1
 For y = 1 To intUpperBoundY
 bytRed = Abs((Pixels(x + 1, y) And &HFF) + (Pixels(x, y) _
 And &HFF)) / 2
 bytGreen = Abs(((Pixels(x + 1, y) And &HFF00) / &H100) Mod _
 &H100 + ((Pixels(x, y) And &HFF00) / &H100) Mod &H100) / 2
 bytBlue = Abs(((Pixels(x + 1, y) And &HFF0000) / &H10000) _
 Mod &H100 + ((Pixels(x, y) And &HFF0000) / &H10000)_
 Mod &H100) / 2
 Pixels(x, y) = RGB(bytRed, bytGreen, bytBlue)
 Next y
 Next x

After the pixels have been blurred, we display the result in Picture2, as shown in Figure 19.17. As you can see, the
blurring produced with this algorithm is slight; to blur the image more, you can apply the same algorithm again or
increase the number of pixels over which you average.

Figure 19.17 Blurring an image by working pixel by pixel.

The code for this example is located in the imageblur folder on this book’s accompanying CD-ROM.

Freeing Memory Used By Graphics

The Testing Department is calling again. Your program, SuperDuperGraphicsPro, is using up a lot of memory. Is
there any way to free some memory when you’re not using it anymore?

Yes, there is. When you are no longer using a picture in the Picture property of a form, picture box, or image
control, set the Picture property to the Visual Basic Nothing keyword to empty it:

Set Picture1.Picture = Nothing

In addition, if you use the Image property of a picture box or form, Visual Basic creates an AutoRedraw bitmap
(this happens even if the AutoRedraw property for that form or picture box is False). When you’ve finished using
the Image property, you can empty the memory used by that bitmap with the Cls method before you set
AutoRedraw to False, as in this example:

Picture1.AutoRedraw = True
Picture1.Cls
Picture1.AutoRedraw = False

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\645-648.html (2 of 3) [3/14/2001 1:57:33 AM]

javascript:displayWindow('images/19-17.jpg',320,240)
javascript:displayWindow('images/19-17.jpg',320,240)

Visual Basic 6 Black Book:Working With Images

http://24.19.55.56:8080/temp/ch19\645-648.html (3 of 3) [3/14/2001 1:57:33 AM]

Chapter 20
Creating ActiveX Controls And Documents
If you need an immediate solution to:

Creating An ActiveX Control

Designing An ActiveX Control From Scratch

Giving ActiveX Controls Persistent Graphics

Basing An ActiveX Control On An Existing Visual Basic Control

Handling Constituent Control Events In An ActiveX Control

Adding Controls To An ActiveX Control (A Calculator ActiveX Control)

Testing An ActiveX Control

Creating A Visual Basic Project Group To Test An ActiveX Control

Registering An ActiveX Control

Using A Custom ActiveX Control In A Visual Basic Program

Adding A Property To An ActiveX Control

Making ActiveX Control Properties Persistent (PropertyBag Object)

Adding A Method To An ActiveX Control

Adding An Event To An ActiveX Control

Adding Design Time Property Pages

Creating An ActiveX Document

ActiveX Document DLLs Vs. EXEs

Adding Controls To An ActiveX Document (A Tic-Tac-Toe Example)

Handling Constituent Control Events In An ActiveX Document

Testing An ActiveX Document

Creating ActiveX Documents That Run Outside Visual Basic

Distributed Computing: ActiveX Documents And Integrated Browsers

Making ActiveX Document Properties Persistent (PropertyBag Object)

In Depth

ActiveX controls and ActiveX documents are two of the ActiveX components you can build with
Visual Basic. In fact, the ActiveX part of Visual Basic has exploded in scope lately, along with many
changes in terminology, and will surely do so again. We’ll start this chapter with an overview of
ActiveX and ActiveX controls and documents in particular.

All About ActiveX Components

The whole ActiveX field started originally to differentiate controls designed for Internet usage from
general OLE (Object Linking and Embedding) controls. In time, however, all OLE controls have come

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\649-652.html (1 of 3) [3/14/2001 1:57:40 AM]

to be referred to as ActiveX controls. In fact, the field has taken off so vigorously that now Visual
Basic can build not just ActiveX controls in Visual Basic (you used to have to build ActiveX controls
for use in Visual Basic in other programming packages, like Visual C++), but ActiveX components.

What is an ActiveX component? In programming terms, all ActiveX components are really OLE
servers, but that doesn’t help us understand what’s going on. It’s better to break things down and look
at the three types of ActiveX components:

• ActiveX controls

• ActiveX documents

• Code components (OLE automation servers)

Let’s take a look at these types now.

ActiveX Controls

We have seen ActiveX controls throughout the book—those are the controls you can add to the Visual
Basic toolbox using the Components dialog box. You can add those controls to a Visual Basic program
like any other control. You can also use ActiveX controls on the Internet, embedding them in your Web
pages, as we’ll see when we work on creating ActiveX controls. ActiveX controls can support
properties, methods, and events.

Your ActiveX control can be built entirely from scratch (in other words, you’re responsible for its
appearance), it can be built on another control (such as a list box), or it can contain multiple existing
controls (these ActiveX controls are said to contain constituent controls). Visual Basic ActiveX
controls are based on the Visual Basic UserControl object. When you create an ActiveX control, you
create a control class file with the extension .ctl. Visual Basic uses that file to create the actual control,
which has the extension .ocx. After you register that control with Windows (you can use Windows
utilities like regsvr32.exe to register a control, as we’ll see in this chapter), the control will appear in
the Visual Basic Components dialog box, ready for you to add to a program. You can also use these
controls in Web pages.

ActiveX Documents

ActiveX documents are new to many programmers, but the idea is simple. Instead of restricting
yourself to a single control in a Web page, now you can create the whole page. ActiveX documents can
include as many controls as any other Visual Basic program, and as we’ll see when we start creating
ActiveX documents, the result is just like running a Visual Basic program in your Web browser or
other application.

Visual Basic ActiveX documents are based on the Visual Basic UserDocument object. When you
create an ActiveX document, you save it with the extension .dob. Visual Basic uses that DOB file to
create the EXE or DLL file that holds the actual code for the ActiveX document. In addition, Visual
Basic produces a specification file, with the extension .vbd, that describes the ActiveX document, and
it’s that file that you actually open in the host application, such as the Microsoft Internet Explorer. With
ActiveX documents, you can let users save data (using the PropertyBag property); that data is stored
in the VBD file.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\649-652.html (2 of 3) [3/14/2001 1:57:40 AM]

Code Components

Code components were formerly called OLE automation servers. These objects let you use their code
in other programs. For example, you might have a calculation routine that you expose in a code
component; doing so makes that routine available to other programs. Code components can support
properties and methods. We’ll see more about code components in Chapter 27.

If you take a look at the kind of ActiveX components you can build with Visual Basic in the New
Project window, you’ll see all kinds:

• ActiveX document DLL, ActiveX EXE

• ActiveX control

• ActiveX EXE, ActiveX DLL (these are code components)

There’s still quite a confusion of terms here—what’s the difference between a DLL and EXE ActiveX
component? Let’s explore further.

In-Process Vs. Out-Of-Process Components

If an ActiveX component has been implemented as part of an executable file (EXE file), it is an
out-of-process server and runs in its own process. If it has been implemented as a dynamic link library
(DLL file), it is an in-process server and runs in the same process as the client application.

If your ActiveX component is an out-of-process server, it is an EXE file, and can run standalone.
Applications that use in-process servers usually run faster than those that use out-of-process servers
because the application doesn’t have to cross process boundaries to use an object’s properties, methods,
and events.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\649-652.html (3 of 3) [3/14/2001 1:57:40 AM]

There are a few reasons why you may want to create your ActiveX document as an in-process
component (DLL file). The performance of an in-process component surpasses that of the same
component compiled as an EXE. In addition, multiple programs accessing the same EXE can overwrite
global data; that doesn’t happen if they each have their own in-process server.

Which ActiveX Component Do I Want To Build?

With all the different types of ActiveX components to choose from, how do you decide which type of
component you want to create? Take a look at this list:

• To build an invisible component that provides routines in code that you can call, build a code
component (ActiveX EXE or an ActiveX DLL).

• To build a component that can run in the same process with your application, build an ActiveX
DLL.

• To build a component that can serve multiple applications and can run on a remote computer,
build an ActiveX EXE.

• To build a visible component that can be dropped into an application at design time, build an
ActiveX control.

• To build a visible component that can take over an application window at runtime, build an
ActiveX document.

That’s it for the overview of ActiveX controls and documents for the moment—it’s time to turn to the
Immediate Solutions.

Immediate Solutions

Creating An ActiveX Control

The Testing Department is calling again. Wouldn’t it be great if you built a new ActiveX control that
displayed a digital clock? That control could be reused in many other programs. Hmm, you think, how
do you create an ActiveX control?

Select the New Project menu item in the Visual Basic File menu to open the New Project dialog box, as
shown in Figure 20.1.

Figure 20.1 The New Project dialog box.

Select the ActiveX Control item in the New Project dialog box and click on OK. This creates a new,
empty ActiveX control, as shown in Figure 20.2.

Figure 20.2 A new ActiveX control.

Believe it or not, you’ve created your first ActiveX control, UserControl1. You can even run the

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\652-657.html (1 of 4) [3/14/2001 1:57:55 AM]

javascript:displayWindow('images/20-01.jpg',443,290)
javascript:displayWindow('images/20-01.jpg',443,290)
javascript:displayWindow('images/20-02.jpg',707,492)
javascript:displayWindow('images/20-02.jpg',707,492)

control with the Run menu’s Start item, which would display the control by launching the Microsoft
Internet Explorer if you have it installed in your computer; however, there would be nothing to see
because the control is empty.

The default name of the control is Project1, but we can change that to, say, FirstControl. To do that,
select the Project1 Properties item in the Project menu, and type “FirstControl” into the Project Name
box in the Project Properties dialog box, then click on OK. Also, save the project as firstcontrol.vbp.
Instead of a FRM file, you save ActiveX controls in CTL files. Select the Save UserControl1 item in
the file menu to save the control as firstcontrol.ctl. Here’s what appears in that file on disk:

VERSION 6.00
Begin VB.UserControl UserControl1
 ClientHeight = 3600
 ClientLeft = 0
 ClientTop = 0
 ClientWidth = 4800
 ScaleHeight = 3600
 ScaleWidth = 4800
End
Attribute VB_Name = "UserControl1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

Now that we’ve seen how to create a new ActiveX control, it’s time to make it do something. We’ll see
how that works in the next topic.

Designing An ActiveX Control From Scratch

The testing department is on the phone. Your new ActiveX control looks fine, but why doesn’t it do
anything? Should it? you ask. Yes, they say.

You can design the appearance of your ActiveX control entirely from scratch, creating an entirely new
control, never seen before. In that case, you’re responsible for creating the control’s appearance from
scratch. Later, you can add events to your control, as well as methods and properties, as we’ll see later
in this chapter.

To design the appearance of your entirely new control, you can use the Visual Basic graphics methods
that the UserControl object supports, such as Circle, Line, PSet, Print, Cls, and Point. You can also
display an image in the UserControl object by setting its Picture property.

Let’s see an example. Here, we’ll just draw two lines to crisscross an ActiveX control and draw a black
box in the middle. Create a new ActiveX control now, and double-click it at design time to open the
code window to the UserControl_Initialize function:

Private Sub UserControl_Initialize()

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\652-657.html (2 of 4) [3/14/2001 1:57:55 AM]

End Sub

This function is just like the Form Load procedure that we’re familiar with. Set the control’s
AutoRedraw property to True so we can draw graphics from UserControl_Initialize, and then draw
the lines to crisscross the control, using the Line method and ScaleWidth and ScaleHeight just as you
would in a Visual Basic form:

Private Sub UserControl_Initialize()
 Line (0, 0)-(ScaleWidth, ScaleHeight)
 Line (0, ScaleHeight)-(ScaleWidth, 0)
...
End Sub

Next, we draw a filled-in black box in the center of the control this way:

Private Sub UserControl_Initialize()
 Line (0, 0)-(ScaleWidth, ScaleHeight)
 Line (0, ScaleHeight)-(ScaleWidth, 0)
 Line (ScaleWidth / 4, ScaleHeight / 4)-(3 * ScaleWidth / 4, _
 3 * ScaleHeight / 4), , BF
End Sub

Let’s test this new ActiveX control now in the Microsoft Internet Explorer (assuming you have that
browser installed). To do that, just select the Run menu’s Start item now. Doing so opens the Project
Properties dialog box, shown in Figure 20.3.

Figure 20.3 The Project Properties window.

Leave UserControl1 in the Start Component box, and make sure the Use Existing Browser box is
clicked, then click on OK. This registers our control with Windows, creates a temporary HTML page
with the control embedded in it, and starts the Internet Explorer, as you see in Figure 20.4.

Figure 20.4 Our first ActiveX control.

You can see our new ActiveX control in Figure 20.4. Now we’ve created our first ActiveX control and
designed its appearance from scratch. If we wanted to, we could add events, properties, and methods to
this control (we’ll see how to do so later in this chapter).

Here’s the temporary HTML page that Visual Basic creates to display our ActiveX control; note that
our control is registered with Windows and has its own ID, so this page can use the HTML
<OBJECT> tag to embed one of our controls in the page:

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\652-657.html (3 of 4) [3/14/2001 1:57:55 AM]

javascript:displayWindow('images/20-03.jpg',418,377)
javascript:displayWindow('images/20-03.jpg',418,377)
javascript:displayWindow('images/20-04.jpg',461,381)
javascript:displayWindow('images/20-04.jpg',461,381)

<HTML>
<BODY>
<OBJECT classid="clsid:B2A69D3B-D38C-11D1-8881-E45E08C10000">
</OBJECT>
</BODY>
</HTML>

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\652-657.html (4 of 4) [3/14/2001 1:57:55 AM]

Note, however, that when you select End in the Run menu, Visual Basic unregisters our control with
Windows. To register it permanently, use a Windows utility like regsvr32.exe.

Giving ActiveX Controls Persistent Graphics

Visual Basic ActiveX controls are much like Visual Basic forms when it comes to graphics. If you
want your control to be automatically redrawn when needed (such as when the program containing it
needs to be redrawn), just set the control’s AutoRedraw property to True, just as you would for a
Visual Basic form or intrinsic control.

If you prefer not to set AutoRedraw to True (to save memory, for example), you can add your drawing
code to the control’s Paint event (just as you can with a Visual Basic form).

Basing An ActiveX Control On An Existing Visual Basic Control

As we saw in the previous topic, you can design your ActiveX controls from scratch, creating the
control’s appearance yourself. However, you can also base your ActiveX on an existing Visual Basic
control.

Let’s see an example to make this clearer. In this case, we’ll base an ActiveX control on a Visual Basic
text box. Create a new ActiveX control now by selecting the ActiveX control item in the New Project
dialog box. Now draw a text box, Text1, in the control (its size and position don’t matter because we’ll
set that ourselves when the control runs); add this new text box just as you would any text box to a
form—just use the Text Box tool. Now set the text box’s ScrollBars property to Both (3), and set its
MultiLine property to True.

When the control is first displayed, we stretch the text box to cover the control this way in the ActiveX
control Initialize event handler:

Private Sub UserControl_Initialize()
 Text1.Left = 0
 Text1.Top = 0
 Text1.Width = ScaleWidth
 Text1.Height = ScaleHeight
End Sub

That’s it—now select the Start item in the Run menu, click on OK if the Project Properties dialog box
appears (it only appears when you run the control for the first time) to open the control in the Internet
Explorer, as shown in Figure 20.5. You can type text into the text box, as also shown in Figure 20.5.

Figure 20.5 Basing an ActiveX control on a text box.

As you can see in Figure 20.5, our ActiveX control displays a text box complete with scroll bars, ready
for use. We’ve based our ActiveX control on an existing Visual Basic control.

Of course, as it stands, our ActiveX control is exactly like a Visual Basic text box, so it’s hard to see

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\657-660.html (1 of 3) [3/14/2001 1:58:00 AM]

javascript:displayWindow('images/20-05.jpg',430,378)
javascript:displayWindow('images/20-05.jpg',430,378)

why you’d make an ActiveX control out of it. However, you can tailor that control the way you want
it—for example, you can do a lot of processing behind the scenes on the text in the text box (just as you
could in any Visual Basic program). You can also change the way the control interacts with the user, as
we’ll see in the next topic.

Handling Constituent Control Events In An ActiveX Control

The Aesthetic Design Department is calling. It’s nearly Christmas and they’ve come up with a great
idea for a new ActiveX control based on Visual Basic text box. This new Christmas text box control
will not display the letter “L”—no “L”, get it? Oh, you say. They ask, when can you have it ready?

The controls you use in an ActiveX control are called constituent controls, and you can handle events
from those controls just as you would in a standard Visual Basic program. Let’s see an example. Here,
we’ll set up the no “L” text box. Create a new ActiveX control by selecting the ActiveX Control item
in the New Project dialog box. Now draw a text box, Text1, in the control (its size and position don’t
matter because we’ll set that ourselves when the control runs); add this new text box just as you would
any text box to a form—just use the Text Box tool. Now set the text box’s ScrollBars property to Both
(3), and set its MultiLine property to True.

Add this code to the Initialize event handler to stretch the text box over the entire ActiveX control
when the control first appears:

Private Sub UserControl_Initialize()
 Text1.Left = 0
 Text1.Top = 0
 Text1.Width = ScaleWidth
 Text1.Height = ScaleHeight
End Sub

Now add a KeyPress event handler to the text box in the same way as you would in a standard Visual
Basic program (that is, using the drop-down list boxes in the code window):

Private Sub Text1_KeyPress(KeyAscii As Integer)

End Sub

Here, we’ll just watch for the letter “L”:

Private Sub Text1_KeyPress(KeyAscii As Integer)
 If KeyAscii = Asc("L") Then
...
 End If
End Sub

If the user does press the letter “L”, we can cancel that letter by setting the KeyAcsii argument to 0,
and we can also have the computer beep to indicate that we’ve canceled this letter:

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\657-660.html (2 of 3) [3/14/2001 1:58:00 AM]

Private Sub Text1_KeyPress(KeyAscii As Integer)
 If KeyAscii = Asc("L") Then
 KeyAscii = 0
 Beep
 End If
End Sub

And that’s it—now this ActiveX control will display a text box, but it won’t let the user type the letter
“L”. In this way, we’ve handled an event from a constituent control in our ActiveX control.

The code for this example is located in the activextextcontrol folder on this book’s accompanying
CD-ROM.

Adding Controls To An ActiveX Control (A Calculator ActiveX Control)

In the previous topics, we’ve seen how to design an ActiveX control’s appearance from scratch and
how to base an ActiveX control on a Visual Basic control (or other ActiveX controls). However,
ActiveX controls frequently contain more than one constituent control. For example, what if you
wanted to create a calculator ActiveX control? How would you design that control in Visual Basic?

Let’s see how this works; here we’ll create an ActiveX control that is really a calculator that the user
can use to add numbers. Create a new ActiveX project now, giving it the project name “calculator” (use
the Project1 Properties item in the Project menu to open the Project Properties dialog box and enter
“calculator” in the Project Name box). In addition, change the name of the control itself from
UserControl1 to CalculatorControl in the Properties window (just set the control’s Name property).
Now when we add this control to another program using the Components dialog box, this control will
be listed as “calculator”, and when we create controls of this type in that program, the first one will be
called CalculatorControl1, the next CalculatorControl2, and so on.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\657-660.html (3 of 3) [3/14/2001 1:58:00 AM]

To design the calculator, add these controls in a vertical line in the ActiveX control: a text box, Text1;
a label with the caption “+”; another text box, Text2; a command button, Command1, with the caption
“=”; and a third text box, Text3. The result appears in Figure 20.6.

Figure 20.6 Designing the calculator ActiveX control.

Now double-click the command button to open its Click event handler:

Private Sub Command1_Click()

End Sub

When the user clicks the = button, we’ll just add the two values in Text1 and Text2, and place the sum
in Text3 at the bottom. That looks like this in code:

Private Sub Command1_Click()
 Text3.Text = Str(Val(Text1.Text) + Val(Text2.Text))
End Sub

And that’s it—we’ve created a new calculator ActiveX control. How can we test it out? See the next
topic.

Testing An ActiveX Control

You can test, and even debug, ActiveX controls in the Microsoft Internet Explorer, as long as you have
version 3 or later. Just select the Start item in the Visual Basic Run menu to see the ActiveX control
you’re designing at work.

Let’s see an example. Here, we’ll run the ActiveX control we developed in the previous topic, the
calculator control. To open this control in the Internet Explorer, select the Project menu’s Calculator
Properties item, opening the Project Properties dialog box, as shown in Figure 20.7. Click the
Debugging tab now, as also shown in Figure 20.7.

Figure 20.7 Setting Visual Basic debugging options.

Leave the entry CalculatorControl in the Start Component box, and make sure the Use Existing
Browser box is clicked, then click on OK. To run the control, just select the Run menu’s Start item
now. This registers our control with Windows, creates a temporary HTML page with the control
embedded in it, and starts the Internet Explorer, as you see in Figure 20.8.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\660-666.html (1 of 3) [3/14/2001 1:58:19 AM]

javascript:displayWindow('images/20-06.jpg',707,492)
javascript:displayWindow('images/20-06.jpg',707,492)
javascript:displayWindow('images/20-07.jpg',418,377)
javascript:displayWindow('images/20-07.jpg',418,377)
javascript:displayWindow('images/20-08.jpg',380,430)

Figure 20.8 Testing the calculator control in the Internet Explorer.

That’s it—now you can use the ActiveX control. In Figure 20.8, we’re adding numbers with the
calculator. Our calculator ActiveX control is a success.

Creating A Visual Basic Project Group To Test An ActiveX Control

In the previous topic, we saw how to test an ActiveX control in a Web browser, but you can use
ActiveX controls in Visual Basic programs too. Can you test an ActiveX control in Visual Basic?

Yes, you can, by creating a project group. How does that process work? As an example, we’ll see how
to add our calculator ActiveX control (developed in the last two topics) to a program group. Just follow
these steps:

1. Create a new Visual Basic standard EXE project, Project1.

2. Select the Add Project item in the File menu.

3. Click the Existing tab in the Add Project dialog box, select the name of the ActiveX
calculator project (we used activexcalculatorcontrol.vbp in the previous topic), and click on OK.

4. This adds the calculator ActiveX project to the current project and creates a program group.
Select the Select Project Group As item in the File menu, accepting all default file names
(although you can give those files the names you want), including the group file itself,
group1.vbg.

5. Close the calculator project’s window (that is, the window in which you design the calculator
by adding text boxes and so on—its designer window); that makes the calculator ActiveX control
available to us in the other project, and it will appear in the toolbox.

6. Add a new calculator control to Form1 of Project1.

7. Select the Run menu’s Start item to start Project1.

Following these steps creates the running program you see in Figure 20.9. Now we’re testing ActiveX
controls in Visual Basic.

Figure 20.9 Testing an ActiveX control in a program group.

Registering An ActiveX Control

The Testing Department is calling again. It’s all very well to be able to run ActiveX controls in a
Visual Basic project group (see the previous topic), but wouldn’t it be nice to let other users use those
ActiveX controls too?

To install an ActiveX control in Windows, you must register it with Windows, and you can do that
either with the setup program (such as the ones we’ll create in Chapter 30), or with the Window
regsvr32.exe utility. Let’s see an example. Here, we’ll see how to register an ActiveX control named,
say, activex.ocx with Windows. First, use the File menu’s Make activex.ocx menu item to create
activex.ocx. Next, we’ll use regsvr32.exe, which is usually found in the C:\windows\system directory,

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\660-666.html (2 of 3) [3/14/2001 1:58:19 AM]

javascript:displayWindow('images/20-08.jpg',380,430)
javascript:displayWindow('images/20-09.jpg',326,265)
javascript:displayWindow('images/20-09.jpg',326,265)

to register that control with Windows. Here’s how to register our ActiveX control:

c:\windows\system>regsvr32 c:\vbbb\activex.ocx

After the ActiveX control is registered, it will appear in the Visual Basic Components dialog box
(which you open with the Project menu’s Components item), and you can add it to the Visual Basic
toolbox.

Using A Custom ActiveX Control In A Visual Basic Program

Now that we’ve registered our Visual Basic control with Windows (see the previous topic), how do you
add it to a form in a Visual Basic project? You add ActiveX controls that you build to Visual Basic
projects just as you add any other ActiveX controls, such as the ones that come with Visual Basic.

Let’s see an example. After we register the calculator ActiveX control that we’ve developed over the
previous few topics, that control will appear in the Visual Basic Components dialog box. Start a new
standard EXE project now and open the Visual Basic Components dialog box by selecting the
Project|Components item. Next, click the Controls tab in the Components dialog box, as shown in
Figure 20.10.

Figure 20.10 Our ActiveX control appears in the Components dialog box.

Click the entry labeled calculator (“calculator” was the name we gave to the project when we created
this control) in the Components dialog box to add our calculator, and close that dialog box to add the
calculator to the Visual Basic toolbox. Now draw a new calculator ActiveX control in the program’s
main form, creating the new control, CalculatorControl1 (CalculatorControl was the name we gave to
the UserControl object when we created this control), and run the program, as shown in Figure 20.11.

Figure 20.11 Running our ActiveX control in a Visual Basic program.

That’s it—now we’ve created, registered, and added a functioning ActiveX control to a Visual Basic
program.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\660-666.html (3 of 3) [3/14/2001 1:58:19 AM]

javascript:displayWindow('images/20-10.jpg',455,404)
javascript:displayWindow('images/20-10.jpg',455,404)
javascript:displayWindow('images/20-11.jpg',342,286)
javascript:displayWindow('images/20-11.jpg',342,286)

Adding A Property To An ActiveX Control

When we add our new custom calculator ActiveX control to a Visual Basic program, as we did in the
previous topic, you can see that the control already has quite a number of controls built into it, as
shown in the Properties window in Figure 20.12. Besides that standard set of properties (called ambient
properties and stored in AmbientProperties objects, which you get from the Ambient property), we can
also add our own properties to an ActiveX control (stored in Extender objects, which you get from the
Extender property).

Figure 20.12 The Visual Basic Properties window.

Let’s see an example. Here, we’ll add two properties to the calculator ActiveX control, Operand1 and
Operand2, which will hold the text in the top two text boxes in the calculator, operand 1 and operand
2, which we add when the user clicks the = button. After we add those properties, you can access them
in programs that make use of our ActiveX control just as you would any other ActiveX control’s
properties. Here’s an example where we set operand 1 in the calculator after you add a calculator
control, CalculatorControl1, to a standard Visual Basic program; as you can see, this is just like
setting the text in a text box:

Private Sub Command1_Click()
 CalculatorControl1.Operand1 = 100/
End Sub

To add the Operand1 and Operand2 properties to the calculator ActiveX project, open that project in
Visual Basic, open the code window, and select the Add Procedure item in the Tools menu. This opens
the Add Procedure box, as shown in Figure 20.13.

Figure 20.13 Adding a property to an ActiveX control.

Put the name of the first property, Operand1, in the Name box, and select the option button labeled
Property, then click on OK. Doing so creates two procedures, a Let and Get procedure for the property:

Public Property Get Operand1() As Variant

End Property

Public Property Let Operand1(ByVal vNewValue As Variant)

End Property

In the same way, add the Operand2 property, creating the procedures for that property as well:

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\666-671.html (1 of 4) [3/14/2001 1:58:33 AM]

javascript:displayWindow('images/20-12.jpg',249,368)
javascript:displayWindow('images/20-12.jpg',249,368)
javascript:displayWindow('images/20-13.jpg',284,227)
javascript:displayWindow('images/20-13.jpg',284,227)

Public Property Get Operand2() As Variant

End Property

Public Property Let Operand2(ByVal vNewValue As Variant)

End Property

When Operand1 is set in code or by Visual Basic, the Operand1 Let procedure is called; when other
code or Visual Basic wants to retrieve the current value of Operand1, the Operand1 Get procedure is
called. That means that we return the text in the two text boxes corresponding to the calculator’s
operands in the Get procedures:

Public Property Get Operand1() As Variant
 Operand1 = Text1.Text
End Property

Public Property Get Operand2() As Variant
 Operand2 = Text2.Text
End Property

And we set the text in the operand text boxes from the value passed to us in the Let procedures:

Public Property Let Operand1(ByVal vNewValue As Variant)
 Text1.Text = vNewValue
End Property

Public Property Let Operand2(ByVal vNewValue As Variant)
 Text2.Text = vNewValue
End Property

That’s all it takes. Now when you create a control of this type in another Visual Basic program, you’ll
see that the new control has two new properties: Operand1 and Operand2. You can set those
properties in the Properties window at design time, as shown in Figure 20.14, or in code:

Figure 20.14 Setting a property to an ActiveX control.

Private Sub Command1_Click()
 CalculatorControl1.Operand1 = 100
End Sub

However, there is a problem. When you set the Operand1 and Operand2 properties at design time in a
program that has a calculator control embedded in it and then run the program, nothing appears in the
operand text boxes. Why not? It turns out that we have to make the properties persistent if we want to

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\666-671.html (2 of 4) [3/14/2001 1:58:33 AM]

javascript:displayWindow('images/20-14.jpg',707,492)
javascript:displayWindow('images/20-14.jpg',707,492)

let the user set them at design time, and we’ll look into that in the next topic.

The code for this example, activexcalculatorcontrol.ctl version 1 (version 2 will have persistent
properties), appears in Listing 20.1.

TIP: Another way to set up the Let and Get procedures for your properties in an ActiveX control is to
use the ActiveX Control Interface Wizard in the Add-Ins menu (if that wizard does not appear in your
Add-ins menu, select the Add-In Manager item in the Add-Ins menu and add the ActiveX Control
Interface Wizard).

Listing 20.1 activexcalculatorcontrol.ctl version 1

VERSION 6.00
Begin VB.UserControl CalculatorControl
 ClientHeight = 3600
 ClientLeft = 0
 ClientTop = 0
 ClientWidth = 4500
 ScaleHeight = 3600
 ScaleWidth = 4500
 Begin VB.TextBox Text2
 Height = 495
 Left = 1680
 TabIndex = 4
 Top = 1200
 Width = 1215
 End
 Begin VB.CommandButton Command1
 Caption = "="
 Height = 495
 Left = 1680
 TabIndex = 3
 Top = 1920
 Width = 1215
 End
 Begin VB.TextBox Text3
 Height = 495
 Left = 1680
 TabIndex = 1
 Top = 2640
 Width = 1215
 End
 Begin VB.TextBox Text1
 Height = 495
 Left = 1680
 TabIndex = 0

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\666-671.html (3 of 4) [3/14/2001 1:58:33 AM]

 Top = 300
 Width = 1215
 End
 Begin VB.Label Label1
 Caption = "+"
 Height = 255
 Left = 2160
 TabIndex = 2
 Top = 840
 Width = 375
 End
End
Attribute VB_Name = "CalculatorControl"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Private Sub Command1_Click()
 Text3.Text = Str(Val(Text1.Text) + Val(Text2.Text))
End Sub

Public Property Get Operand1() As Variant
 Operand1 = Text1.Text
End Property

Public Property Let Operand1(ByVal vNewValue As Variant)
 Text1.Text = vNewValue
End Property

Public Property Get Operand2() As Variant
 Operand2 = Text2.Text
End Property

Public Property Let Operand2(ByVal vNewValue As Variant)
 Text2.Text = vNewValue
End Property

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\666-671.html (4 of 4) [3/14/2001 1:58:33 AM]

Making ActiveX Control Properties Persistent (PropertyBag Object)

There’s a way of storing property settings in ActiveX controls that uses the PropertyBag object. For
example, if you want the property settings the user makes in your control at design time to apply when
the program runs, you must make the properties persistent. A persistent property is one whose value is
stored and restored as needed.

Let’s see an example. Here, we’ll make the Operand1 and Operand2 properties of the calculator
ActiveX control we’ve developed in the previous few topics persistent. To do that, we first call the
Visual Basic PropertyChanged procedure when Operand1 or Operand2 is changed in its Let
procedure. You pass the name of the property that’s been changed to PropertyChanged like this:

Public Property Let Operand1(ByVal vNewValue As Variant)
 Text1.Text = vNewValue
 PropertyChanged "Operand1"
End Property

Public Property Let Operand2(ByVal vNewValue As Variant)
 Text2.Text = vNewValue
 PropertyChanged "Operand2"
End Property

When you call PropertyChanged, the control creates a WriteProperties event, and you can write the
new settings of properties to the PropertyBag object, which stores them on disk. Here’s how you use
WriteProperty:

UserControl.WriteProperty(propertyname, value [,default])

For example, to write the current settings of the calculator’s operands, we add this code to the
WriteProperties event handler:

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 PropBag.WriteProperty "Operand1", Text1.Text
 PropBag.WriteProperty "Operand2", Text2.Text
End Sub

When the control needs to read its stored properties, it creates a ReadProperties event, and in that
event’s handler, we can use ReadProperty:

UserControl.ReadProperty(propertyname [, default])

Here’s how we use ReadProperty to read stored properties:

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 Text1.Text = PropBag.ReadProperty("Operand1")
 Text2.Text = PropBag.ReadProperty("Operand2")

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\671-674.html (1 of 4) [3/14/2001 1:58:44 AM]

End Sub

Now the Operand1 and Operand2 properties are persistent. The code for this example,
activexcalculatorcontrol.ctl version 2, appears in Listing 20.2.

Listing 20.2 activexcalculatorcontrol.ctl version 2

VERSION 6.00
Begin VB.UserControl CalculatorControl
 ClientHeight = 3600
 ClientLeft = 0
 ClientTop = 0
 ClientWidth = 4500
 ScaleHeight = 3600
 ScaleWidth = 4500
 Begin VB.TextBox Text2
 Height = 495
 Left = 1680
 TabIndex = 4
 Top = 1200
 Width = 1215
 End
 Begin VB.CommandButton Command1
 Caption = "="
 Height = 495
 Left = 1680
 TabIndex = 3
 Top = 1920
 Width = 1215
 End
 Begin VB.TextBox Text3
 Height = 495
 Left = 1680
 TabIndex = 1
 Top = 2640
 Width = 1215
 End
 Begin VB.TextBox Text1
 Height = 495
 Left = 1680
 TabIndex = 0
 Top = 300
 Width = 1215
 End
 Begin VB.Label Label1
 Caption = "+"

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\671-674.html (2 of 4) [3/14/2001 1:58:44 AM]

 Height = 255
 Left = 2160
 TabIndex = 2
 Top = 840
 Width = 375
 End
End
Attribute VB_Name = "CalculatorControl"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Private Sub Command1_Click()
 Text3.Text = Str(Val(Text1.Text) + Val(Text2.Text))
End Sub

Public Property Get Operand1() As Variant
 Operand1 = Text1.Text
End Property

Public Property Let Operand1(ByVal vNewValue As Variant)
 Text1.Text = vNewValue
 PropertyChanged "Operand1"
End Property

Public Property Get Operand2() As Variant
 Operand2 = Text2.Text
End Property

Public Property Let Operand2(ByVal vNewValue As Variant)
 Text2.Text = vNewValue
 PropertyChanged "Operand2"
End Property
Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 Text1.Text = PropBag.ReadProperty("Operand1")
 Text2.Text = PropBag.ReadProperty("Operand2")
End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 PropBag.WriteProperty "Operand1", Text1.Text
 PropBag.WriteProperty "Operand2", Text2.Text
End Sub

Besides the WriteProperties and ReadProperties events, user controls also have Initialize events that
occur when the control is opened at design time and Terminate events that occur when you switch to
runtime from design time (in other words, the design time—instance of the control is terminated).

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\671-674.html (3 of 4) [3/14/2001 1:58:44 AM]

Here’s the order of events that occur when you switch from design time to runtime:

• WriteProperties
• Terminate
• ReadProperties

And here’s the order of events that occur when you switch from runtime to design time:

• Initialize
• ReadProperties

Adding A Method To An ActiveX Control

In the previous topic, we saw how to add a property to an ActiveX control—but how do you add a
method? You add a method to an ActiveX control in much the same way you add a property—with the
Tool menu’s Add Procedure dialog box.

Let’s see an example. In this case, we’ll add a new method to the calculator ActiveX control that we’ve
developed in the previous few topics: the Calculate method. When the control’s Calculate method is
called, we can add the values in the top two text boxes in the calculator and display the result in the
bottom text box (just like clicking the equal (=) button in the calculator).

Open the calculator ActiveX project in Visual Basic now and open the code window as well. Next,
select the Add Procedure item in the Tools menu, opening the Add Procedure dialog box, as shown in
Figure 20.15. Give this new method the name Calculate.

Figure 20.15 The Add Procedure dialog box.

Select the entry labeled Sub to make our new method a Sub procedure, and make sure the entry labeled
Public in the Scope box is selected (making this method available outside the ActiveX control to
container programs). Then click on OK to close the Add Procedure dialog box.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\671-674.html (4 of 4) [3/14/2001 1:58:44 AM]

javascript:displayWindow('images/20-15.jpg',284,227)
javascript:displayWindow('images/20-15.jpg',284,227)

Following these steps creates a new procedure, Calculate, in the calculator ActiveX control:

Public Sub Calculate()

End Sub

If you have arguments you want passed to this method, just add them to the argument list between the
parentheses as you would for any subroutine. In this case, we want to calculate the sum of the two
operands now in Text1 and Text2 in this method, storing the sum in Text3, and we do that with this
code:

Public Sub Calculate()
 Text3.Text = Str(Val(Text1.Text) + Val(Text2.Text))
End Sub

That’s all we need; now create the calculator control and embed it in another program as, say,
CalculatorControl1. When you do, you can use the control’s Calculate method like this:
CalculatorControl1.Calculate.

For example, we’ve added a new button with the caption Calculate to the project in Figure 20.16, and
added this code to the command button’s Click event:

Figure 20.16 Calling a custom ActiveX control method.

Private Sub Command1_Click()
 CalculatorControl1.Calculate
End Sub

The result appears in Figure 20.16. When the user clicks the Calculate button, we execute the calculator
ActiveX control’s Calculate method. Our ActiveX method example is a success. The code for this
example, activexcalculatorcontrol.ctl version 3, appears in Listing 20.3.

TIP: Another way to set up methods in an ActiveX control is to use the ActiveX Control Interface
Wizard in the Add-Ins menu (if that wizard does not appear in your Add-ins menu, select the Add-In
Manager item in the Add-Ins menu and add the ActiveX Control Interface Wizard).

Listing 20.3 activexcalculatorcontrol.ctl version 3

VERSION 6.00
Begin VB.UserControl CalculatorControl
 ClientHeight = 3600
 ClientLeft = 0
 ClientTop = 0
 ClientWidth = 4500

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\674-679.html (1 of 5) [3/14/2001 1:58:52 AM]

javascript:displayWindow('images/20-16.jpg',388,352)
javascript:displayWindow('images/20-16.jpg',388,352)

 ScaleHeight = 3600
 ScaleWidth = 4500
 Begin VB.TextBox Text2
 Height = 495
 Left = 1680
 TabIndex = 4
 Top = 1200
 Width = 1215
 End
 Begin VB.CommandButton Command1
 Caption = "="
 Height = 495
 Left = 1680
 TabIndex = 3
 Top = 1920
 Width = 1215
 End
 Begin VB.TextBox Text3
 Height = 495
 Left = 1680
 TabIndex = 1
 Top = 2640
 Width = 1215
 End
 Begin VB.TextBox Text1
 Height = 495
 Left = 1680
 TabIndex = 0
 Top = 300
 Width = 1215
 End
 Begin VB.Label Label1
 Caption = "+"
 Height = 255
 Left = 2160
 TabIndex = 2
 Top = 840
 Width = 375
 End
End
Attribute VB_Name = "CalculatorControl"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Private Sub Command1_Click()

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\674-679.html (2 of 5) [3/14/2001 1:58:52 AM]

 Text3.Text = Str(Val(Text1.Text) + Val(Text2.Text))
End Sub

Public Property Get Operand1() As Variant
 Operand1 = Text1.Text
End Property

Public Property Let Operand1(ByVal vNewValue As Variant)
 Text1.Text = vNewValue
 PropertyChanged "Operand1"
End Property

Public Property Get Operand2() As Variant
 Operand2 = Text2.Text
End Property

Public Property Let Operand2(ByVal vNewValue As Variant)
 Text2.Text = vNewValue
 PropertyChanged "Operand2"
End Property

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 Text1.Text = PropBag.ReadProperty("Operand1")
 Text2.Text = PropBag.ReadProperty("Operand2")
End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 PropBag.WriteProperty "Operand1", Text1.Text
 PropBag.WriteProperty "Operand2", Text2.Text
End Sub

Public Sub Calculate()
 Text3.Text = Str(Val(Text1.Text) + Val(Text2.Text))
End Sub

Adding An Event To An ActiveX Control

ActiveX controls can support events, of course, and the custom ActiveX controls you design with
Visual Basic are no exception. You add events much like you add properties and methods—with the
Add Procedure item in the Tools menu. After you create a new event, it’s up to you to raise that event
with the RaiseEvent method.

Let’s see an example. Here, we’ll add an event named CalculatorClick to the calculator ActiveX
control we’ve developed in the previous few topics. When the user clicks the calculator control, this
event, CalculatorClick, will occur.

To add this event to the calculator ActiveX control, open the calculator ActiveX project in Visual

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\674-679.html (3 of 5) [3/14/2001 1:58:52 AM]

Basic, and open the code window as well. Next, select the Add Procedure item in the Tools menu to
open the Add Procedure dialog box, as shown in Figure 20.17.

Figure 20.17 Adding an event to an ActiveX control.

Type the name of this event, “CalculatorClick”, into the Name box in the Add Procedure dialog box,
select the option button labeled Event to indicate that we want to create a new event, and click OK.
This creates the new event by declaring it in the ActiveX control’s (General) section:

Public Event CalculatorClick()

If you want to add arguments to this event’s handler procedures, just list them in the parentheses as you
would for any procedure.

How do we make this new event active? It’s up to us to raise this event when appropriate, using the
RaiseEvent method. In this case, that’s particularly easy—we’ll just use the user control’s Click event.
Add a Click event handler to the calculator ActiveX control now:

Private Sub UserControl_Click ()

End Sub

This is the event handler that will be called when the calculator control is clicked, and we’ll raise the
CalculatorClick event here:

Private Sub UserControl_Click()
 RaiseEvent CalculatorClick
End Sub

TIP: If your event supports arguments, you raise it and pass the arguments to it like this

RaiseEvent eventname([argumentlist])

just as you would pass arguments to any procedure.

That’s all we need. Now when you embed the calculator control in a Visual Basic program, you’ll find
that it has a CalculatorClick event that you can add text to:

Private Sub CalculatorControl1_CalculatorClick()
 CalculatorControl1.Calculate
End Sub

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\674-679.html (4 of 5) [3/14/2001 1:58:52 AM]

javascript:displayWindow('images/20-17.jpg',284,227)
javascript:displayWindow('images/20-17.jpg',284,227)

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\674-679.html (5 of 5) [3/14/2001 1:58:52 AM]

For example, we can call the calculator control’s Calculate method when the user clicks that control,
like this:

Private Sub CalculatorControl1_CalculatorClick()
 CalculatorControl1.Calculate
End Sub

In this way, we’ve added a new event to our ActiveX control. The code for the new version of the
ActiveX calculator control is located in the activexcalculatorcontrol folder on this book’s
accompanying CD-ROM.

TIP: Another way to set up events in an ActiveX control is to use the ActiveX Control Interface Wizard
in the Add-Ins menu (if that wizard does not appear in your Add-Ins menu, select the Add-In Manager
item in the Add-Ins menu and add the ActiveX Control Interface Wizard).

Adding Design Time Property Pages

The Testing Department is calling again. Can’t you add property pages to your new ActiveX control?
The programmers who use your control are used to setting properties using property pages at design
time.

You can add property pages to your control with the Visual Basic Property Page Wizard in the Add-Ins
menu. If that wizard does not appear in your Add-ins menu, select the Add-In Manager item in the
Add-Ins menu and add the Property Page Wizard. After you’ve added properties to an ActiveX control,
you can use the Property Page Wizard to add property pages for those properties.

Let’s see an example. Here, we’ll add a set of property pages for our ActiveX calculator control that
we’ve developed in the previous few topics. Start the Property Page Wizard by selecting that item in
the Add-Ins menu now; a welcome screen will appear. Click the Next button until you get to the Select
The Property Pages screen, as shown in Figure 20.18.

Here’s where you set up the property pages your control will have. You can add property pages with
the Add button and name them with the Rename button. In this case, the calculator control only has two
properties, Operand1 and Operand2, and we’ll set up a separate property page for each, as shown in
Figure 20.18.

Figure 20.18 Creating property pages.

Click Next to go to the next screen, Add Properties, as shown in Figure 20.19. Here you add properties
from the list of all the available properties on the left to the property pages you’ve set up. Just click the
tab matching the property page you want to add a property to, select the property in the list box at left,
and click the right-pointing arrow button to add that property to the property page (or click the
left-pointing arrow button to remove a button from a property page). In this way, you can organize
which property appears on which page.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\679-684.html (1 of 3) [3/14/2001 1:59:12 AM]

javascript:displayWindow('images/20-18.jpg',483,362)
javascript:displayWindow('images/20-18.jpg',483,362)

Figure 20.19 Adding properties to property pages.

Finally, click Next to go to the Property Page Wizard’s screen labeled Finished and click the Finish
button. In this case, this creates two new property page documents, PropertyPage1.pag and
PropertyPage2.pag, for your control, and adds them to your project. Save those files to disk and rebuild
your control.

Now embed our ActiveX control in another program and open its property pages at design time, as
shown in Figure 20.20. Now we’re supporting property pages for custom ActiveX controls.

The code for the example property page files are located in the PropertyPage1 and PropertyPage2
folders on this book’s accompanying CD-ROM.

Figure 20.20 Our control’s custom property pages

Creating An ActiveX Document

The Testing Department is calling again. The ActiveX controls you’ve been building are fine, but what
about going on to the next step? How about creating an ActiveX document? You ask, why are ActiveX
documents the next step? Because, they say, although ActiveX controls can appear in Web pages,
ActiveX documents can be Web pages. That is, an entire Visual Basic form with all its controls can
now appear in your Web browser or other application.

Let’s see an example. To create a new ActiveX document, open the Visual Basic New Project dialog
box, select the ActiveX document EXE entry, and click on OK (you can create either ActiveX
document EXEs or DLLs—see the next topic for a discussion of the difference). This creates a new
ActiveX document in Visual Basic, as shown in Figure 20.21.

Figure 20.21 Creating a new ActiveX document.

To get our start with ActiveX documents, just double-click the document and add this code to the
Initialize procedure that opens to draw a set of crisscrossing lines and a black box in the center of the
document:

Private Sub UserDocument_Initialize()
 Line (0, 0)-(ScaleWidth, ScaleHeight)
 Line (0, ScaleHeight)-(ScaleWidth, 0)
 Line (ScaleWidth / 4, ScaleHeight / 4)-(3 * ScaleWidth / 4, _
 3 * ScaleHeight / 4), , BF
End Sub

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\679-684.html (2 of 3) [3/14/2001 1:59:12 AM]

javascript:displayWindow('images/20-19.jpg',483,362)
javascript:displayWindow('images/20-19.jpg',483,362)
javascript:displayWindow('images/20-20.jpg',421,326)
javascript:displayWindow('images/20-20.jpg',421,326)
javascript:displayWindow('images/20-21.jpg',774,492)
javascript:displayWindow('images/20-21.jpg',774,492)

This is the procedure that’s run when the ActiveX document is first opened. Because we’re drawing
from the Initialize event handler, set the document’s AutoRedraw property to True (just as you would
for a form).

Let’s see our new ActiveX document at work in a Web browser (you can use ActiveX documents in
other applications that support them, but Web browsers are particularly handy for testing ActiveX
documents in an interactive way). Select the Project1 Properties item in the Project menu, and click the
Debugging tab in the Project Properties dialog box that opens. Make sure that the option button labeled
Start Component is selected (the start component should be given as UserDocument1) and the box
labeled Use Existing Browser is checked. Then close the dialog box by clicking on OK, and run the
document with the Start item in the Run menu.

Starting the document loads the document’s specification, a VBD file, into the browser, which (if it
supports ActiveX documents) runs the document’s EXE file or adds the document’s DLL file to its
own process, as shown in Figure 20.22.

Figure 20.22 Opening our new ActiveX document in the Microsoft Internet Explorer.

That’s all there is to it. Now we’ve created our first ActiveX document. Still, not much is going on here
yet. In the following topics, we’ll develop our ActiveX documents further.

TIP: Oh great, you’re thinking, I’ve developed an extensive standard Visual Basic program based on
forms, and now I’ve got to convert it into an ActiveX document? Visual Basic includes a wizard to help
you in just this case: the ActiveX Document Migration Wizard. Just select that wizard in the Add-Ins
menu (if the wizard does not appear in your Add-ins menu, select the Add-In Manager item in the
Add-Ins menu and add the ActiveX Document Migration Wizard).

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\679-684.html (3 of 3) [3/14/2001 1:59:12 AM]

javascript:displayWindow('images/20-22.jpg',362,397)
javascript:displayWindow('images/20-22.jpg',362,397)

ActiveX Document DLLs Vs. EXEs

You can create both ActiveX document EXEs and DLLs. Here’s the difference: if an ActiveX
document is written as an executable file (EXE file), it is an out-of-process server and runs in its own
process; if it has been implemented as a dynamic link library (DLL file), it is an in-process server and
runs in the same process as the client application.

Although ActiveX documents are usually built as EXE projects, the benefit of DLLs is that applications
that use in-process servers usually run faster than those that use out-of-process servers because the
application doesn’t have to cross process boundaries to use an object’s properties, methods, and events.
In addition, the performance of an in-process component, or DLL file, surpasses that of the same
component compiled as an EXE. Also, multiple programs accessing the same EXE can overwrite
global data, but that doesn’t happen if they each have their own in-process server.

Adding Controls To An ActiveX Document (A Tic-Tac-Toe Example)

The Testing Department is on the phone. The ActiveX document you’ve created is very nice, but why
can’t you do anything with it? Well, you say, I was just about to add controls to it and create a Web
browser game.

Using ActiveX documents, you can display entire forms in Web browsers. To see this at work, we’ll
create a mini tic-tac-toe game. This game will let users click buttons to display alternate x’s and o’s
(although it won’t include the logic to actually play tic-tac-toe). Working with multiple controls in this
way will demonstrate how to display entire programs as Web pages.

Create a new ActiveX document (EXE or DLL), and add nine command buttons to it arranged in a 3×3
grid in classic tic-tac-toe fashion. Give each button the same name, Command, clear each button’s
caption (that is, select the text in the caption and press the backspace key), and when Visual Basic asks
if you want to create a control array, click Yes, because a control array will make the code shorter and
easier to handle.

To alternate x’s and o’s as the user clicks buttons, we’ll need a Boolean flag, which we’ll call
blnXFlag. If this flag is true, the next caption to set will be “x”; otherwise, “o”. Add the declaration of
blnXFlag to the (General) section:

Dim blnXFlag As Boolean

We also initalize blnXFlag to True when the document first loads by adding this code to the Initialize
event handler:

Private Sub UserDocument_Initialize()
 blnXFlag = True
End Sub

Now when the user clicks a button, we alternate between setting the clicked buttons’ captions to “x”
and “o” this way:

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\684-689.html (1 of 5) [3/14/2001 1:59:18 AM]

Private Sub Command_Click(Index As Integer)
 If blnXFlag Then
 Command(Index).Caption = "x"
 Else
 Command(Index).Caption = "o"
 End If
...
End Sub

At the end of the code, we toggle the state of blnXFlag for the next time the user clicks a button:

Private Sub Command_Click(Index As Integer)
 If blnXFlag Then
 Command(Index).Caption = "x"
 Else
 Command(Index).Caption = "o"
 End If
 blnXFlag = Not blnXFlag
End Sub

Let’s see our new ActiveX document game at work. Select the Project1 Properties item in the Project
menu, and click the Debugging tab in the Project Properties dialog box that opens. Make sure that the
option button labeled Start Component is selected (the start component should be given as
UserDocument1), and the box labeled Use Existing Browser is checked. Then close the dialog box by
clicking on OK, and run the game with the Start item in the Run menu.

The result appears in Figure 20.23. As you can see, our entire game appears in the Microsoft Internet
Explorer. The user can alternate button captions just by clicking the buttons. Our ActiveX document
example is a success.

Figure 20.23 Our tic-tac-toe ActiveX document.

We’ll save the document as activextictactoe.dob (ActiveX documents have the extension .dob when
saved in Visual Basic, just as form files have the extension .frm), and the project as
activextictactoe.vbp. The default name for the document is UserDocument1, as you can see in the
Visual Basic Properties window; if you want to use a different name for the document, set it in the
Properties window. We’ll change the document name to activextictactoedoc. When we create the VBD
specification file for this document, then, that file will be activextictactoedoc.vbd, and that’s the file to
open in your Web browser

The code for this example, activextictactoedoc.dob version 1 (version 2 will support persistent data),
appears in Listing 20.4.

Listing 20.4 activextictactoedoc.dob version 1

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\684-689.html (2 of 5) [3/14/2001 1:59:18 AM]

javascript:displayWindow('images/20-23.jpg',378,342)
javascript:displayWindow('images/20-23.jpg',378,342)

VERSION 6.00
Begin VB.UserDocument activextictactoedoc
 AutoRedraw = -1 'True
 ClientHeight = 2865
 ClientLeft = 0
 ClientTop = 0
 ClientWidth = 4800
 HScrollSmallChange= 225
 ScaleHeight = 2865
 ScaleWidth = 4800
 VScrollSmallChange= 225
 Begin VB.CommandButton Command
 Height = 495
 Index = 8
 Left = 3360
 TabIndex = 8
 Top = 1920
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 7
 Left = 3360
 TabIndex = 7
 Top = 1080
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 6
 Left = 3360
 TabIndex = 6
 Top = 360
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 5
 Left = 1800
 TabIndex = 5
 Top = 1920
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 4

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\684-689.html (3 of 5) [3/14/2001 1:59:18 AM]

 Left = 1800
 TabIndex = 4
 Top = 1080
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 3
 Left = 1800
 TabIndex = 3
 Top = 360
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 2
 Left = 240
 TabIndex = 2
 Top = 1920
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 1
 Left = 240
 TabIndex = 1
 Top = 1080
 Width = 1215
 End
 Begin VB.CommandButton Command
 Height = 495
 Index = 0
 Left = 240
 TabIndex = 0
 Top = 360
 Width = 1215
 End
End
Attribute VB_Name = "activextictactoedoc"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit
Dim blnXFlag As Boolean

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\684-689.html (4 of 5) [3/14/2001 1:59:18 AM]

Private Sub Command_Click(Index As Integer)
 If blnXFlag Then
 Command(Index).Caption = "x"
 Else
 Command(Index).Caption = "o"
 End If
 blnXFlag = Not blnXFlag
End Sub

Private Sub UserDocument_Initialize()
 blnXFlag = True
End Sub

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\684-689.html (5 of 5) [3/14/2001 1:59:18 AM]

Handling Constituent Control Events In An ActiveX Document

After you add controls to an ActiveX document, how do you handle the events those controls create?
That’s the beauty of it all—you handle such events just as you would in a standard Visual Basic EXE
program, so designing an ActiveX document is really just like designing a standard form in Visual
Basic.

If you haven’t already done so, take a look at the tic-tac-toe game we developed in the previous topic.
There, we set up a control array of nine buttons and handled the button clicks just as you would in a
standard Visual Basic form:

Private Sub Command_Click(Index As Integer)
 If blnXFlag Then
 Command(Index).Caption = "x"
 Else
 Command(Index).Caption = "o"
 End If
 blnXFlag = Not blnXFlag
End Sub

Microsoft has worked hard to make sure that creating ActiveX documents is as easy as creating
standard Visual Basic EXE programs in the hopes that ActiveX documents will become popular, and
the programmer is the winner.

Testing An ActiveX Document

To test an ActiveX document—and even debug it—while in the design process using your ActiveX
document-supporting Web browser (such as the Microsoft Internet Explorer), just follow these steps:

1. Select the ProjectName Properties item in the Project menu (where ProjectName is the name
of your project).

2. Click the Debugging tab in the Project Properties dialog box that opens.

3. Make sure that the option button labeled Start Component is selected (the start component
should be given as the name of your document, such as UserDocument1).

4. To use your existing browser, make sure the box labeled Use Existing Browser is checked.

5. Close the dialog box by clicking on OK.

6. Start the document with the Start item in the Run menu.

When you follow these steps, Visual Basic creates a VBD file for your document and opens that file in
your Web browser (VBD files hold the ActiveX document’s specification and tell the browser where to
find the document’s EXE or DLL file).

Creating ActiveX Documents That Run Outside Visual Basic

The Testing Department is calling again. Your new ActiveX document is a winner, but how come you
can only launch it from Visual Basic? Hmm, you say, I’ll look into it.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\689-691.html (1 of 3) [3/14/2001 1:59:28 AM]

ActiveX documents need either an EXE or a DLL file and a VBD file. (You select either EXE or DLL
when you create the document—see “ActiveX Document DLLs Vs. EXEs,” earlier in this chapter.)
How do you create these files?

When you create an ActiveX document, you save it with the extension .dob. Visual Basic uses that
DOB file to create the EXE or DLL file that holds the actual code for the ActiveX document. To create
the EXE or DLL file, just select the Make ProjectName.exe item in the File menu (where ProjectName
is your project’s name).

In addition, Visual Basic produces the specification file, with the extension .vbd, that describes the
ActiveX document, and it’s that file that you actually open in the host application, such as the
Microsoft Internet Explorer. To open the ActiveX document in the Internet Explorer, you just open the
VBD file directly (use the File menu’s Open item), as shown in Figure 20.24, where we’ve opened the
VBD file for the tic-tac-toe document we developed in the previous few topics.

Figure 20.24 Displaying a VBD file in the Microsoft Internet Explorer.

Distributed Computing: ActiveX Documents And Integrated Browsers

The Testing Department is calling. Now that the company’s grown so huge (thanks to the success of
your programs), we need to start using the Internet for the company reps in the field. Can’t we
download updated programs in a transparent way over the Internet? You think about ActiveX
documents and say, no problem.

If you integrate a Web browser into a program, you can have that browser download ActiveX
documents in a seamless way that makes those documents look like part of the program itself. In this
way, users can download ActiveX documents filled with current data into a program in a way that
seems transparent to them.

Let’s see an example. Here, we’ll add a Web browser to a program and use it to open the tic-tac-toe
ActiveX document we’ve developed in the previous few topics. To create a program with a built-in
Web browser, use the Visual Basic Application Wizard. When the Application Wizard asks you about
Internet connectivity, as shown in Figure 20.25, click the option button labeled Yes, and enter the URL
of your document’s VBD file (which can be on the Internet) in the startup URL box; here, we’ll use the
disk location of our VBD file, which is C:\vbbb\activextictactoedoc\activextictactoedoc.vbd. Then
click the Finish button to create the program.

Figure 20.25 Setting Internet connectivity with the Application Wizard.

At design time, we can customize the program even more by changing the caption of the menu item
that opens the game from “Web browser” to “Tic Tac Toe”, and editing the browser form,
frmBrowser, by removing the combo box that shows the URL and all the buttons. We can also stretch
the Web browser control (brwWebBrowser) so it covers the whole frmBrowser form.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\689-691.html (2 of 3) [3/14/2001 1:59:28 AM]

javascript:displayWindow('images/20-24.jpg',430,378)
javascript:displayWindow('images/20-24.jpg',430,378)
javascript:displayWindow('images/20-25.jpg',486,356)
javascript:displayWindow('images/20-25.jpg',486,356)

Customizing the browser form this way prevents it from appearing as a Web browser at all. Instead, it
will look like a part of your program; the fact that it comes from the Internet is entirely transparent to
the user. (You can also remove the form’s title bar so the name of the displayed ActiveX document is
not displayed, but we won’t go that far here.)

Running this program and selecting the Tic Tac Toe menu item opens that ActiveX document in the
program, as shown in Figure 20.26. The ActiveX document looks just like any other part of the
program, which is the idea behind distributed computing.

Figure 20.26 Opening an ActiveX document in a program with a Web browser.

Making ActiveX Document Properties Persistent (PropertyBag Object)

Just as with ActiveX controls, you can make the data in ActiveX documents persistent, which means
the data is stored when you close the document and restored in the display when you open the
document. How does this work? To make the data in an ActiveX document persistent, you use the
PropertyChanged method as you do with ActiveX controls, and use the ReadProperty and
WriteProperty methods.

Visual Basic 6 Black Book:Creating ActiveX Controls And Documents

http://24.19.55.56:8080/temp/ch20\689-691.html (3 of 3) [3/14/2001 1:59:28 AM]

javascript:displayWindow('images/20-26.jpg',470,451)
javascript:displayWindow('images/20-26.jpg',470,451)
http://24.19.55.56:8080/temp/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Chapter 21
Visual Basic And The Internet: Web Browsing,
Email, HTTP, FTP, And DHTML
If you need an immediate solution to:

Creating A Web Browser

Specifying URLs In A Web Browser

Adding Back And Forward Buttons To A Web Browser

Adding Refresh, Home, And Stop Buttons To A Web Browser

Creating DHTML Pages

Adding Text To DHTML Pages

Adding Images To DHTML Pages

Adding HTML Controls To DHTML Pages

Adding ActiveX Controls To DHTML Pages

Adding Tables To DHTML Pages

Adding Hyperlinks To DHTML Pages

Using MAPI Controls To Support Email

Sending Email From Visual Basic

Reading Email In Visual Basic

Using The Internet Transfer Control For FTP And HTTP Operations

Handling FTP Operations In Visual Basic

Handling HTTP Operations In Visual Basic

In Depth

In this chapter, we’ll see how to create a Web browser, create a dynamic HTML page (DHTML), and
work with email and the HTTP and FTP protocols. Not surprisingly, these are all hot topics in Visual
Basic.

Creating A Web Browser

If you have the Microsoft Internet Explorer installed, you can build Web browsers using Visual Basic.
Microsoft has packaged the Internet Explorer in a control, the WebBrowser control, and we’ll be able
to use that control to create a Web browser in this chapter that supports such browser functionality as
Back, Forward, Home, Stop, and Refresh buttons. We’ll also let the user specify what URL to navigate
to with a combo box—as well as keeping track of recently visited URLs in that combo box.

Building a Web browser can be a worthwhile project in itself, but another popular use of the
WebBrowser control is to add a Web browser to your existing program for added power. In fact, you
can use the WebBrowser control to open ActiveX documents (as we did in Chapter 20) in a way that

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\695-698.html (1 of 3) [3/14/2001 1:59:47 AM]

makes them look like a seamless part of the program—even though that document may have come
from the Internet.

Creating A Dynamic HTML Page

Dynamic HTML is the new, although amorphous, Web page standard (that is, Netscape and Microsoft
think of dynamic HTML as entirely different things). The Microsoft standard for DHTML makes all
the tags in a Web page active elements in the sense that they have properties you can change at
runtime, as well as events like Click. The DirectAnimation and DirectShow Internet Explorer packages
are part of Microsoft DHTML as well.

Visual Basic can write dynamic HTML—in fact, you can now use Visual Basic as an HTML editor,
adding text, images, hyperlinks, and tables. We’ll see how to do that in this chapter. There’s more here
too. You can add ActiveX controls directly to your Web pages when designing them in the DHTML
Designer. We’ll see how to create Web pages using that designer and how to test them out in the
Internet Explorer immediately, from Visual Basic.

Working With Email

Visual Basic includes support for working with email as well. That support is based on the Microsoft
Exchange utility that’s installed with Windows (and usually appears on the Windows desktop as the
Inbox icon). In this chapter, we’ll see how to connect Visual Basic to the Microsoft Exchange to handle
email. To do that, we’ll use the ActiveX MAPI controls (Messaging Applications Programming
Interface) that come with Visual Basic.

To connect to the email system, you create a new MAPI session using the MAPISession control. When
the session is created, you use the MAPIMessages control to work with individual messages. Note that
these controls are interfaces to the Microsoft Exchange package, which means that we’ll be using that
package to send and receive email.

Using FTP

FTP (File Transfer Protocol) is a very popular Internet protocol for, as its name implies, transferring
files. Visual Basic has good support for FTP work, and that support is contained in the Visual Basic
Internet transfer control. That control has two approaches to working with FTP. You can use the
OpenURL method to easily download a file from an FTP site. In addition, you can execute standard
FTP commands with the control’s Execute method. Using Execute, you can make use of the standard
FTP commands like CD, GET, CLOSE, QUIT, SEND, and so on.

Using HTTP

HTTP (Hypertext Transfer Protocol) is the protocol on which the World Wide Web is based. As most
programmers know, this is the protocol used for Web pages on the Internet. Because we’re going to
build a functioning Web browser in this chapter, you may wonder why we want to work with the HTTP
protocol directly. The answer is that although Web browsers do indeed download and display Web
pages, there’s a lot more you can do with the HTTP protocol. When you download a file using the
Internet transfer control’s OpenURL method, you get access to the file’s HTML directly, which is

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\695-698.html (2 of 3) [3/14/2001 1:59:47 AM]

important if you want to interpret that HTML in a way different from how the Internet Explorer would.
You can also use that control’s Execute method to execute HTTP commands directly.

You can even write your own Web browser or use emerging Web languages like XML (Extended
Markup Language). XML, intended to be a successor to HTML, allows you to create your own markup
tags in a well-defined way, on a document-by-document basis. When reading those tags, it’s up to the
browser to interpret them, and you can write such XML browser programs in Visual Basic.

TIP: Microsoft has made an XML parser available on its Web site in two versions: a Java version and a
Visual C++ version. (Its URL keeps changing, though, so search the site for “XML parser”.) This parser
breaks XML documents down tag by tag in a way that makes reading XML documents more systematic.
You can connect the Visual C++ version to Visual Basic if you place your Visual C++ code in a dynamic
link library that Visual Basic can link in, but the Visual C++ parser is so complex to use that it may not be
worth the bother. One aspect of the Microsoft parser is, however, very useful: it can tell you if an XML
document meets the XML specification for being valid and well formed.

Besides using the Internet transfer control’s OpenURL method, you can also use the Execute method
to execute such common HTTP commands as GET, POST, and PUT.

That’s it for the overview of Visual Basic and the Internet for the moment—it’s time to turn to our
Immediate Solutions.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\695-698.html (3 of 3) [3/14/2001 1:59:47 AM]

Immediate Solutions

Creating A Web Browser

The Testing Department is calling again. They need a new Web browser program right away. What’s
wrong with the old one? you ask. They say, it doesn’t display the founder’s picture. Oh, you say.

It’s easy to build a Web browser in Visual Basic—you just use the Microsoft WebBrowser control. In
this and the next few topics, we’ll put together the functioning Web browser that you see in Figure
21.1. Our browser will support Back, Next, Home, Stop, and Refresh buttons, as you can see in that
figure. In addition, the browser will have all the power of the Microsoft Internet Explorer (largely
because it is the Internet Explorer; we use the WebBrowser control, which is the Internet Explorer in a
control). To let the user navigate, we’ll include a combo box, as you see in Figure 21.1. When the user
types a new URL in the combo box and presses the Enter key, we’ll navigate to that URL (and keep a
record of the URLs we’ve been to in the combo box’s drop-down list).

Figure 21.1 Our Web browser.

To create our Web browser, follow these steps:

1. Create a new standard Visual Basic project.

2. Select the Project|Components item.

3. Click the Controls tab in the Components dialog box.

4. Select the Microsoft Internet Controls and Microsoft Windows Common Controls entries, and
click on OK to close the Components dialog box.

5. Add a WebBrowser control and a toolbar to the form, stretching the WebBrowser control,
WebBrowser1, to fill the space under the toolbar.

6. Add five buttons to the toolbar (right-click the toolbar, select the Properties item, click the
Buttons tab, and use the Insert Button button to add the buttons).

7. Give the buttons the same captions and Key properties: Back, Next, Home, Stop, and Refresh
(for example, the button with the caption “Back” will also have its Key property set to Back so
we can identify which button in the toolbar was clicked).

8. Add a combo box, combo1, to the end of the toolbar (draw the combo box in the toolbar to
make sure it’s part of the toolbar; don’t double-click to create a combo box and then move it to
the toolbar).

That sets up the Web browser—but how do we work with it in code? We’ll take a look at that in the
next few topics.

Specifying URLs In A Web Browser

Now that you’ve set up the controls we’ll need in a Web browser (see the previous topic), how do you
let the user navigate?

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\699-701.html (1 of 3) [3/14/2001 1:59:49 AM]

javascript:displayWindow('images/21-01.jpg',512,240)
javascript:displayWindow('images/21-01.jpg',512,240)

You use the WebBrowser control’s Navigate method. Let’s see this at work. For example, when our
Web browser first loads, we can navigate to the Microsoft Web page this way (note that you can
specify URLs with or without the “http://” part in the Internet Explorer, and although we omit it here,
you can include that prefix if you prefer):

Private Sub Form_Load()
 WebBrowser1.Navigate "www.microsoft.com"
...
End Sub

We also want the user to be able to navigate to a new URL, and that’s usually done with a combo box
like the one we added to our Web browser in the previous topic, combo1. We start working with
combo1 by displaying the present URL and adding it to the combo box’s drop-down list:

Private Sub Form_Load()
 WebBrowser1.Navigate "www.microsoft.com"
 Combo1.Text = "www.microsoft.com"
 Combo1.AddItem Combo1.Text
End Sub

Users can select past URLs from the combo box’s drop-down list. When they do select a URL that
way, a Click event is generated, and we can navigate to the newly selected URL this way:

Private Sub Combo1_Click()
 WebBrowser1.Navigate Combo1.Text
End Sub

In addition, users can type a new URL into the combo box and press Enter, just as they can in
commercial browsers. When they press Enter, we can navigate to the new URL simply by calling the
Combo1_Click event handler directly from the KeyPress event handler:

Private Sub Combo1_KeyPress(KeyAscii As Integer)
 If KeyAscii = vbKeyReturn Then
 Combo1_Click
 End If
End Sub

Finally, when the downloading process is complete, the WebBrowser control fires a
DownloadComplete event, and we can display the present URL in the browser’s title bar, just as any
commercial browser might. To do that, we get the browser’s present URL from its LocationName
property:

Private Sub WebBrowser1_DownloadComplete()
 Me.Caption = WebBrowser1.LocationName
...
End Sub

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\699-701.html (2 of 3) [3/14/2001 1:59:49 AM]

In addition, we can add that URL to the top of the combo box’s list this way:

Private Sub WebBrowser1_DownloadComplete()
 Me.Caption = WebBrowser1.LocationName
 Combo1.AddItem WebBrowser1.LocationURL, 0
End Sub

And that’s it—now the user can navigate around using the combo box. However, we have yet to make
all the buttons, such as Back, Forward, and Home, active, and we’ll do that in the next two topics. The
code for the browser, browser.frm version 1 (version 2, which is included on the accompanying
CD-ROM, will include support for the browser buttons), appears in Listing 21.1.

TIP: In our example, we made the Web browser navigate to the Microsoft home page when the browser
is first opened. However, you can make the browser start with the user’s home page (as recorded by the
Internet Explorer) with the browser control’s GoHome method.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\699-701.html (3 of 3) [3/14/2001 1:59:49 AM]

Listing 21.1 browser.frm version 1

VERSION 6.00
Object = "{EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B}#1.1#0"; "SHDOCVW.DLL"
Object = "{6B7E6392-850A-101B-AFC0-4210102A8DA7}#2.0#0"; "MSCOMCTL.OCX"
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 3195
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 7560
 LinkTopic = "Form1"
 ScaleHeight = 3195
 ScaleWidth = 7560
 StartUpPosition = 3 'Windows Default
 Begin ComctlLib.Toolbar Toolbar1
 Align = 1 'Align Top
 Height = 630
 Left = 0
 TabIndex = 1
 Top = 0
 Width = 7560
 _ExtentX = 13335
 _ExtentY = 1111
 ButtonWidth = 1164
 ButtonHeight = 953
 Appearance = 1
 _Version = 393216
 BeginProperty Buttons {66833FE8-8583-11D1-B16A-00C0F0283628}
 NumButtons = 6
 BeginProperty Button1 {66833FEA-8583-11D1-B16A-00C0F0283628}
 Caption = "Back"
 Key = "Back"
 EndProperty
 BeginProperty Button2 {66833FEA-8583-11D1-B16A-00C0F0283628}
 Caption = "Next"
 Key = "Next"
 EndProperty
 BeginProperty Button3 {66833FEA-8583-11D1-B16A-00C0F0283628}
 Caption = "Home"
 Key = "Home"
 EndProperty
 BeginProperty Button4 {66833FEA-8583-11D1-B16A-00C0F0283628}
 Caption = "Stop"
 Key = "Stop"
 EndProperty

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\702-705.html (1 of 4) [3/14/2001 1:59:56 AM]

 BeginProperty Button5 {66833FEA-8583-11D1-B16A-00C0F0283628}
 Caption = "Refresh"
 Key = "Refresh"
 EndProperty
 BeginProperty Button6 {66833FEA-8583-11D1-B16A-00C0F0283628}
 Style = 4
 Object.Width = 100
 EndProperty
 EndProperty
 Begin VB.ComboBox Combo1
 Height = 315
 Left = 3480
 TabIndex = 2
 Top = 120
 Width = 3975
 End
 End
 Begin SHDocVwCtl.WebBrowser WebBrowser1
 Height = 2295
 Left = 120
 TabIndex = 0
 Top = 840
 Width = 7335
 ExtentX = 12938
 ExtentY = 4048
 ViewMode = 1
 Offline = 0
 Silent = 0
 RegisterAsBrowser= 0
 RegisterAsDropTarget= 1
 AutoArrange = -1 'True
 NoClientEdge = 0 'False
 AlignLeft = 0 'False
 ViewID = "{0057D0E0-3573-11CF-AE69-08002B2E1262}"
 Location = ""
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Form_Load()
 WebBrowser1.Navigate "www.microsoft.com"
 Combo1.Text = "www.microsoft.com"
 Combo1.AddItem Combo1.Text

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\702-705.html (2 of 4) [3/14/2001 1:59:56 AM]

End Sub

Private Sub WebBrowser1_DownloadComplete()
 Me.Caption = WebBrowser1.LocationName
 Combo1.AddItem WebBrowser1.LocationURL, 0
End Sub

Private Sub Combo1_Click()
 WebBrowser1.Navigate Combo1.Text
End Sub

Private Sub Combo1_KeyPress(KeyAscii As Integer)
 If KeyAscii = vbKeyReturn Then
 Combo1_Click
 End If
End Sub

Adding Back And Forward Buttons To A Web Browser

Now that we’ve set up a Web browser in which the user can navigate by typing URLs into the combo box
(see the previous topic), we’ll enable the Back and Forward buttons in the browser.

That’s easier than you might expect—you just use the browser’s GoBack or GoForward methods. We
do that like this, where we determine which button in the toolbar has been clicked by checking the keys
we’ve added to those buttons:

Private Sub Toolbar1_ButtonClick(ByVal Button As Button)
 Select Case Button.Key
 Case "Back"
 WebBrowser1.GoBack
 Case "Forward"
 WebBrowser1.GoForward
 End Select
End Sub

And that’s all there is to it—now the user can navigate forwards and backwards in the browser’s history.
We’ve added Back and Forward buttons now, but the user also expects Refresh, Home, and Stop buttons
in Web browsers, and we’ll add those buttons next.

Adding Refresh, Home, And Stop Buttons To A Web Browser

In the previous few topics, we’ve set up a Web browser complete with combo box to let the user enter and
select URLs, as well as a Back and Forward button to let the user navigate through the browser’s history.
However, we still have a few more buttons to implement: the Refresh, Home, and Stop buttons.

We can implement those buttons with the Web browser control’s Refresh, GoHome, and Stop methods.
We’ve given the Refresh, Home, and Stop buttons the keys “Refresh”, “Home”, and “Stop”, so we just
call the appropriate Web browser method when the matching button is clicked (note that if the user clicks

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\702-705.html (3 of 4) [3/14/2001 1:59:56 AM]

the Stop button, we also update the current URL as displayed in the browser’s title bar using the Web
browser’s LocationName property):

Private Sub Toolbar1_ButtonClick(ByVal Button As Button)
 Select Case Button.Key
 Case "Back"
 WebBrowser1.GoBack
 Case "Forward"
 WebBrowser1.GoForward
 Case "Refresh"
 WebBrowser1.Refresh
 Case "Home"
 WebBrowser1.GoHome
 Case "Stop"
 WebBrowser1.Stop
 Me.Caption = WebBrowser1.LocationName
 End Select
End Sub

Now the user can use the new buttons, Refresh, Home, and Stop. The code for the finished Web browser
is located in the browser folder on this book’s accompanying CD-ROM.

TIP: You used to be able to specify the browser’s search page in the Internet Explorer, but as of Internet
Explorer version 4, you are taken to a page of Microsoft’s choosing. If you still want to implement a Search
button, however, just use the WebBrowser control’s GoSearch method.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\702-705.html (4 of 4) [3/14/2001 1:59:56 AM]

Creating DHTML Pages

The Testing Department is on the phone. You may have heard of the company’s Web site crash—they need to
redesign the company Web page. From scratch. Can you do it? You start up Visual Basic—sure, you say, no
problem.

You can use Visual Basic to design dynamic HTML pages. To do that, just select the Dynamic HTML
Application item in the Visual Basic New Project dialog box. This opens the DHTML Page Designer you see
in Figure 21.2.

Figure 21.2 The Visual Basic DHTML Page Designer.

In the following few topics, we’ll see how to use the DHTML Page Designer to implement DHTML pages. In
general, you add the elements you want in your page to the right window in the Page Designer, and it gives
you an idea of how the page will look in the browser. The window on the left in the Page Designer shows the
logical structure of the page by indicating which HTML elements are contained in other HTML elements.
Using the Page Designer, then, you can get an idea of both how your page will look and how it’s organized in
HTML.

Note that you can use Visual Basic in the DHTML pages designed with Visual Basic. How is this possible?
It’s possible because what you’re really creating is an ActiveX DLL project that will be loaded into the
Internet Explorer when you open the Web page. This DLL runs in the Internet Explorer’s process (and you
have to place the DLL file for the project on your Web site so it can be downloaded). To make the needed
DLL file, just select the Make ProjectName.dll item in the File menu.

You might just want to create an HTML Web page, without any DLL files at all, and you can do that too. Just
don’t add any code to the page; stick to standard HTML elements. Usually, the HTML page is stored in the
Visual Basic project. To store it in a separate HTM file, click the DHTML Page Designer Properties icon at
upper left in the DHTML Page Designer, opening the Properties dialog box, as shown in Figure 21.3.

Figure 21.3 The DHTML Page Designer Properties dialog box.

Select the Save HTML in an external file option, and give an HTM file name to save your Web page as. To
test the Web page, select the DHTMLProject Properties item in the Project menu, clicking the Debugging tab
in the Properties pages that open. Make sure the Start Component option button is clicked and the start
component is set to DHTMLPage1, then click on OK. Now select the Start item in the Run menu to open the
Web page.

Now that we’ve started designing our DHTML Web page, we’ll add text, images, tables, and other
elements—including ActiveX controls—to the page in the next few topics. For reference, the Web page that
we create, page1.htm, appears in Listing 21.2.

Listing 21.2 page1.htm

<HTML>
<HEAD>

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\706-710.html (1 of 4) [3/14/2001 2:00:10 AM]

javascript:displayWindow('images/21-02.jpg',774,458)
javascript:displayWindow('images/21-02.jpg',774,458)
javascript:displayWindow('images/21-03.jpg',445,344)
javascript:displayWindow('images/21-03.jpg',445,344)

<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META content='"MSHTML 4.72.3007.2"' name=GENERATOR>
</HEAD>

<BODY>
<P>Here’s some text!</P>
<P>Here’s an image:</P>

<P> </P>

<P>Here’s <INPUT id=SubmitButton1 name=SubmitButton1 style="LEFT: 17px;
POSITION: absolute; TOP: 170px; Z-INDEX: 103" type=submit
value=SubmitButton1>a
Submit button:
</P>
<P> </P>
<P><IMG id=Image1 name=Image1
src="c:\vbbb\dhtml\image1.bmp"
style="LEFT: 40px; POSITION: absolute; TOP: 107px; Z-INDEX: 100">
</P>
<P>
<OBJECT classid=CLSID:35053A22-8589-11D1-B16A-00C0F0283628 height=24
id=ProgressBar1
style="HEIGHT: 24px; LEFT: 127px; POSITION: absolute; TOP: 248px; WIDTH:
100px; Z-INDEX: 101"
width=100>
 <PARAM NAME="_ExtentX" VALUE="2646">
 <PARAM NAME="_ExtentY" VALUE="635">
 <PARAM NAME="_Version" VALUE="393216">
 <PARAM NAME="BorderStyle" VALUE="0">
 <PARAM NAME="Appearance" VALUE="1">
 <PARAM NAME="MousePointer" VALUE="0">
 <PARAM NAME="Enabled" VALUE="1">
 <PARAM NAME="OLEDropMode" VALUE="0">
 <PARAM NAME="Min" VALUE="0">
 <PARAM NAME="Max VALUE="100">
 <PARAM NAME="Orientation" VALUE="0">
 <PARAM NAME="Scrolling" VALUE="0">
</OBJECT>
<INPUT id=Button1 name=Button1 style="LEFT: 26px; POSITION: absolute; TOP:
248px; Z-INDEX: 102" type=button value="Click Me!">
</P>
<P>Here’s an ActiveX control:</P>
<P align=center> </P>
<P>Here’s a table:</P>
<P>
<TABLE border=1 id=Table1 name = Table1>

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\706-710.html (2 of 4) [3/14/2001 2:00:10 AM]

 <TR>
 <TD>This
 <TD>is
 <TD>a
 <TR>
 <TD>3x3
 <TD>HTML
 <TD>table
 <TR>
 <TD>ready
 <TD>to
 <TD>use.</TD></TR></TABLE></P>
<P>Here’s a hyperlink:
<A href="http://www.microsoft.com"
id=Hyperlink11 name=Hyperlink1>Microsoft

</P>
</BODY>
</HTML>

Adding Text To DHTML Pages

Adding text to a DHTML page is easy: just click the right window in the DHTML Page Designer (which
represents the way your page will look when it runs). Just use the mouse to place the blinking insertion point
where you want the text to appear, and type the text you want there. For example, we’ve added the text
“Here’s some text!” in the Web page in the Page Designer in Figure 21.4.

Figure 21.4 Adding text to a DHTML page.

Adding the text we’ve placed in our Web page adds this HTML to the Web page itself—note the Page
Designer uses the <P> paragraph HTML tag for each paragraph of text:

<HTML>
<HEAD>

<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META content='"MSHTML 4.72.3007.2"' name=GENERATOR>
</HEAD>

<BODY>
<P>Here’s some text!</P>

You can format the text by selecting the text font, size, and style (bold, italic, or underlined) with the controls
at the top of the Page Designer. Besides being able to format the text, you can also specify its
alignment—right, center, or left—with the buttons in the Page Designer’s toolbar.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\706-710.html (3 of 4) [3/14/2001 2:00:10 AM]

javascript:displayWindow('images/21-04.jpg',774,458)
javascript:displayWindow('images/21-04.jpg',774,458)

TIP: You can break DHTML Web pages into sections using the and <DIV> tags, which you insert
using buttons in the DHTML Page Designer toolbar. These HTML elements are especially important in DHTML
because you can specify dynamic HTML styles and properties that apply specifically to or <DIV>.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\706-710.html (4 of 4) [3/14/2001 2:00:10 AM]

Adding Images To DHTML Pages

The Aesthetic Design Department is calling again. Your new Web page is fine, but what about adding images?
Can you do that? you ask. Sure, they say, that’s half of what the Web is all about.

To add an image to a DHTML page in the Visual Basic DHTML Page Designer, you click the Image tool,
which is the sixth tool down on the left in the Page Designer toolbox in Figure 21.5. Doing so adds an empty
image to the page; move that image to the position you want and size it appropriately.

Figure 21.5 Adding an image to a DHTML Web page.

To add an image to this DHTML control, set its src property (the name of this and other DHTML control
properties are intended to match the corresponding HTML tag attributes; this property matches the
tag’s src attribute). In this case, we set the src property to an image on disk: file:///
C:/vbbb/dhtml/image1.bmp, although of course you can use a URL here.

Here’s how the image is added to the HTML of our Web page—note that the Page Designer sets the
tag’s position attribute to absolute, which is how it can let you position the image anywhere you want it in the
Web page:

<HTML>
<HEAD>

<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META content=‘"MSHTML 4.72.3007.2"’ name=GENERATOR>
</HEAD>

<BODY>
<P>Here’s some text!</P>

<P>Here’s an image:</P>

<P> </P>

<P><IMG id=Image1 name=Image1
src="c:\vbbb\dhtml\image1.bmp"
style="LEFT: 40px; POSITION: absolute; TOP: 107px; Z-INDEX: 100">
</P>

Because we’re using dynamic HTML, the image element is an active element: you can click it, for example,
and add code to react to that click like this, where we display a message box indicating that the user clicked
the image:

Private Function Image1_onclick() As Boolean
 MsgBox "You clicked the image!"
End Function

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\710-715.html (1 of 4) [3/14/2001 2:00:21 AM]

javascript:displayWindow('images/21-05.jpg',774,458)
javascript:displayWindow('images/21-05.jpg',774,458)

Adding HTML Controls To DHTML Pages

Using the Visual Basic DHTML Page Designer, you can add the standard HTML controls to a Web page:
buttons, Submit buttons, Reset buttons, text fields, text areas, password fields, option buttons, checkboxes,
select controls, file upload controls, hidden fields, and lists. As you can see, the whole HTML control set is
here, and you can use these controls with Visual Basic just as you would in a standard form if you create the
DLL file for your DHTML page (see “Creating DHTML Pages” earlier in this chapter), or with a scripting
language such as VBScript or JavaScript.

Adding these controls to your Web page is just like adding them to a standard Visual Basic project. You just
use the control’s tool in the Page Designer’s toolbox in the same way you’d use a tool in the Visual Basic
toolbox. For example, we’ve added a Submit button to the DHTML Web page in Figure 21.6.

Figure 21.6 Adding a Submit button to a DHTML page.

The code that the Page Designer adds to our Web page for the Submit button looks like this:

<HTML>
<HEAD>

<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META content='"MSHTML 4.72.3007.2"' name=GENERATOR>
</HEAD>

<BODY>
<P>Here’s some text!</P>

<P>Here’s an image:</P>

<P> </P>
<P><IMG id=Image1 name=Image1
src="c:\vbbb\dhtml\image1.bmp"
style="LEFT: 40px; POSITION: absolute; TOP: 107px; Z-INDEX: 100">
</P>

<P> </P>
<P>Here’s a Submit button:
<INPUT id=SubmitButton1 name=SubmitButton1 style="LEFT: 17px;
POSITION: absolute; TOP: 170px; Z-INDEX: 103" type=submit
value=SubmitButton1>
</P>

To add code to the Submit button, you double-click it in the Page Designer just as you would when creating a
standard Visual Basic. Doing so adds an event handler procedure to the page’s code:

Private Function SubmitButton1_onclick() As Boolean

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\710-715.html (2 of 4) [3/14/2001 2:00:21 AM]

javascript:displayWindow('images/21-06.jpg',774,458)
javascript:displayWindow('images/21-06.jpg',774,458)

End Function

For example, here’s how we display a message box when the user clicks the Submit button:

Private Function SubmitButton1_onclick() As Boolean
 MsgBox "You clicked the Submit button!"
End Function

Adding ActiveX Controls To DHTML Pages

You can add ActiveX controls to DHTML pages just as you can to standard Visual Basic projects—just use
the Project|Components menu item to open the Components dialog box and select the ActiveX control you
want to add. Then just add that control to the Web page as you would in any standard Visual Basic project.

For example, we add a standard HTML button and a progress bar ActiveX control to the Web page, as shown
in Figure 21.7.

Figure 21.7 Adding ActiveX controls to DHTML pages.

Here’s the HTML code that the Page Designer adds to our Web page when we add those two new controls, the
progress bar and the HTML button:

<P>Here’s an ActiveX control:</P>
<OBJECT classid=CLSID:35053A22-8589-11D1-B16A-00C0F0283628 height=24
id=ProgressBar1
style="HEIGHT: 24px; LEFT: 127px; POSITION: absolute; TOP: 248px; WIDTH:
100px; Z-INDEX: 101"
width=100>
 <PARAM NAME="_ExtentX" VALUE=2646>
 <PARAM NAME="_ExtentY" VALUE="635">
 <PARAM NAME="_Version" VALUE="393216">
 <PARAM NAME="BorderStyle" VALUE="0">
 <PARAM NAME="Appearance" VALUE="1">
 <PARAM NAME="MousePointer" VALUE="0">
 <PARAM NAME="Enabled" VALUE="1">
 <PARAM NAME="OLEDropMode" VALUE="0">
 <PARAM NAME="Min" VALUE="0">
 <PARAM NAME="Max" VALUE="100">
 <PARAM NAME="Orientation" VALUE="0">
 <PARAM NAME="Scrolling" VALUE="0">
</OBJECT>
<INPUT id=Button1 name=Button1 style="LEFT: 26px; POSITION: absolute; TOP:
248px; Z-INDEX: 102" type=button value="Click Me!">

Now we’re free to use the HTML button to set the progress bar’s value like this, just as you would in a
standard Visual Basic project:

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\710-715.html (3 of 4) [3/14/2001 2:00:21 AM]

javascript:displayWindow('images/21-07.jpg',774,458)
javascript:displayWindow('images/21-07.jpg',774,458)

Private Function Button1_onclick() As Boolean
 ProgressBar1.Value = 20
End Function

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\710-715.html (4 of 4) [3/14/2001 2:00:21 AM]

Adding Tables To DHTML Pages

One popular HTML element is the table. Tables can present data in tabular form, but savvy HTML
programmers use them for much more. They use tables to format the elements in a Web page, placing
those elements at locations they want by inserting them into a table—for example, you can add sidebars
and format image placement with hidden tables. Although the dynamic HTML position attribute helps
you place HTML elements where you want them, that attribute is not yet supported by all browsers.

To add a table to a DHTML page, you use the Table Operation drop-down box that you see in Figure
21.8. To insert a table, use the Insert Table entry in that drop-down box. When you do, the Page
Designer adds a 2×2 table to the page. To add a row, select the Insert Row entry in the Table Operation
drop-down box; to add a column, select the Insert Column entry.

Figure 21.8 Adding a table to a DHTML page.

As an example, we’ve added a 3×3 table to our Web page, as shown in Figure 21.8. To add text to each
cell in the table, just position the insertion point there with the mouse and type the text you want.

Adding Hyperlinks To DHTML Pages

To add a hyperlink to a DHTML page, you use the Hyperlink tool in the DHTML Page Designer’s
toolbox, which is the sixth tool down on the right in Figure 21.9. When you double-click the Hyperlink
tool, a hyperlink object is added to the Web page with the caption Hyperlink1. Move that hyperlink to
the location you want in the Web page, and change its caption to the text you want simply by changing
the text in the hyperlink object directly (just click the hyperlink and type the text as you would in any
word processor).

Figure 21.9 Adding a hyperlink to a Web page.

To set the hyperlink’s target URL, right-click the hyperlink and select the Properties item in the menu
that opens. Next, place the target URL in the box labeled link, as shown in Figure 21.10.

Figure 21.10 Setting hyperlink properties.

TIP: Note that you can also set a frame as the target of a hyperlink, which means that the target URL
will be loaded into the specified frame. See Figure 21.10.

Here’s the code that the Page Designer adds to our Web page for our hyperlink:

<P>Here’s a hyperlink:

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\715-719.html (1 of 3) [3/14/2001 2:00:40 AM]

javascript:displayWindow('images/21-08.jpg',774,458)
javascript:displayWindow('images/21-08.jpg',774,458)
javascript:displayWindow('images/21-09.jpg',774,458)
javascript:displayWindow('images/21-09.jpg',774,458)
javascript:displayWindow('images/21-10.jpg',401,279)
javascript:displayWindow('images/21-10.jpg',401,279)

<A href="http://www.microsoft.com"
id=Hyperlink11 name=Hyperlink1>Microsoft

</P>

That’s it—to run the Web page, select the DHTMLProject Properties item in the Project menu, clicking
the Debugging tab in the Properties pages that open. Make sure the Start Component option button is
clicked and the start component is set to DHTMLPage1, then click on OK. Now select the Start item in
the Run menu to open the Web page, as shown in Figure 21.11. As you can see, our new Web page is a
success.

Figure 21.11 Our completed Web page.

Using MAPI Controls To Support Email

The testing department is calling again. How about adding email capabilities to your new program,
SuperDuperDataCrunch? Why? you ask. If nothing else, they say, it can provide an automatic way for
the user to register their new program. Hmm, you think—how do you add email to a program?

You use the MAPI (Messaging Applications Programming Interface) controls that come with Visual
Basic.

WARNING! Note that if you want to run a program that uses the MAPI controls, make sure that you
have the 32-bit MAPI DLLs installed properly or you may not be able to perform simple MAPI functions
such as SignOn. For example, on Windows 95, you must install Mail during the operating system setup
or install it separately from the control panel to correctly use MAPI functions or MAPI custom controls
from Visual Basic. The Visual Basic email support is based on the Microsoft Exchange utility that’s
installed with Windows (and usually appears on the Windows desktop as the Inbox icon). If you want to
use the MAPI controls, make sure your desktop Inbox is configured to send and receive email.

There are two MAPI controls, the MAPISession control and the MAPIMessages control. To add these
controls to a program, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the entry labeled Microsoft MAPI Controls, and click on OK to close the Components
dialog box.

4. Step 3 adds both the MAPISession control and the MAPIMessages control to the Visual Basic
toolbox. You’ll need to add one of each of those controls to your program to use email.

You use the MAPISession control to open a new MAPI session, which is the first step to sending or
receiving email, and the MAPIMessages control lets you compose, send, and examine downloaded
messages.

The MAPIMessages control is the primary control you use in your code (the MAPISession control is
only used to connect to the Inbox). To work with the MAPIMessages control, you keep track of two

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\715-719.html (2 of 3) [3/14/2001 2:00:40 AM]

javascript:displayWindow('images/21-11.jpg',430,582)
javascript:displayWindow('images/21-11.jpg',430,582)

buffers, the read buffer and the compose buffer.

The read buffer is made up of a set of messages read from a user’s Inbox. The MsgIndex property is
used to address individual messages within this set, starting with a value of 0 for the first message and
incrementing by one for each message. You get the actual email’s text from the control’s
MsgNoteText property.

Messages can be created or edited in the compose buffer. The compose buffer is automatically set as
the active buffer when the MsgIndex property is set to -1.

The MAPIMessages control’s message set is built with the Fetch method. This set includes all
messages of type specified by the FetchMsgType property and is sorted as indicated by the
FetchSorted property. (Previously read messages can be included or left out of the message set with
the FetchUnreadOnly property.) Messages in the read buffer can’t be altered by the user but can be
copied to the compose buffer for alteration using the Copy method.

You can see an overview of the MAPIMessages control’s methods in Table 21.1, and its properties
appear in Table 21.2. We’ll put this control to work in the following few topics.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\715-719.html (3 of 3) [3/14/2001 2:00:40 AM]

Table 21.1 MAPIMessages control email methods.

Function Method

Get email from Inbox Fetch

Send email with Compose box Send

Send email Send

Save a message Save

Copy a message for reply Copy

Compose email Compose

Reply to a message Reply

Reply to all messages ReplyAll

Forward a message Forward

Delete a message Delete

Show address book Show

Show message details Show

Resolve recipient name ResolveName

Delete recipient Delete

Delete attachment Delete

Table 21.2 MAPIMessages control properties.

Property Description

Action Obsolete. Performs actions now performed by methods.

AddressCaption Sets caption of the address book.

AddressEditFieldCount Sets which address book edit controls to display.

AddressLabel Sets appearance of “To” edit control in address book.

AddressModifiable Sets whether address book can be modified by user.

AttachmentCount Gets total number of attachments for current message.

AttachmentIndex Sets currently indexed attachment.

AttachmentName Sets name of the currently indexed attachment.

AttachmentPathName Sets full path name of the currently indexed attachment.

AttachmentPosition Sets position of indexed attachment in the message body.

AttachmentType Sets type of currently indexed attachment.

FetchSorted Sets message order when creating message set.

MsgConversationID Sets the conversation thread identification value.

MsgCount Gets the total number of messages in message set.

MsgDateReceived Gets date on which current indexed message was received.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\719-723.html (1 of 4) [3/14/2001 2:00:43 AM]

MsgID Gets string identifier of current message.

MsgIndex Sets index number of current message.

MsgNoteText Text of current message.

MsgOrigAddress Gets email address of originator of current message.

MsgOrigDisplayName Gets originator’s name for current message.

MsgRead True or False depending on whether message has been read.

MsgReceiptRequested Indicates if return receipt is requested for message.

MsgSent Indicates if message has been sent to mail server.

MsgSubject Message’s subject.

MsgType Sets type of current message.

Sending Email From Visual Basic

Now that you’ve added the MAPISession and MAPIMessages control to your program (see the
previous topic), how do you use them to send email? Let’s see an example. Create a new standard EXE
project, and add the MAPISession and MAPIMessages controls MAPISession1 and MAPIMessages1.
Next add two command buttons, Command1 and Command2, with the captions “Send email” and
“Read email”. We’ll enable Command1, the Send Email button, in this topic, and Command2, the
Read Email button, in the next topic. In addition, we’ll need some place to display the email we’ve
read, so add a text box, Text1, to the form, setting its MultiLine property to True and its ScrollBars
property to Both (3).

When users click Command1, they want to send email, and we let them do so by using the
MAPIMessages control’s Compose and Send methods. Our first task, however, is to start a new MAPI
session, and we do that with the MAPISession control’s SignOn method, after indicating that we don’t
want to download email by setting its DownLoadMail property to False:

Private Sub Command1_Click()

 MAPISession1.DownLoadMail = False
 MAPISession1.SignOn

...

After signing on to the Microsoft Exchange email system, we set the MAPIMessages control’s
SessionID to the MAPISession control’s SessionID property to initialize MAPIMessages1:

Private Sub Command1_Click()

 MAPISession1.DownLoadMail = False
 MAPISession1.SignOn

 MAPIMessages1.SessionID = MAPISession1.SessionID

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\719-723.html (2 of 4) [3/14/2001 2:00:43 AM]

...

To compose a new email message, we have to set the MAPIMessages1 control’s MsgIndex property
to -1 and call its Compose method:

Private Sub Command1_Click()

 MAPISession1.DownLoadMail = False
 MAPISession1.SignOn
 MAPIMessages1.SessionID = MAPISession1.SessionID
 MAPIMessages1.MsgIndex = -1
 MAPIMessages1.Compose
...

This code displays the Compose dialog box, as shown in Figure 21.12. Users can enter the email text
and address they want to use in that dialog box and click the Send button (the Send button displays an
envelope in Figure 21.12) to send their email.

Figure 21.12 Composing an email message.

When the user is done composing the email, we send it with the MAPIMessages1 control’s Send
method and sign off the MAPI session using the MAPISession1 control’s SignOff method:

Private Sub Command1_Click()

 MAPISession1.DownLoadMail = False
 MAPISession1.SignOn

 MAPIMessages1.SessionID = MAPISession1.SessionID
 MAPIMessages1.MsgIndex = -1
 MAPIMessages1.Compose
 MAPIMessages1.Send True

 MAPISession1.SignOff
End Sub

That’s it—we’ve sent our email. What actually happens is that the program sends the new email
message to the user’s Outbox (which is also opened when you open the Inbox), and the Outbox is
usually set to send email automatically. In fact, that’s the way the Microsoft Exchange usually works:
by logging into the mail server you’ve specified at regular intervals. When it logs in, it sends the mail
waiting in the Outbox and reads any waiting email, placing it in the Inbox. (In fact, now that we’ve sent
email, we’ll see how to read that email in the next topic.)

The code for this example, email.frm version 1 (version 2, which is located on this book’s
accompanying CD-ROM, will let the user read email as well), appears in Listing 21.3.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\719-723.html (3 of 4) [3/14/2001 2:00:43 AM]

javascript:displayWindow('images/21-12.jpg',518,450)
javascript:displayWindow('images/21-12.jpg',518,450)

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\719-723.html (4 of 4) [3/14/2001 2:00:43 AM]

Listing 21.3 email.frm version 1

VERSION 6.00
Object = "{20C62CAE-15DA-101B-B9A8-444553540000}#1.1#0"; "MSMAPI32.OCX"
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 3405
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 5970
 LinkTopic = "Form1"
 ScaleHeight = 3405
 ScaleWidth = 5970
 StartUpPosition = 3 'Windows Default
 Begin VB.TextBox Text1
 Height = 2175
 Left = 240
 MultiLine = -1 'True
 ScrollBars = 3 'Both
 TabIndex = 2
 Top = 120
 Width = 5415
 End
 Begin VB.CommandButton Command2
 Caption = "Read email"
 Height = 495
 Left = 360
 TabIndex = 1
 Top = 2520
 Width = 1215
 End
 Begin MSMAPI.MAPISession MAPISession1
 Left = 1440
 Top = 1920
 _ExtentX = 1005
 _ExtentY = 1005
 _Version = 393216
 DownloadMail = -1 'True
 LogonUI = -1 'True
 NewSession = 0 'False
 End
 Begin MSMAPI.MAPIMessages MAPIMessages1
 Left = 2640
 Top = 1920
 _ExtentX = 1005
 _ExtentY = 1005

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\723-727.html (1 of 4) [3/14/2001 2:00:48 AM]

 _Version = 393216
 AddressEditFieldCount= 1
 AddressModifiable= 0 'False
 AddressResolveUI= 0 'False
 FetchSorted = 0 'False
 FetchUnreadOnly = 0 'False
 End
 Begin VB.CommandButton Command1
 Caption = "Send email"
 Height = 495
 Left = 4320
 TabIndex = 0
 Top = 2520
 Width = 1215
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Command1_Click()

 MAPISession1.DownLoadMail = False
 MAPISession1.SignOn

 MAPIMessages1.SessionID = MAPISession1.SessionID
 MAPIMessages1.MsgIndex = -1
 MAPIMessages1.Compose
 MAPIMessages1.Send True

 MAPISession1.SignOff
End Sub
Private Sub Command2_Click()
 MAPISession1.DownLoadMail = True
 MAPISession1.SignOn

 MAPIMessages1.SessionID = MAPISession1.SessionID
 MAPIMessages1.Fetch

 MAPIMessages1.MsgIndex = 0
 Text1.Text = MAPIMessages1.MsgNoteText

 MAPISession1.SignOff

End Sub

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\723-727.html (2 of 4) [3/14/2001 2:00:48 AM]

Reading Email In Visual Basic

Now that we’ve seen how to send email (see the previous topic), how do you read email? You set the
MAPISession control’s DownLoadMail property to True.

Let’s see an example. In this case, we’ll download any waiting email into the user’s Inbox and then
display the first message in a text box. We’ll use the program we started in the previous topic and add the
code we need to the Read Email button’s event handler. First, we set the MAPISession control’s
DownLoadMail property to True, then we use that control’s SignOn method to start the MAPI session
and download any waiting email into the Inbox:

Private Sub Command2_Click()
 MAPISession1.DownLoadMail = True
 MAPISession1.SignOn
...

Now that the email is in the Inbox, how do we reach it? We use the MAPIMessages control’s Fetch
method to create a message set (you can find out how many messages are in the set with the MsgCount
property). To do that, we first set the MAPIMessages control’s SessionID property to the MAPISession
control’s SessionID property and then use Fetch:

Private Sub Command2_Click()
 MAPISession1.DownLoadMail = True
 MAPISession1.SignOn

 MAPIMessages1.SessionID = MAPISession1.SessionID
 MAPIMessages1.Fetch
...

Next, we display the text of the first email message now in the Inbox by setting the MAPIMessages
control’s MsgIndex to 0 and using the MsgNoteText property. (Note that in a real email program, you
should check to make sure there really are messages waiting here, but in this case we assume there are
because we just sent one using the Send Email button—note that if your system takes significant time to
deliver email messages, you might have to alter this code.) Finally we sign off the MAPI session:

Private Sub Command2_Click()
 MAPISession1.DownLoadMail = True
 MAPISession1.SignOn

 MAPIMessages1.SessionID = MAPISession1.SessionID
 MAPIMessages1.Fetch

 MAPIMessages1.MsgIndex = 0
 Text1.Text = MAPIMessages1.MsgNoteText

 MAPISession1.SignOff

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\723-727.html (3 of 4) [3/14/2001 2:00:48 AM]

End Sub

And that’s it—we can now receive email, as you see in Figure 21.13. Now we’re sending and receiving
email with Visual Basic.

Figure 21.13 Receiving email.

The code for this example is located in the email folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\723-727.html (4 of 4) [3/14/2001 2:00:48 AM]

javascript:displayWindow('images/21-13.jpg',406,254)
javascript:displayWindow('images/21-13.jpg',406,254)

Using The Internet Transfer Control For FTP And HTTP Operations

You use the Microsoft Internet transfer control to handle FTP and HTTP operations in Visual Basic.
Using the HTTP protocol, you can connect to World Wide Web servers to retrieve HTML documents.
With the FTP protocol, you can log on to FTP servers to download and upload files.

The UserName and Password properties allow you to log on to private servers that require
authentication. Otherwise, you can connect to public FTP servers and download files. The common
FTP commands, such as CD and GET, are supported through the Execute method. You can keep track
of the Internet transfer control’s operations with the StillExecuting property. If this property is True,
the control is working on a transfer and will not respond to other actions.

The Internet transfer control performs asynchronous Internet transfers, so besides the StillExecuting
property, Microsoft has given the control a StateChanged event. In this event’s handler procedure, you
are kept up-to-date on what’s going on with the Internet transfer control:

Private Sub object_StateChanged(ByVal State As Integer)

End Sub

The State argument can take these values:

• icNone—0; no state to report.

• icHostResolvingHost—1; the control is looking up the IP address of the specified host
computer.

• icHostResolved—2; the control successfully found the IP address of the specified host
computer.

• icConnecting—3; the control is connecting to the host computer.

• icConnected—4; the control successfully connected to the host computer.

• icRequesting—5; the control is sending a request to the host computer.

• icRequestSent—6; the control successfully sent the request.

• icReceivingResponse—7; the control is receiving a response from the host computer.

• icResponseReceived—8; the control successfully received a response from the host computer.

• icDisconnecting—9; the control is disconnecting from the host computer.

• icDisconnected—10; the control successfully disconnected from the host computer.

• icError—11; an error occurred in communicating with the host computer.

• icResponseCompleted—12; the request has completed and all data has been received.

Note that when a request is finished, the State argument in the StateChanged event will be set to
icResponseCompleted, and it’s safe to execute another command with the Internet transfer control.

To add an Internet transfer control to a program, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\727-729.html (1 of 3) [3/14/2001 2:00:55 AM]

3. Select the entry labeled Microsoft Internet Transfer Control.

4. Click on OK to close the Components dialog box to add the Microsoft Internet Transfer
Control tool to the toolbox.

5. Double-click the Microsoft Internet Transfer Control tool to the toolbox and add that control
to your form. This control is invisible at runtime, so its size and location are not important.

6. Add the code you want to use with the control to your program.

When you start an FTP or HTTP operation with the Internet transfer control, the control will connect to
the Internet (using the user’s system defaults) if the computer is not already connected.

TIP: For a complete FTP file upload example, including using the StateChanged event, see our online
application registration example in Chapter 30.

Now that we’ve added an Internet transfer control to a program, we’ll put that control to work in the
next few topics.

Handling FTP Operations In Visual Basic

There are two ways of handling FTP operations with the Microsoft Internet transfer control: using the
OpenUrl method and using the Execute method. The OpenUrl method lets you download files and
uses the FTP protocol if the URL you specify begins with ftp:// (for example,
“ftp://ftp.microsoft.com/file.txt”); here’s how you use OpenUrl:

InetControl.OpenUrl url [, datatype]

The datatype argument can either be icString (the default) for text data or icByteArray for binary data.
If you use icString, OpenUrl returns a string; if you use icByteArray, OpenUrl returns a byte array.

The Execute method can execute FTP commands. Here’s how you use Execute:

InetControl.Execute url, operation, data, requestHeaders

Here’s what the arguments to Execute mean:

• url—String that specifies the URL to which the control should connect. If no URL is specified
here, the URL specified in the URL property will be used.

• operation—String that specifies the type of operation to be executed.

• data—String that specifies the data for operations.

• requestHeaders—String that specifies additional headers to be sent from the remote server.
The format for these is header name: header value vbCrLf.

The FTP commands that you can use with the Internet transfer control and what they do appear in
Table 21.3.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\727-729.html (2 of 3) [3/14/2001 2:00:55 AM]

ftp://ftp.microsoft.com/file.txt

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\727-729.html (3 of 3) [3/14/2001 2:00:55 AM]

Handling HTTP Operations In Visual Basic

There are two ways of handling HTTP operations with the Microsoft Internet transfer control: using the
OpenUrl method and using the Execute method. The OpenUrl method lets you download files and
uses the HTTP protocol if the URL you specify begins with http:// (for example,
“http://www.microsoft.com”). Here’s how you use OpenUrl:

InetControl.OpenUrl url [, datatype]

The datatype argument can either be icString (the default) for text data or icByteArray for binary data.
If you use icString, OpenUrl returns a string; if you use icByteArray, OpenUrl returns a byte array.

The Execute method can execute HTTP commands. Here’s how you use Execute:

InetControl.Execute url, operation, data, requestHeaders

The arguments for the Execute method are as follows:

• url—String that specifies the URL to which the control should connect. If no URL is specified
here, the URL specified in the URL property will be used.

• operation—String that specifies the type of operation to be executed.

• data—String that specifies the data for operations.

• requestHeaders—String that specifies additional headers to be sent from the remote server. The
format for these is header name: header value vbCrLf.

The HTTP commands that you can use with the Internet transfer control and what they do appear in
Table 21.4.

Table 21.4 HTTP commands of the Internet transfer control’s Execute method.

Command Description

GET Gets the file named in URL (for example, Execute
“http://www.server.com/index.htm”, “GET”)

HEAD Gets headers of file given in URL property (for example, Execute , “HEAD”)

POST Provides additional data to support request to host (for example, Execute ,
“POST”, strFormData)

PUT Replaces data at URL (for example, Execute , “PUT”, “new.htm”)

Let’s see an example. Add an Internet transfer control, Inet1, to a program, as well as a text box, Text1.
We’ll download the HTML of the Microsoft Visual Basic Web page using the HTTP protocol and
display that page in the text box, so set Text1’s MultiLine property to True and its Scrollbars property
to Both (3). In addition, we can download a binary file—an image file, for example—using the HTTP
protocol and store that image file on disk. To let the user perform these actions, add two buttons to the
program: Command1, with the caption “Read HTML”, and Command2, with the caption “Read
binary”.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\734-738.html (1 of 3) [3/14/2001 2:00:58 AM]

http://www.microsoft.com/
http://www.server.com/index.htm

When the user clicks Command1, the Read HTML button, we just download the raw HTML of the
Microsoft Visual Basic Web page and display it in the text box Text1 using the OpenURL method
(note that by the time you read this, Microsoft may possibly have renamed this file):

Private Sub Command1_Click()
 Text1.Text = _
 Inet1.OpenURL("http://www.microsoft.com/vbasic/default.htm")
End Sub

When the user clicks Command2, the Read Binary button, we can read a binary file using the HTTP
protocol. In this case, we’ll read a GIF file from the Microsoft Web site, home.gif, which just displays
the word “Microsoft”. We load that image file into a byte array, bytData:

Private Sub Command2_Click()
 Dim bytData() As Byte

 bytData() = Inet1.OpenURL(_
 "http://www.microsoft.com/library/images/gifs/toolbar/home.gif", _
 icByteArray)
 ...
End Sub

All that’s left is to write the file out to disk and to inform the user that the operation is complete, which
we do with a message box:

Private Sub Command2_Click()
 Dim bytData() As Byte

 bytData() = Inet1.OpenURL(_
 "http://www.microsoft.com/library/images/gifs/toolbar/home.gif", _
 icByteArray)

 Open "c:\vbbb\http\home.gif" For Binary Access Write As #1
 Put #1, , bytData()
 Close #1

 MsgBox "home.gif downloaded"
End Sub

That’s it. Run the program now, as shown in Figure 21.16. When you click the Read HTML button, the
program downloads the Microsoft Visual Basic Web page and displays it in the text box, as shown in
Figure 21.16. When you click the Read Binary button, the program downloads the home.gif file onto
disk. Our http program is a success.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\734-738.html (2 of 3) [3/14/2001 2:00:58 AM]

javascript:displayWindow('images/21-16.jpg',320,240)

Figure 21.16 Downloading a Web page’s HTML using the HTTP protocol.

The code for this example is located in the http folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Visual Basic And The Internet: Web Browsing, Email, HTTP, FTP, And DHTML

http://24.19.55.56:8080/temp/ch21\734-738.html (3 of 3) [3/14/2001 2:00:58 AM]

javascript:displayWindow('images/21-16.jpg',320,240)

Chapter 22
Multimedia
If you need an immediate solution to:

Using The Animation Control

Adding A Multimedia Control To A Program

Setting The Device Type And Opening The Device

Setting File Information And Opening Files

Setting A Multimedia Control’s Time Format

Controlling The Multimedia Control From Code

Stopping And Pausing The Multimedia Control

Displaying The Multimedia Control’s Status

Closing The Multimedia Control

Playing CDs From Your CD-ROM Drive

Playing WAV Files

Playing MID Files

Playing AVI Files

Playing MPG Files

Keeping Track Of Multimedia Command Execution Using Notification

Handling Multimedia Errors

Stepping A Multimedia Control Forward Or Backward Frame By Frame

Starting From And To In A Multimedia Control

Making The Multimedia Control Wait

Multimedia Without Multimedia Controls

In Depth

Multimedia has become a hot topic in recent years, and rightly so. Programs with interactive sound,
images, and animations can be very effective—more so than static ones—and computers are
increasingly well equipped to handle multimedia.

What do we mean by multimedia? For the purposes of this chapter, multimedia refers to supporting
sound and animated images. There are endless devices and programs to work with multimedia, ranging
from simple programs that can display simple animations to VCR and videodisc players and advanced
MIDI devices. Visual Basic provides a great deal of multimedia support, and that support is wrapped
up in the multimedia control. This chapter is about the multimedia control, although we’ll also see a
few additional techniques, such as using the animation control and interacting with Windows directly
to support multimedia.

The Multimedia MCI Control

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\739-742.html (1 of 3) [3/14/2001 2:01:02 AM]

The multimedia MCI control we’ll use in Visual Basic manages the recording and playback of
multimedia files on Media Control Interface (MCI) devices. This control issues commands to devices
like audio boards, MIDI sequencers, CD-ROM drives, audio CD players, videodisc players, videotape
recorder/players, and more. The multimedia control also lets you play WAV and MID sound files and
display video files like AVI and MPG.

The actual control displays a bar of buttons, as shown in Figure 22.1. The buttons are named Prev,
Next, Play, Pause, Back, Step, Stop, Record, and Eject, in that order. As you can see, the multimedia
control is designed to let the user control multimedia presentations, rather than present them itself.

Figure 22.1 The Visual Basic multimedia control.

To use the multimedia control, your application should already have the MCI device open (and the
appropriate buttons in the multimedia MCI control enabled) before the user chooses a button in the
control. To make sure a device is open, you usually place the MCI Open command in the Form_Load
event.

Using The Multimedia Control From Code

The multimedia control can be visible or invisible at runtime, and if it’s invisible, you can use it in
code. If the control is visible, the user can click buttons to operate the control; if the control is invisible,
you can use it from your program’s code by using its Command property to execute Open, Play,
Record, Close, and other commands. In this way, you can play audio and display video (in controls
like picture boxes) even though the user doesn’t know you’re using a multimedia control.

From code, you set various properties of the multimedia control, such as the time format the device
uses, the file it is to open and play or record to, and other aspects, as we’ll see in this chapter.

You can keep track of the multimedia control through two events, the Done event and the
StatusUpdate event. The Done event is fired to indicate that various multimedia operations are
completed (if you have set the control’s Notify property to True), and the StatusUpdate property
occurs when the status of the control changes (such as when the user clicks the Play button and the
controls begins playback). The Done event handler is passed a notification code that you can check,
and in the StatusUpdate event handler, you can check the control’s Mode property to see if the control
is playing, is paused, is stopped, and so forth. You can also redefine the buttons in a multimedia control
in code if you want to by developing code for the control’s button events, which occur when the user
clicks a button.

TIP: When you create and distribute applications that use the multimedia MCI control, you should
install and register the appropriate files in the customer’s Microsoft Windows System (or System32
directory). The Package and Deployment Wizard included with Visual Basic (see Chapter 30) provides
tools to help you write setup programs that install your applications correctly.

That’s it for the overview of multimedia for the moment. It’s time to turn to our Immediate Solutions.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\739-742.html (2 of 3) [3/14/2001 2:01:02 AM]

javascript:displayWindow('images/22-01.jpg',320,184)
javascript:displayWindow('images/22-01.jpg',320,184)

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\739-742.html (3 of 3) [3/14/2001 2:01:02 AM]

Immediate Solutions

Using The Animation Control

Visual Basic comes with an animation control, and we’ll start our multimedia operations by taking a look at
this control. This control is smaller than the multimedia control and takes up fewer system resources, but it’s
very restricted. The animation control can only play AVI files, and those without sound at that. In addition,
the animation control can display only uncompressed AVI files or AVI files that have been compressed
using run-length encoding (RLE).

WARNING! The animation control is pretty picky: if you try to load an AVI file into an animation control that
includes sound data or that is in a format not supported by the control, an error (error 35752) is returned.

This control is useful because you can play AVI files in it directly, without using another control (for
example, the multimedia control uses a picture box to play animations). The control allows you to create
buttons or other objects that display animations when clicked. For example, the File Copy progress bar in
Windows 95 uses an animation control; as you’ve probably seen, pieces of paper “fly” from one folder to
another while the copy operation is in progress, and that’s supported with an animation control.

Here’s how you add an animation control to a program:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the entry labeled Microsoft Windows Common Controls-2, and click on OK to close the
Components dialog box.

4. The previous steps add the Animation Control tool to the Visual Basic toolbox; draw the control as
you like in your program.

To display an AVI file, you use the control’s Open method to open that file, passing the file name as the
single argument to Open. After you’ve opened the file to play, you can use the Play method to play the file:

AnimationControl.Play ([varRepeatCount] [,varStartFrame] [,varEndFrame])

You can also set the control’s AutoPlay property to True to make the control play the AVI file as soon as it
opens that file. Here’s an example in which we set AutoPlay to True for an animation control, Animation1:

Private Sub Command1_Click()
 Animation1.AutoPlay = True
...
End Sub

Then we open and play an AVI file, animation3.avi:

Private Sub Command1_Click()
 Animation1.AutoPlay = True
 Animation1.Open "animation3.avi"
End Sub

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\742-745.html (1 of 3) [3/14/2001 2:01:07 AM]

The animation control is relatively lightweight, so you can add it to your programs without taking up many
system resources, but the limits of this control are severe. If you want to play AVI files with sound or other
types of files, look into the multimedia control topics coming up in this chapter.

Adding A Multimedia Control To A Program

The Aesthetic Design Department is calling again. Users of your program, SuperDuperDataCrunch, get
pretty tense around tax time while computing their taxes using that program. Wouldn’t it be great if your
program could play some soothing music in the background? Well, you say dubiously, if you really want to.

You can let your program play sounds (WAV files, MID files, or even the CD in the computer’s CD drive)
using the multimedia control, and we’ll see how to add that control to a program now. Just follow these
steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the entry labeled Microsoft Multimedia Control, and click on OK to close the Components
dialog box.

4. The previous steps add the Multimedia Control tool to the Visual Basic toolbox; draw the control
as you like in your program.

5. The multimedia control can be oriented horizontally or vertically—to orient it horizontally (the
default), set the control’s Orientation property to mciOrientHorz (0); to orient it vertically, set it to
mciOrientVertical.
6. Set the control’s DeviceType, FileName, and TimeFormat properties as needed—see the
following topics in this chapter.

Now that you’ve added a multimedia control to your program, see the following few topics on how to
configure and use it in code.

Setting The Device Type And Opening The Device

Now that you’ve added a multimedia control, how do you indicate what kind of multimedia device you want
to open? And how do you open it? Does opening the device make the buttons in the multimedia control
active?

You can use the control’s DeviceType property to set the type of device you want to work with. You set this
property when you’re opening an actual device such as a CD drive, or when the name of the file you’re
working with (see the following topic, “Setting File Information”) does not indicate the format of the
multimedia data. Note that you do not need to set the DeviceType property when playing files in recognized
file formats like WAV, MID, AVI, MPG, and so on.

Here are the different strings you can set the DeviceType property to, one for all the device types the
multimedia control supports:

• AVIVideo

• CDAudio

• DAT

• DigitalVideo

• MMMovie

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\742-745.html (2 of 3) [3/14/2001 2:01:07 AM]

• Other

• Overlay

• Scanner

• Sequencer

• VCR

• Videodisc

• WaveAudio

You set the DeviceType property before opening the device with the Open command. To use the Open
command, you set the multimedia control’s Command property to “Open”.

Let’s see an example. Here, we open a music CD in the computer’s CD-ROM drive, connecting it to the
multimedia control MMControl1 when in the Form_Load event and then opening that device:

Private Sub Form_Load()
 MMControl1.TimeFormat = MCI_FORMAT_TMSF
 MMControl1.DeviceType = "CDAudio"
 MMControl1.Command = "Open"
End Sub

If there is a CD in the CD drive, the multimedia control’s buttons become active after executing this code
and the user can play the CD (if your version of Windows has AutoPlay enabled, you might have to hold
down the shift key while inserting the CD to make sure the Windows CD player does not come up
automatically).

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\742-745.html (3 of 3) [3/14/2001 2:01:07 AM]

Setting File Information And Opening Files

The Testing Department is calling again. The new multimedia control you’ve added to your program
looks really fine—but how about that music you were going to play?

Besides physical devices like MIDI devices and CD players, the multimedia control can play files from
disk, such as AVI, MPG, WAV, and MID files. If you want to play or record a file in a recognized
multimedia format, you can specify the file name the control is to work with without specifying the
device type in the DeviceType property (the control gets the data format from the file name’s
extension).

To specify which file you want to use with a multimedia control, you set that control’s FileName
property, and to open that file (and so make the multimedia control’s buttons active so the user can play
the file), you set the control’s Command property to “Open”. Let’s see an example. Here, we set the
file to work with to C:\windows\media\ding.wav (which comes with Windows) and then open that file,
making the buttons of the multimedia control, MMControl1, active:

Private Sub Form_Load()
 MMControl1.Notify = False
 MMControl1.Wait = True
 MMControl1.Shareable = False
 MMControl1.FileName = "C:\WINDOWS\MEDIA\DING.WAV"
 MMControl1.Command = "Open"
End Sub

When the multimedia control’s buttons are active, users can work with the file—for example, to play
the file, they click the Play button.

Setting A Multimedia Control’s Time Format

Now that we’re working with animations and sound playback, timing information becomes important,
and we can set the time format (such as milliseconds) used in the multimedia control to specify timing
information. In particular, the multimedia control supports these properties that access or send
information in the current time format: From, Length, Position, Start, To, TrackLength, and
TrackPosition.

To set the time format for a multimedia control, use the TimeFormat property; this property indicates
the timing units used by the control. This property can take these values:

• mciFormatMilliseconds—0; milliseconds are stored as a 4-byte integer variable.

• mciFormatHms—1; hours, minutes, and seconds are packed into a 4-byte integer. From least
significant byte to most significant byte, the individual data values are as follows:
Hours/Minutes/Seconds/Unused.

• mciFormatMsf—2; minutes, seconds, and frames are packed into a 4-byte integer. From least
significant byte to most significant byte, the individual data values are as follows: Minutes/
Seconds/ Frames/Unused.

• mciFormatFrames—3; frames are stored as a 4-byte integer variable.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\745-747.html (1 of 2) [3/14/2001 2:01:09 AM]

• mciFormatSmpte24—4; 24-frame SMPTE packs the following values in a 4-byte variable
from least significant byte to most significant byte: Hours/ Minutes/Seconds/ Frames. SMPTE
(Society of Motion Picture and Television Engineers) time is an absolute time format expressed
in hours, minutes, seconds, and frames. The standard SMPTE division types are 24, 25, and 30
frames per second.

• mciFormatSmpte25—5; 25-frame SMPTE packs data into the 4-byte variable in the same
order as 24-frame SMPTE.

• mciFormatSmpte30—6; 30-frame SMPTE packs data into the 4-byte variable in the same
order as 24-frame SMPTE.

• mciFormatSmpte30Drop—7; 30-drop-frame SMPTE packs data into the 4-byte variable in
the same order as 24-frame SMPTE.

• mciFormatBytes—8; bytes are stored as a 4-byte integer variable.

• mciFormatSamples—9; samples are stored as a 4-byte integer variable.

• mciFormatTmsf—10; tracks, minutes, seconds, and frames are packed in the 4-byte variable
from least significant byte to most significant byte: Tracks/Minutes/Seconds/Frames.

WARNING! As you might expect, not all formats are supported by every device. In practice, this means
that if you try to set an invalid format, it is ignored.

Let’s see an example. Here, we set the time format in a multimedia control that opens the file
C:\windows\media\canyon.mid (which comes with Windows) to mciFormatMilliseconds:

Private Sub Form_Load()
 MMControl1.TimeFormat = mciFormatMilliseconds
 MMControl1.FileName = "c:\windows\media\canyon.mid"
 MMControl1.Command = "Open"
End Sub

Then we can report where we are in the MID file with the StatusUpdate event (see “Displaying the
Multimedia Control’s Status” later in this chapter) and the Position property, which holds the time
that’s elapsed from the beginning of the file, displaying that time in a label, Label1.

You should know that although we’ve set the time to milliseconds, it’s actually only reported in tenths
of a second (probably because the computer’s Timer event can only occur 18.2 times a second), so we
display the current time location in the MID file this way:

Private Sub MMControl1_StatusUpdate()
 Label1.Caption = Str(MMControl1.Position / 10)
End Sub

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\745-747.html (2 of 2) [3/14/2001 2:01:09 AM]

Controlling The Multimedia Control From Code

The multimedia control displays buttons for the user to control what’s going on with a particular
multimedia device, but there are times when you don’t want the control to be visible. For example, you
may want to play sounds under program control using the multimedia control, in which case you don’t
want your multimedia control to be visible. In such a case, you should issue commands to the control
directly using its Command property.

TIP: If you really just want to play sounds under program control, you can avoid the heavy drain on
system resources by interfacing directly to Windows to play sounds instead of using a multimedia control.
See “Multimedia Without Multimedia Controls” near the end of this chapter.

Every action that you can perform with a multimedia control you can perform with the Command
property. Here are the possible commands that you set (as text strings) in the Command property:

• Open—Opens a device using the MCI_OPEN command. Uses the DeviceType and/or
FileName properties.

• Close—Closes a device using the MCI_CLOSE command.

• Play—Plays a device using the MCI_PLAY command. Can use the From and To properties
if they are set.

• Pause—Pauses playing or recording using the MCI_PAUSE command. If executed while the
device is paused, tries to resume playing or recording using the MCI_RESUME command.

• Stop—Stops playing or recording using the MCI_STOP command.

• Back—Steps backward using the MCI_STEP command. Uses the Frames property.

• Step—Steps forward using the MCI_STEP command. Uses the Frames property.

• Prev—Goes to the beginning of the current track using the Seek command. If executed within
three seconds of the previous Prev command, it goes to the beginning of the previous track or to
the beginning of the first track if at the first track.

• Next—Goes to the beginning of the next track (if at the last track, it goes to beginning of the
last track) using the Seek command.

• Seek—If not playing, seeks a position using the MCI_SEEK command. If playing, continues
playing from the given position using the MCI_PLAY command. Can use the To property if set.

• Record—Records using the MCI_RECORD command. Can use the From and To properties
if they are set.

• Eject—Ejects media using the MCI_SET command.

• Sound—Plays a sound using the MCI_SOUND command. Uses the FileName property.

• Save—Saves an open file using the MCI_SAVE command. Uses the FileName property.

Let’s see an example. Here, we open and play the file C:\windows\media\ding.wav (which comes with
Windows) when a form loads, using the Open and Play commands:

Private Sub Form_Load()
 MMControl1.Notify = False

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\747-750.html (1 of 2) [3/14/2001 2:01:10 AM]

 MMControl1.Wait = True
 MMControl1.Shareable = False

 MMControl1.FileName = "C:\WINDOWS\MEDIA\DING.WAV"
 MMControl1.Command = "Open"
 MMControl1.Command = "Play"
End Sub

If you don’t want the multimedia control in this code, MMControl1, to be visible, set its Visible
property to False.

Stopping And Pausing The Multimedia Control

The Testing Department is calling again. Beethoven’s Fifth Symphony is really fine, but does your
program have to play it continuously? You explain that you like Beethoven. Fine, they say, add Stop
and Pause buttons to your program.

Although the multimedia control has Stop and Pause buttons, those buttons won’t be accessible if
you’re running the control from code and have made the control invisible. To stop the control, you can
set its Command property to “Stop” this way:

Private Sub Stop_Click()
 MMControl1.Command = "Stop"
End Sub

To pause the control, you set the Command property to “Pause”:

Private Sub Pause_Click()
 MMControl1.Command = "Pause"
End Sub

Executing this line of code if the control is paused makes it try to resume again, but note that many
devices don’t support pause and resume. For example, if you’re using the computer’s CD-ROM drive
to play music and try to pause it, you’ll find that most drives stop and the multimedia control’s Mode
property (see the next topic in this chapter) will be set to mciModeStop, not mciModePause. If you
try to resume the CD-ROM music with another Pause command, nothing will happen—you have to
use the Play command to restart playback.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\747-750.html (2 of 2) [3/14/2001 2:01:10 AM]

Displaying The Multimedia Control’s Status

The Testing Department is calling again. Your multimedia program, SuperDuperSounds4U, is terrific,
but how about a control panel that shows the current operation—play, stop, pause, and so on? Hmm,
you think, how can you do that?

You can use the Mode property to determine the current operation in a multimedia control. Here are
the possible values for that property:

• mciModeNotOpen—524; device is not open

• mciModeStop—525; device is stopped

• mciModePlay—526; device is playing

• mciModeRecord—527; device is recording

• mciModeSeek—528; device is seeking

• mciModePause—529; device is paused

• mciModeReady—530; device is ready

As you can see, the Mode property tells you what’s going on with the multimedia control—but when
do you use the Mode property? You usually use that property in the multimedia control’s
StatusUpdate event handler. The StatusUpdate event occurs at regular intervals as specified in the
UpdateInterval property (this property is set in milliseconds). You can take advantage of the
StatusUpdate event to keep the user appraised of the status of multimedia operations.

Let’s see an example. Here, we’ll display the status of a multimedia control, MMControl1, in a label
control, Label1. We start with a Select Case statement in the StatusUpdate event handler, which uses
the control’s Mode property as the selection criterion:

Private Sub MMControl1_StatusUpdate()
 Select Case MMControl1.Mode
...
 End Select

End Sub

Now we check for the various possible multimedia operations by setting up case statements for
possible values of the Mode property:

Private Sub MMControl1_StatusUpdate()
 Select Case MMControl1.Mode

 Case mciModeReady

 Case mciModeStop

 Case mciModeSeek

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\750-753.html (1 of 4) [3/14/2001 2:01:15 AM]

 Case mciModePlay

 Case mciModeRecord

 Case mciModePause

 End Select

End Sub

Next we set up a string, strMode, to hold the current multimedia mode, and display that mode in a
label control in the program, Label1, this way:

Private Sub MMControl1_StatusUpdate()
 Dim strMode As String
 strMode = ""

 Select Case MMControl1.Mode

 Case mciModeReady
 strMode = "Ready."

 Case mciModeStop
 strMode = "Stopped."

 Case mciModeSeek
 strMode = "Seeking."

 Case mciModePlay
 strMode = "Playing."

 Case mciModeRecord
 strMode = "Recording."

 Case mciModePause
 strMode = "Paused."

 End Select

 Label1.Caption = strMode

End Sub

Adding this code to a multimedia control program, such as the CD player program in Figure 22.2 (this
program is developed later in this chapter), indicates to the user the current status of that control.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\750-753.html (2 of 4) [3/14/2001 2:01:15 AM]

Figure 22.2 Showing the status of the multimedia control.

You can also display the time that’s elapsed in the current operation. Let’s see an example. Here, we set
the time format in a multimedia control that opens the file C:\windows\media\canyon.mid (which
comes with Windows) to mciFormatMilliseconds:

Private Sub Form_Load()
 MMControl1.TimeFormat = mciFormatMilliseconds
 MMControl1.FileName = "c:\windows\media\canyon.mid"
 MMControl1.Command = "Open"
End Sub

Then we can report where we are in the MID file with the StatusUpdate event and the Position
property, which holds the time that’s elapsed from the beginning of the file, displaying that time in a
label, Label1. Although we’ve set the time to milliseconds, it’s actually only reported in tenths of a
second (probably because the computer’s Timer event can only occur 18.2 times a second), so we
display the current time in the MID file this way:

Private Sub MMControl1_StatusUpdate()
 Label1.Caption = Str(MMControl1.Position / 10)
End Sub

Closing The Multimedia Control

When you’re finished with the multimedia control, you usually close it, typically in the Form_Unload
event. Here, for example, we close the multimedia control when the form unloads using the Close
command:

Private Sub Form_Unload (Cancel As Integer)
 MMControl1.Command = "Close"
End Sub

In fact, it’s a good idea to execute a Stop command before closing the control, because closing the
control does not necessarily stop operations like audio playback (for example, your CD will keep
playing even if you exit your multimedia control CD player program, unless you explicitly stop the
CD):

Private Sub Form_Unload (Cancel As Integer)
 MMControl1.Command = "Stop"
 MMControl1.Command = "Close"
End Sub

TIP: If you’re recording data with the multimedia control’s Record command, you should use the Save

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\750-753.html (3 of 4) [3/14/2001 2:01:15 AM]

javascript:displayWindow('images/22-02.jpg',320,240)
javascript:displayWindow('images/22-02.jpg',320,240)

command before closing the control to save the recorded data to disk (in the file whose name you’ve
specified in the FileName property).

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\750-753.html (4 of 4) [3/14/2001 2:01:15 AM]

Playing CDs From Your CD-ROM Drive

The Testing Department is calling again. Where’s that program to play CDs from the user’s CD-ROM
drive? On its way, you say.

It’s easy to create a program that will play music CDs in your computer’s CD-ROM drive. Just add a
multimedia control, MMControl1, to a form, and a label, Label1, which we’ll use to display the
player’s current operation (for example, playing, stopped, and so on).

When the form loads, we just set the multimedia control’s DeviceType property to CDAudio and open
the device:

Private Sub Form_Load()
 MMControl1.DeviceType = "CDAudio"
 MMControl1.Command = "Open"
End Sub

That’s all it takes. Now the user can play the CD in the computer’s CD-ROM drive by using the
buttons in the multimedia control.

Besides playing the CD, we can display what the multimedia control is doing in a label, Label1, by
adding this code to the multimedia control’s StatusUpdate event handler:

Private Sub MMControl1_StatusUpdate()
 Dim strMode As String
 strMode = ""

 Select Case MMControl1.Mode

 Case mciModeReady
 strMode = "Ready."

 Case mciModeStop
 strMode = "Stopped."

 Case mciModeSeek
 strMode = "Seeking."

 Case mciModePlay
 strMode = "Playing."

 Case mciModeRecord
 strMode = "Recording."

 Case mciModePause
 strMode = "Paused."

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\753-757.html (1 of 4) [3/14/2001 2:01:23 AM]

 End Select

 Label1.Caption = strMode

End Sub

Finally, we stop the CD (if it hasn’t already been stopped) and close the multimedia control when the
form is unloaded:

Private Sub Form_Unload(Cancel As Integer)
 MMControl1.Command = "Stop"
 MMControl1.Command = "Close"
End Sub

TIP: You can even eject a CD with the multimedia control’s Eject command, if the CD drive supports
that command.

The program is ready to run—run it now as shown in Figure 22.3 (we’ve added a few more labels to
hold captions like “CD Player” and so on in the program there). If you have loaded a music CD into
your CD-ROM drive, you should be able to play that CD using the CD player program.

Figure 22.3 Our Visual Basic CD player.

The code for this program is located in the cdplayer folder on this book’s accompanying CD-ROM.

TIP: If you don’t have a sound card in your computer (and so no speakers) but still want to play CDs
with our CD player program, don’t despair just yet—most modern CD-ROM drives come with an
earphone jack in the front. Just plug your earphones right in.

Playing WAV Files

The Testing Department is calling again. How’s that program that plays WAV sound files coming?
Coming right up, you say.

It’s easy to write a program to play WAV files using the multimedia control—just set the control’s
FileName property to the name of the file to open, and open it with the Open command. The
multimedia control’s buttons will become active at that point, and users can play the file as they like,
or, if you’ve hidden the multimedia control, you can use its Command property to play the file with
the Play command.

TIP: If you really just want to play sounds under program control, you can avoid the heavy drain on
system resources by interfacing directly to Windows to play sounds instead of using a multimedia control.
See “Multimedia Without Multimedia Controls” near the end of this chapter.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\753-757.html (2 of 4) [3/14/2001 2:01:23 AM]

javascript:displayWindow('images/22-03.jpg',320,240)
javascript:displayWindow('images/22-03.jpg',320,240)

Let’s see an example. Here, we set the file to work with to C:\windows\media\ding.wav (which comes
with Windows) and then open that file, making the buttons of the multimedia control, MMControl1,
active when the form loads:

Private Sub Form_Load()
 MMControl1.FileName = "C:\WINDOWS\MEDIA\DING.WAV"
 MMControl1.Command = "Open"
End Sub

Now the user can play the WAV file using the multimedia control’s buttons.

Besides playing the WAV file, we can display what the multimedia control is doing in a label, Label1,
by adding this code to the multimedia control’s StatusUpdate event handler:

Private Sub MMControl1_StatusUpdate()
 Dim strMode As String
 strMode = ""

 Select Case MMControl1.Mode

 Case mciModeReady
 strMode = "Ready."

 Case mciModeStop
 strMode = "Stopped."

 Case mciModeSeek
 strMode = "Seeking."

 Case mciModePlay
 strMode = "Playing."

 Case mciModeRecord
 strMode = "Recording."

 Case mciModePause
 strMode = "Paused."

 End Select

 Label1.Caption = strMode

End Sub

Finally, we stop playback (if it hasn’t already been stopped), and close the multimedia control when the
form is unloaded:

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\753-757.html (3 of 4) [3/14/2001 2:01:23 AM]

Private Sub Form_Unload(Cancel As Integer)
 MMControl1.Command = "Stop"
 MMControl1.Command = "Close"
End Sub

That’s all we need. Now run the program as shown in Figure 22.4 (we’ve added a label to the program
to display a caption). When you click the Play button, the WAV file will be played. Our program is a
success.

Figure 22.4 Playing WAV files from Visual Basic.

The code for this example is located in the wavplayer folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\753-757.html (4 of 4) [3/14/2001 2:01:23 AM]

javascript:displayWindow('images/22-04.jpg',320,268)
javascript:displayWindow('images/22-04.jpg',320,268)

Playing MID Files

Can you play MID format sound files from Visual Basic? You sure can, using the multimedia control.

TIP: If you really just want to play sounds under program control, you can avoid the heavy drain on
system resources by interfacing directly to Windows to play sounds instead of using a multimedia control.
See “Multimedia Without Multimedia Controls” near the end of this chapter.

For example, we can play the C:\windows\media\canyon.mid file that comes with Windows. To do
that, add a multimedia control, MMControl1, to a form, as well as a label, Label1, in which we can
display the multimedia control’s current operation (such as playing, stopped, and so on).

When the form first loads, we can open the canyon.mid file this way in the multimedia control:

Private Sub Form_Load()
 MMControl1.FileName = "c:\windows\media\canyon.mid"
 MMControl1.Command = "Open"
End Sub

Besides playing the MID file, we can display what the multimedia control is doing in a label, Label1,
by adding this code to the multimedia control’s StatusUpdate event handler:

Private Sub MMControl1_StatusUpdate()
 Dim strMode As String
 strMode = ""
 Select Case MMControl1.Mode

 Case mciModeReady
 strMode = "Ready."

 Case mciModeStop
 strMode = "Stopped."

 Case mciModeSeek
 strMode = "Seeking."

 Case mciModePlay
 strMode = "Playing."

 Case mciModeRecord
 strMode = "Recording."

 Case mciModePause
 strMode = "Paused."

 End Select

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\757-761.html (1 of 4) [3/14/2001 2:01:33 AM]

 Label1.Caption = strMode

End Sub

Finally, we stop playback (if it hasn’t already been stopped) and close the multimedia control when the
form is unloaded:

Private Sub Form_Unload(Cancel As Integer)
 MMControl1.Command = "Stop"
 MMControl1.Command = "Close"
End Sub

That’s all we need. Now run the program as shown in Figure 22.5 (we’ve added a label to the program
to display a caption). When you click the Play button, the MID file will be played. Our program works
as we’ve designed it.

Figure 22.5 Playing MID files from Visual Basic.

The code for this example is located in the midplayer folder on this book’s accompanying CD-ROM.

Playing AVI Files

The Testing Department is calling again. The company’s glorious founder has made an inspirational
speech, which they’ve been lucky enough to capture in an AVI file. Oh good, you say. They ask, can
your program play that speech on demand?

You can play AVI files with the multimedia control. That control just displays a bar of control buttons,
however—how can you display images? You can connect the multimedia control to a picture box
control by setting the multimedia control’s hwdDisplay property to the picture box’s hWnd property
(the hWnd property is a handle to the window that actually makes up the picture box’s display).

Let’s see how this works in an example. Here, we’ll play the AVI file C:\windows\help\scroll.avi,
which comes with Windows as one of the Windows tutorial animations—this one shows how to use
scroll bars. Add a picture box, Picture1, to your form, as well as a multimedia control, MMControl1,
and a label, Label1, in which we’ll display the status of the multimedia control.

When the form first loads, we’ll open scroll.avi and connect the multimedia control to the picture box
Picture1 this way:

Private Sub Form_Load()
 MMControl1.FileName = "C:\windows\help\scroll.avi"
 MMControl1.hWndDisplay = Picture1.hWnd
 MMControl1.Command = "Open"
End Sub

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\757-761.html (2 of 4) [3/14/2001 2:01:33 AM]

javascript:displayWindow('images/22-05.jpg',320,240)
javascript:displayWindow('images/22-05.jpg',320,240)

Now when users click the buttons in the multimedia control, they can play, stop, and restart the AVI
file as they like. The animation appears in the picture box Picture1.

Besides playing the AVI file, we can display what the multimedia control is doing (for example,
playing, stopped, and so on) in a label, Label1, by adding this code to the multimedia control’s
StatusUpdate event handler:

Private Sub MMControl1_StatusUpdate()
 Dim strMode As String
 strMode = ""

 Select Case MMControl1.Mode

 Case mciModeReady
 strMode = "Ready."

 Case mciModeStop
 strMode = "Stopped."

 Case mciModeSeek
 strMode = "Seeking."

 Case mciModePlay
 strMode = "Playing."

 Case mciModeRecord
 strMode = "Recording."

 Case mciModePause
 strMode = "Paused."

 End Select

 Label1.Caption = strMode

End Sub

Finally, we stop and close the multimedia control when the form is unloaded:

Private Sub Form_Unload(Cancel As Integer)
 MMControl1.Command = "Stop"
 MMControl1.Command = "Close"
End Sub

That’s it—now run the program as shown in Figure 22.6. As you can see in that figure, the program
plays the AVI in the picture box. Our multimedia animation example is a success.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\757-761.html (3 of 4) [3/14/2001 2:01:33 AM]

Figure 22.6 Playing AVI files with the multimedia control.

The code for this example is located in the aviplayer folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\757-761.html (4 of 4) [3/14/2001 2:01:33 AM]

javascript:displayWindow('images/22-06.jpg',425,366)
javascript:displayWindow('images/22-06.jpg',425,366)

Playing MPG Files

The Testing Department is calling again. Your new program, SuperDuperMultimedia4U, is
terrific—but how about playing MPG format files? No problem, you say.

You can play MPG format files with the multimedia control. How do you display the images in the
MPG file? You connect the multimedia control to a picture box using the picture box’s hWnd
property, placing that handle in the multimedia control’s hWndDisplay property. Opening the file
itself makes the buttons in the multimedia control active.

Let’s see an example; here, we’ll play an MPG file named, say, demo.mpg. Add a multimedia control,
MMControl1, to a program now, as well as a picture box, Picture1, in which we’ll play demo.mpg.
We also add a label, Label1, to display the multimedia control’s status.

When the form loads, we load the multimedia control’s FileName property with the name of the file
we want to open:

Private Sub Form_Load()
 MMControl1.FileName = "c:\demo.mpg"
...
End Sub

Next we connect the picture box’s hWnd property to the multimedia control’s hWndDisplay property
to connect the picture box to the multimedia control:

Private Sub Form_Load()
 MMControl1.FileName = "c:\demo.mpg"
 MMControl1.hWndDisplay = Picture1.hWnd
...
End Sub

Finally, we open the file, which enables the buttons in the multimedia control:

Private Sub Form_Load()
 MMControl1.FileName = "c:\demo.mpg"
 MMControl1.hWndDisplay = Picture1.hWnd
 MMControl1.Command = "Open"
End Sub

Now when users click the buttons in the multimedia control, they can play, stop, and restart the MPG
file as they like. The animation appears in the picture box Picture1.

Besides playing the MPG file, we can display what the multimedia control is doing (for example,
playing, stopped, and so forth) in a label, Label1, by adding this code to the multimedia control’s
StatusUpdate event handler:

Private Sub MMControl1_StatusUpdate()

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\761-764.html (1 of 3) [3/14/2001 2:01:38 AM]

 Dim strMode As String
 strMode = ""

 Select Case MMControl1.Mode

 Case mciModeReady
 strMode = "Ready."

 Case mciModeStop
 strMode = "Stopped."

 Case mciModeSeek
 strMode = "Seeking."

 Case mciModePlay
 strMode = "Playing."

 Case mciModeRecord
 strMode = "Recording."

 Case mciModePause
 strMode = "Paused."

 End Select

 Label1.Caption = strMode

End Sub

Finally, we stop and close the multimedia control when the form is unloaded:

Private Sub Form_Unload(Cancel As Integer)
 MMControl1.Command = "Stop"
 MMControl1.Command = "Close"
End Sub

That’s it—multimedia controls can play files in this format just as they can play AVI files; our MPG
player is a success. The code for this example is located in the mpgplayer folder on this book’s
accompanying CD-ROM.

Keeping Track Of Multimedia Command Execution Using Notification

You can gain more control over the multimedia control using the Notify property and the Done event.
When you set a multimedia control’s Notify property to True, you’ll get notification when the control
finishes executing commands. How does it notify you? It generates a Done event.

In fact, when you set Notify to True, your program is only supposed to be notified when the

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\761-764.html (2 of 3) [3/14/2001 2:01:38 AM]

multimedia control is finished with the next command, but in fact, Done events appear to be generated
for every command as long as Notify is True.

Let’s see an example. Here, we add a multimedia control, MMControl1, to a program and set its
Notify property to True when the form loads:

Private Sub Form_Load()
 MMControl1.FileName = "C:\WINDOWS\MEDIA\DING.WAV"
 MMControl1.Command = "Open"
 MMControl1.Notify = True
End Sub

When the control finishes executing a command, it fires a Done event, which we catch in an event
handler procedure:

Private Sub MMControl1_Done(NotifyCode As Integer)

End Sub

Here, the event handler procedure is passed a notification code, NotifyCode, which can take these
values:

• mciSuccessful—1; command completed successfully

• mciSuperseded—2; command was superseded by another command

• mciAborted—4; command was aborted by the user

• mciFailure—8; command failed

In this example, we just display a message box, indicating to the user that the multimedia command is
finished:

Private Sub MMControl1_Done(NotifyCode As Integer)
 MsgBox "Finished the multimedia command."
End Sub

Using multimedia notification, you can coordinate your multimedia actions—for example, if you have
two multimedia controls, you might not want to start playing sounds with one until the other is finished
playing its own sounds.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\761-764.html (3 of 3) [3/14/2001 2:01:38 AM]

Handling Multimedia Errors

Multimedia operations, which can involve working with files and physical devices, are inherently
error-prone. To handle multimedia errors, you can use the Error and ErrorMessages properties. The
multimedia control errors returned in the Error property and the error string IDs returned in the
ErrorMessages property appear in Table 22.1.

Table 22.1 The multimedia control errors and error string IDs.

MCI Error Strings MCI Error Numbers

MCIERR_BASE 256

MCIERR_INVALID_DEVICE_ID 257

MCIERR_UNRECOGNIZED_KEYWORD 259

MCIERR_UNRECOGNIZED_COMMAND 261

MCIERR_HARDWARE 262

MCIERR_INVALID_DEVICE_NAME 263

MCIERR_OUT_OF_MEMORY 264

MCIERR_DEVICE_OPEN 265

MCIERR_CANNOT_LOAD_DRIVER 266

MCIERR_MISSING_COMMAND_STRING 267

MCIERR_PARAM_OVERFLOW 268

MCIERR_MISSING_STRING_ARGUMENT 269

MCIERR_BAD_INTEGER 270

MCIERR_PARSER_INTERNAL 271

MCIERR_DRIVER_INTERNAL 272

MCIERR_MISSING_PARAMETER 273

MCIERR_UNSUPPORTED_FUNCTION 274

MCIERR_FILE_NOT_FOUND 275

MCIERR_DEVICE_NOT_READY 276

MCIERR_INTERNAL 277

MCIERR_DRIVER 278

MCIERR_CANNOT_USE_ALL 279

MCIERR_MULTIPLE 280

MCIERR_EXTENSION_NOT_FOUND 281

MCIERR_OUTOFRANGE 282

MCIERR_FLAGS_NOT_COMPATIBLE 283

MCIERR_FILE_NOT_SAVED 286

MCIERR_DEVICE_TYPE_REQUIRED 287

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\764-768.html (1 of 4) [3/14/2001 2:01:40 AM]

MCIERR_DEVICE_LOCKED 288

MCIERR_DUPLICATE_ALIAS 289

MCIERR_BAD_CONSTANT 290

MCIERR_MUST_USE_SHAREABLE 291

MCIERR_MISSING_DEVICE_NAME 292

MCIERR_BAD_TIME_FORMAT 293

MCIERR_NO_CLOSING_QUOTE 294

MCIERR_DUPLICATE_FLAGS 295

MCIERR_INVALID_FILE 296

MCIERR_NULL_PARAMETER_BLOCK 297

MCIERR_UNNAMED_RESOURCE 298

MCIERR_NEW_REQUIRES_ALIAS 299

MCIERR_NOTIFY_ON_AUTO_OPEN 300

MCIERR_NO_ELEMENT_ALLOWED 301

MCIERR_NONAPPLICABLE_FUNCTION 302

MCIERR_ILLEGAL_FOR_AUTO_OPEN 303

MCIERR_FILENAME_REQUIRED 304

MCIERR_EXTRA_CHARACTERS 305

MCIERR_DEVICE_NOT_INSTALLED 306

MCIERR_GET_CD 307

MCIERR_SET_CD 308

MCIERR_SET_DRIVE 309

MCIERR_DEVICE_LENGTH 310

MCIERR_DEVICE_ORD_LENGTH 311

MCIERR_NO_INTEGER 312

MCIERR_WAVE_OUTPUTSINUSE 320

MCIERR_WAVE_SETOUTPUTINUSE 321

MCIERR_WAVE_INPUTSINUSE 323

MCIERR_WAVE_SETINPUTINUSE 324

MCIERR_WAVE_OUTPUTUNSPECIFIED 325

MCIERR_WAVE_INPUTUNSPECIFIED 326

MCIERR_WAVE_OUTPUTSUNSUITABLE 327

MCIERR_WAVE_SETOUTPUTUNSUITABLE 328

MCIERR_WAVE_INPUTSUNSUITABLE 329

MCIERR_WAVE_SETINPUTUNSUITABLE 336

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\764-768.html (2 of 4) [3/14/2001 2:01:40 AM]

MCIERR_SEQ_DIV_INCOMPATIBLE 336

MCIERR_SEQ_PORT_INUSE 337

MCIERR_SEQ_PORT_NONEXISTENT 338

MCIERR_SEQ_PORT_MAPNODEVICE 339

MCIERR_SEQ_PORT_MISCERROR 340

MCIERR_SEQ_TIMER 341

MCIERR_SEQ_PORTUNSPECIFIED 342

MCIERR_SEQ_NOMIDIPRESENT 343

MCIERR_NO_WINDOW 346

MCIERR_CREATEWINDOW 347

MCIERR_FILE_READ 348

MCIERR_FILE_WRITE 349

MCIERR_CUSTOM_DRIVER_BASE 512

In addition, the multimedia control supports several trappable errors (which you can use with the
Visual Basic On Error GoTo statement). These appear in Table 22.2.

Table 22.2 The multimedia control trappable errors.

Constant Value Description

mciInvalidProcedureCall 5 Invalid procedure call

mciInvalidPropertyValue 380 Invalid property value

mciSetNotSupported 383 Property is read-only

mciGetNotSupported 394 Property is write-only

mciInvalidObjectUse 425 Invalid object use

mciWrongClipboardFormat 461 Specified format doesn’t match format of data

mciObjectLocked 672 DataObject formats list may not be cleared or
expanded outside of the OLEStartDrag event

mciExpectedArgument 673 Expected at least one argument

mciRecursiveOleDrag 674 Illegal recursive invocation of OLE drag and drop

mciFormatNotByteArray 675 Non-intrinsic OLE drag-and-drop formats used
with SetData require Byte array data; GetData
may return more bytes than were given to
SetData

mciDataNotSetForFormat 676 Requested data was not supplied to the
DataObject during the OLESetData event

mciCantCreateButton 30001 Can’t create button

mciCantCreateTimer 30002 Can’t create timer resource

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\764-768.html (3 of 4) [3/14/2001 2:01:40 AM]

mciUnsupportedFunction 30004 Unsupported function

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\764-768.html (4 of 4) [3/14/2001 2:01:40 AM]

Let’s see an example. Here, we set the Notify property of a multimedia control, MMControl1, to True,
then open a WAV file:

Private Sub Form_Load()
 MMControl1.Notify = True
 MMControl1.FileName = "C:\WINDOWS\MEDIA\DING.WAV"
 MMControl1.Command = "Open"
...
End Sub

Then we add code to the Done event to display the error message for the current error, if there is one,
using the Error and ErrorMessage properties:

Private Sub MMControl1_Done(NotifyCode As Integer)
 If MMControl1.Error <> 0 Then
 MsgBox MMControl1.ErrorMessage
 End If
End Sub

Now, if we execute an illegal command, we’ll be notified of the fact. For example, we might try to
eject the WAV file, which is an illegal multimedia operation:

Private Sub Form_Load()
 MMControl1.Notify = True
 MMControl1.FileName = "C:\WINDOWS\MEDIA\DING.WAV"
 MMControl1.Command = "Open"
 MMControl1.Command = "Eject"
End Sub

In this case, we get the error message you see in Figure 22.7.

Figure 22.7 A multimedia control error message.

Stepping A Multimedia Control Forward Or Backward Frame By Frame

The Testing Department is calling again. Your program that plays the inspirational speech by the
company’s founder is a big hit—but can’t you let the user move through it frame by frame for more
impact? Hmm, you think, how do you do that?

You can use the Step and Back multimedia control commands to step through animations frame by
frame. Each time you use these commands, you move forward or back by the number of frames set in
the Frames property (the default is 1). To check if a multimedia control is connected to a device that
can step this way, check the CanStep property—if it’s set to True, you can use the Step and Back
commands.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\768-770.html (1 of 3) [3/14/2001 2:01:42 AM]

javascript:displayWindow('images/22-07.jpg',450,100)
javascript:displayWindow('images/22-07.jpg',450,100)

Let’s see an example. We might connect a multimedia control, MMControl1, to a picture box,
Picture1 this way so that it plays the file C:\windows\help\scroll.avi (which comes with Windows):

Private Sub Form_Load()
 MMControl1.FileName = "C:\windows\help\scroll.avi"
 MMControl1.hWndDisplay = Picture1.hWnd
 MMControl1.Command = "Open"
End Sub

Now when the user clicks a command button, Command1, we will advance MMControl1 by, say,
five frames (after checking to make sure it can step):

Private Sub Command1_Click()
 If MMControl1.CanStep Then
 MMControl1.Frames = 5
 MMControl1.Command = "Step"
 End If
End Sub

When the user clicks another button, Command2, we can step back five frames:

Private Sub Command2_Click()
 If MMControl1.CanStep Then
 MMControl1.Frames = 5
 MMControl1.Command = "Back"
 End If
End Sub

That’s it—now the user can step forwards and backwards in the animation.

Starting From And To In A Multimedia Control

The Testing Department is calling again. The sound file you play in the opening screen of your new
program, SuperDuperMultimedia4U, is 10 minutes long. Yes, you say, but it’s a good one. Can’t you
play just part of it? they ask.

You can specify the start and end point of play and record multimedia operations with the From and
To properties. You set these properties in the same time format you’ve specified in the multimedia
control’s TimeFormat property (see “Setting a Multimedia Control’s Time Format” earlier in this
chapter).

Let’s see an example. In this case, we’ll just play the first 10 seconds of a MID file,
C:\windows\media\canyon.mid, which comes with Windows. First, we open that file when the form
first loads, using a multimedia control, MMControl1, and set the control’s time format to
mciFormatMilliseconds:

Private Sub Form_Load()

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\768-770.html (2 of 3) [3/14/2001 2:01:42 AM]

 MMControl1.TimeFormat = mciFormatMilliseconds
 MMControl1.FileName = "c:\windows\media\canyon.mid"
 MMControl1.Command = "Open"
End Sub

Now, when the user clicks a command button, Command1, we play the first 10 seconds of the file like
this (although we’ve set the control’s time format to mciFormatMilliseconds, times in this format are
actually measured in tenths of a second, which means that we set to From property to 100 for 10
seconds):

Private Sub Command1_Click()
 MMControl1.From = 0
 MMControl1.To = 100
 MMControl1.Command = "Play"
End Sub

And that’s it—now you can set the To and From locations in a multimedia file.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\768-770.html (3 of 3) [3/14/2001 2:01:42 AM]

Making The Multimedia Control Wait

The Aesthetic Design Department is calling again. Users are flipping through your program too fast, not
even waiting until the company’s theme song finishes playing. Can’t you do something about that?

You can set a multimedia control’s Wait property to True (the default is False) if you want to make that
control finish its current operation before continuing on to another. Note that this property is not
available at design time.

Let’s see an example; here, we open a file, C:\windows\media\canyon.mid, with a multimedia control,
MMControl1, and set its Wait property to True:

Private Sub Form_Load()
 MMControl1.FileName = "c:\windows\media\canyon.mid"
 MMControl1.Command = "Open"
 MMControl1.Wait = True
End Sub

Now when the user performs an operation with the control, such as playing the file, the control will wait
until that operation is complete before letting the user select another operation.

Multimedia Without Multimedia Controls

The Testing Department is calling again. The multimedia control in your program takes up more than
100K—can’t you use something else? Hmm, you say, I’ll look into it.

If you just want to play sounds, you can use the Windows API function PlaySound. Using this built-in
function instead of a multimedia control can save you a lot of memory space. Let’s see an example.
Here, we’ll play the Windows c:\windows\media\Tada.wav file (which comes with Windows) using
PlaySound. First, we declare the PlaySound function in a program; here’s how you use PlaySound:

Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal _
 lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) _
 As Long

Declaring this function as a Private function lets us declare this in the (General) section of a form
(without the Private keyword, we’d have to declare this function in a module):

Private Declare Function PlaySound Lib "winmm.dll" Alias _
 "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, _
 ByVal dwFlags As Long) As Long

Now we can call PlaySound directly when the user clicks a command button, Command1; here, we
pass it a value of &H20000 to indicate that we’re reading the sound from a file and ignore the function’s
return value this way:

Private Sub Command1_Click()

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\770-772.html (1 of 2) [3/14/2001 2:01:55 AM]

 retVal = PlaySound("c:\windows\media\Tada.wav", 0&, &H20000)
End Sub

Here are the flags you can use in the dwFlags parameter of the PlaySound function:

• SND_SYNC—&H0 (the default); play the sound synchronously

• SND_ASYNC—&H1; play the sound asynchronously

• SND_NODEFAULT—&H2; silence is not the default, if sound is not found

• SND_MEMORY—&H4; lpszName points to a memory file

• SND_ALIAS—&H10000; name is a win.ini [sounds] entry

• SND_FILENAME—&H20000; name is a file name

• SND_RESOURCE—&H40004; name is a resource name or atom

• SND_ALIAS_ID—&H110000; name is a win.ini [sounds] entry identifier

• SND_ALIAS_START—0; must be > 4096 to keep strings in same section of resource file

• SND_LOOP—&H8; loop the sound until next PlaySound
• SND_NOSTOP—&H10; don’t stop any currently playing sound

• SND_NOWAIT—&H2000; don’t wait if the driver is busy

And that’s it—now we’re playing sounds without multimedia controls.

TIP: For lots more information on interfacing directly to the Windows API, see the next chapter.

Visual Basic 6 Black Book:Multimedia

http://24.19.55.56:8080/temp/ch22\770-772.html (2 of 2) [3/14/2001 2:01:55 AM]

Chapter 23
Connecting To The Windows API And Visual C++
If you need an immediate solution to:

Getting Or Creating A Device Context (Including The Whole Screen)

Drawing Lines In A Device Context

Drawing Ellipses In A Device Context

Drawing Rectangles In A Device Context

Setting Drawing Colors And Styles (Using Pens)

Setting Drawing Modes (ROP2)

Handling The Mouse Outside Your Program’s Window

Copying Bitmaps Between Device Contexts Quickly

Capturing Images From The Screen

Getting A Window Handle For Any Window On The Screen

Getting A Window’s Text

Playing Sounds With API Functions

Allocating Memory And Storing Data

Reading Data From Memory And Deallocating Memory

Making A Window Topmost

Determining Free And Total Disk Space

Determining The Windows Directory

Connecting To Visual C++

In Depth

This is our chapter on connecting Visual Basic directly to the Windows Application Programming
Interface (API) and to Visual C++. There are literally thousands of functions and subroutines waiting
for us to use in Windows, and we can reach them with the techniques in this chapter. With these
Windows procedures, you can do things you just can’t do in Visual Basic any other way. For example,
we’ll see how to draw anywhere on the screen (including outside our program’s window), capture the
screen, capture the mouse (so we get all mouse events even when the mouse is outside our window),
play sounds directly, allocate and use memory, make fast bitmap copies, interrogate other windows
about their contents, determine free space on a disk drive, make a window “topmost” (so it stays on top
of all other windows), and much more.

We can connect to the Windows API because the procedures that make up that API are in dynamic link
libraries in the windows\system directory, and we can call them directly from those DLLs. Here’s a list
of the core Windows DLLs of the kind we’ll be using in this chapter:

• Advapi32.dll—Advanced API Services library supporting numerous APIs including many
security and Registry calls

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\773-776.html (1 of 3) [3/14/2001 2:01:58 AM]

• Comdlg32.dll—Common Dialog API library

• Gdi32.dll—Graphics Device Interface API library

• Kernel32.dll—Core Windows 32-bit base API support

• Lz32.dll—32-bit compression routines

• Mpr.dll—Multiple Provider Router library

• Netapi32.dll—32-bit Network API library

• Shell32.dll—32-bit Shell API library

• User32.dll—Library for user interface routines

• Version.dll—Version library

• Winmm.dll—Windows Multimedia library

Besides connecting our code to the Windows API, we’ll also see how to connect our code to Visual
C++. In fact, that process works much like connecting to the Windows API, because in order to reach
Visual C++ code, you place that code into a dynamic link library and then call it in the same way you
call Windows API code.

So how do you actually connect code in a DLL to Visual Basic? We’ll find out in the next section.

Declaring And Using DLL Procedures In Visual Basic

Let’s say you want to play sounds directly, without using the Visual Basic multimedia control. You can
do that with the Windows API PlaySound function. To inform Visual Basic where to find this function
(it’s stored in the winmm.dll dynamic link library), what arguments it takes, and what arguments it
returns, you declare that function like this in the (General) declarations section of a form:

Private Declare Function PlaySound Lib "winmm.dll" Alias _
 "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long,
 ByVal dwFlags As Long) As Long

Note that we’ve declared this function as private to be able to declare it in a form. If you omit the
Private keyword, you must make declarations in a module. After you’ve declared the function, you’re
free to use it, like this where we play the file C:\windows\media\Tada.wav (which is one of the files
that come with Windows):

Private Sub Command1_Click()
 retVal = PlaySound("c:\windows\media\Tada.wav", 0&, &H20000)
 End Sub

There are a number of points to notice here; because most Windows procedures are functions, you have
to provide a way to handle the return value, which we do by storing it in the retVal variable shown in
the preceding code. We’ll discard most of these return values, but Visual Basic will give you an error
unless you handle functions as we’ve done in the preceding code. For subroutines, which do not return
a value, you use the Call keyword like this:

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\773-776.html (2 of 3) [3/14/2001 2:01:58 AM]

Call MoveMemory(hMemoryPointer, outbuffer, DataLength)

Now look at the declaration we’ve made for PlaySound:

Private Declare Function PlaySound Lib "winmm.dll" Alias _
 "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, _
 ByVal dwFlags As Long) As Long

This declaration comes from a file that comes with Visual Basic (in the Common\tools\winapi
directory) named win32api.txt, which we’ll see more about in a minute. Here, that declaration indicates
to Visual Basic that this function is to be found in the winmm.dll file (which is in the windows\system
directory).

The Alias clause, if there is one, gives the actual name of the Windows function. Here, what Visual
Basic declares as PlaySound is actually the Windows function PlaySoundA. This function,
PlaySoundA, uses ANSI text strings (as opposed to other versions of PlaySound, which can use other
text formats like Unicode), which is what you need to work with Visual Basic. In general, you should
use the Windows functions as declared in the win32api.txt file, because the designers of Visual Basic
have already selected the functions that will work with Visual Basic in that file.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\773-776.html (3 of 3) [3/14/2001 2:01:58 AM]

Handling C/C++ And Windows Data Types

Notice also that the PlaySound arguments that use Windows C/C++ Hungarian prefix notation (for instance,
the prefix of the variable name lpszName, lpsz, means this variable is a long pointer to a zero-terminated string).
You’ll find a list of Hungarian notation prefixes in Table 23.1, which will let you unravel what the variable
types in Windows API calls really are. The arguments to PlaySound are also passed with the ByVal keyword.
What does this mean?

Table 23.1 Windows C/C++ Hungarian notation.

Prefix Meaning

a array

b bool (int)

by unsigned char (byte)

c char

cb count of bytes

cr color reference value

cx, cy short (count of x, y length)

dw unsigned long (dword)

fn function

h handle

I integer

m_ data member of a class

n short or int

np near pointer

p pointer

l long

lp long pointer

s string

sz string terminated with a zero

tm text metric

w unsigned int (word)

x, y short (x or y coordinate)

The standard Windows calling convention is actually the Pascal calling convention, which is not the same as the
Visual Basic calling convention. When you pass a variable to a procedure in Visual Basic, Visual Basic usually
passes a reference to the variable, and the called procedure then uses that reference to read (and possibly write)
the value in the passed variable. That process is called passing arguments by reference. On the other hand,
when you pass variables to the Windows API, you should often pass the variable’s value directly, not a
reference to the variable. That process is called passing arguments by value. You specify which way to pass
variables using the ByRef and ByVal keywords.

As you can see, there are a few interface issues that we have to face when connecting to the Windows API.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\776-779.html (1 of 3) [3/14/2001 2:02:01 AM]

Take a look at the first argument in PlaySound: lpszName. This is a long C/C++ pointer to a zero-terminated
string buffer— how do we construct one of those in Visual Basic, which doesn’t even use pointers? It turns out
that all we have to do is to pass a standard Visual Basic string for this argument, as we’ve done when we call
PlaySound in Visual Basic:

retVal = PlaySound("c:\windows\media\Tada.wav", 0&, &H20000)

In fact, you can handle the C/C++ data types needed when you use the Windows API by using Visual Basic
data types, as shown in Table 23.2. It may look complex, but don’t worry—we’ll get practical experience
passing variables using the conversions in Table 23.2 in the examples throughout this chapter. It’s easier than
you think—for example, when you need to pass a long integer variable to the Windows API, you just use a
Visual Basic long variable, passing it by value.

Table 23.2 C/C++ and Visual Basic variable types.

C/C++ Type Passed As

handle ByVal Long

int ByVal Integer

long ByVal Long

lpint ByRef Integer

lplong ByRef Long

lpstr ByVal String

lpsz ByVal String

lpvoid ByRef Any

Sometimes, a Windows API procedure takes an argument of a Windows-defined type. For example, the
MoveToEx function, which moves the current drawing position (we’ll see this function in this chapter), takes
an argument of type POINTAPI:

Private Declare Function MoveToEx Lib "gdi32" (ByVal hdc As Long, ByVal x _
 As Long, ByVal y As Long, lpPoint As POINTAPI) As Long

You’ll find the declarations of types like POINTAPI in the win32api.txt file, and you can copy them and put
them in a module in your own program (data types need to be declared in a module):

Type POINTAPI
 x As Long
 y As Long
End Type

Now you’re free to use that type in your Visual Basic programs like this:

Dim ptPoint As POINTAPI

ptPoint.x = 0
ptPoint.y = 0

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\776-779.html (2 of 3) [3/14/2001 2:02:01 AM]

lngRetVal = MoveToEx(intHandle, intX, intY, ptPoint)

In this way, you can handle the data types and data structures needed by Windows procedures. We’ll get more
experience with this throughout the chapter.

Now that we’ve gotten an overview of how to connect to the Windows API and Visual C++ through dynamic
link libraries, the next question is, what’s in those DLLs for us to use?

NOTE: Depending on your version of Windows, you may have to use longs for handles instead of integers. If you
get overflows when assigning handles to integers, switch to longs.

What’s Available In The Windows API?

You’ll find the procedures, constants, and types used in the Windows API in the file win32api.txt. You can
open that file in a text editor like the Windows WordPad and copy and paste the declarations you need into your
Visual Basic program, as we’ll do in this chapter. However, the win32api.txt file only includes the raw
declarations for procedures, constants, and types, but it doesn’t tell you what all the variables mean. To find
reference information on the Windows API set, refer to the Microsoft Win32 Software Development Kit (SDK),
which, depending on your version of Visual Basic, may be included on the Microsoft Developer Network
Library CD.

You can also use the Visual Basic API Viewer add-in tool to work with win32api.txt. This tool appears in
Visual Basic’s Add-Ins menu (if it doesn’t appear in your Add-Ins menu, you can add the API Viewer to Visual
Basic with the Add-Ins menu’s Add-In Manager item). You can open win32api.txt in the API Viewer, as shown
in Figure 23.1.

Figure 23.1 The Visual Basic API Viewer.

The API Viewer makes it easy to work with the procedures in the Windows API and add them to your Visual
Basic program. To add a declaration to your program, just select the procedure you want to add, set its
declaration to Public or Private with the option buttons in the API Viewer, click the Add button to add it to the
Selected Items box, and click the Insert button to add those items to your program.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\776-779.html (3 of 3) [3/14/2001 2:02:01 AM]

javascript:displayWindow('images/23-01.jpg',520,396)
javascript:displayWindow('images/23-01.jpg',520,396)

That’s it for the overview of connecting to Windows and Visual C++. We’ve seen how the process works in overview;
now it’s time to turn to our Immediate Solutions.

Immediate Solutions

Getting Or Creating A Device Context (Including The Whole Screen)

Before you can draw with the Windows API graphics functions, you need a device context. Visual Basic controls like
picture boxes have an hDC property, which holds their device context, but you can also get device contexts for any
window.

To get a device context for a window, you can use GetDC, which returns a handle to a device context, or 0 if
unsuccessful:

Declare Function GetDC Lib "user32" Alias "GetDC" (ByVal hwnd As Long)_
 As Long

Here’s the parameter for GetDC:
• hwnd—Handle to the window you want a device context for.

You can also get a device context for a particular device with the CreateDC function, which returns a handle to a device
context, or 0 if unsuccessful:

Declare Function CreateDC Lib "gdi32" Alias "CreateDCA" (ByVal _
 lpszDriverName As String, ByVal lpszDeviceName As String, ByVal _
 lpszOutput As String, lpInitData As DEVMODE) As Long

Here are the parameters for CreateDC:

• lpszDriverName— String that specifies the file name (without extension) of the device driver (for example,
“EPSON”).

• lpszDeviceName—String that specifies the name of the specific device to be supported (for example, “EPSON
LQ-80”). The lpszDeviceName parameter is used if the module supports more than one device.

• lpszOutput—String that specifies the file or device name for the physical output medium (file or output port).

• lpInitData—A DEVMODE structure containing device-specific initialization data for the device driver. The
Windows DocumentProperties function retrieves this structure filled in for a given device. The lpInitData
parameter must be NULL if the device driver is to use the default initialization (if any) specified by the user
through the Control Panel.

This function, CreateDC, may seem a little abstract, but it has one very powerful use—you can get a device context for
the entire screen using this function, which means you can then use Windows functions to draw anywhere in the screen.
To get a device context for the screen, you declare the DEVMODE type, as declared in win32api.txt, in a module:

Type DEVMODE
 dmDeviceName As String * CCHDEVICENAME
 dmSpecVersion As Integer
 dmDriverVersion As Integer
 dmSize As Integer
 dmDriverExtra As Integer
 dmFields As Long
 dmOrientation As Integer
 dmPaperSize As Integer
 dmPaperLength As Integer
 dmPaperWidth As Integer

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\779-784.html (1 of 3) [3/14/2001 2:02:07 AM]

 dmScale As Integer
 dmCopies As Integer
 dmDefaultSource As Integer
 dmPrintQuality As Integer
 dmColor As Integer
 dmDuplex As Integer
 dmYResolution As Integer
 dmTTOption As Integer
 dmCollate As Integer
 dmFormName As String * CCHFORMNAME
 dmUnusedPadding As Integer
 dmBitsPerPel As Integer
 dmPelsWidth As Long
 dmPelsHeight As Long
 dmDisplayFlags As Long
 dmDisplayFrequency As Long
End Type

Next, you pass the string “DISPLAY” as the device type to CreateDC to get a device context for the entire screen, as we
do here when a form loads:

Private Sub Form_Load()
 Dim devDevMode As DEVMODE
 Dim intHandleDisplay As Integer

 intHandleDisplay = CreateDC("DISPLAY", 0&, 0&, devDevMode)
End Sub

Now you can draw anywhere in the screen, using the screen device context and the Windows API drawing functions (see
the next topics in this chapter).

TIP: When you’re done with a device context, you can delete it and reclaim its memory with the DeleteDC function.

Drawing Lines In A Device Context

Now that you have a device context (see the previous topic), how do you draw in it? There are many, many drawing
functions in the Windows API. For example, you can use the LineTo function to draw lines. This function draws a line
from the current drawing position to the position you specify. You set the current drawing position with the MoveToEx
function:

Declare Function MoveToEx Lib "gdi32" Alias "MoveToEx" (ByVal hdc As _
 Long, ByVal x As Long, ByVal y As Long, lpPoint As POINTAPI) As Long

Here’s what the arguments to MoveToEx mean:

• hdc—The device context to draw in

• x—The x-coordinate of the new position

• y—The y-coordinate of the new position

• lpPoint—POINTAPI variable which will be filled with the old location

After setting the current drawing position, you use LineTo to draw a line to a new position:

Declare Function LineTo Lib "gdi32" (ByVal hdc As Long, ByVal x As _

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\779-784.html (2 of 3) [3/14/2001 2:02:07 AM]

 Long, ByVal y As Long) As Long

Here’s what the arguments mean:

• hdc—The device context to draw in

• x—The x-coordinate of the end of the line

• y—The y-coordinate of the end of the line

Both MoveToEx and LineTo return non-zero values if successful.

Let’s see an example. Here, we’ll draw a line in a picture box. We start by adding a module to a program and declaring
the POINTAPI type that MoveToEx needs:

Type POINTAPI
 x As Long
 y As Long
End Type

Next, we declare MoveToEx and LineTo as Private in the form’s (General) section:

Private Declare Function MoveToEx Lib "gdi32" (ByVal hdc As Long, _
 ByVal x As Long, ByVal y As Long, lpPoint As POINTAPI) As Long

Private Declare Function LineTo Lib "gdi32" (ByVal hdc As Long, _
 ByVal x As Long, ByVal y As Long) As Long

Add a picture box to the form now, Picture1, and a command button, Command1 ; when the user clicks the command
button, we can draw a line:

Private Sub Command1_Click()
 Dim ptPoint As POINTAPI

 retval = MoveToEx(Picture1.hdc, 20, 20, ptPoint)
 retval = LineTo(Picture1.hdc, 100, 50)
End Sub

The result of this code appears in Figure 23.2. Now we’re drawing lines with the Windows API.

Figure 23.2 Drawing lines with the Windows API.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\779-784.html (3 of 3) [3/14/2001 2:02:07 AM]

javascript:displayWindow('images/23-02.jpg',320,240)
javascript:displayWindow('images/23-02.jpg',320,240)

Drawing Ellipses In A Device Context

You draw ellipses in the Windows API with the Ellipse function:

Declare Function Ellipse Lib "gdi32" Alias "Ellipse" (ByVal hdc As _
 Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal _
 Y2 As Long) As Long

Here’s what the arguments mean:

• hdc—The device context to draw in

• X1—The x-coordinate of the upper-left corner of the ellipse’s bounding rectangle

• Y1—The y-coordinate of the upper-left corner of the ellipse’s bounding rectangle

• X2—The x-coordinate of the lower-right corner of the ellipse’s bounding rectangle

• Y2—The y-coordinate of the lower-right corner of the ellipse’s bounding rectangle

Let’s see an example. Here, we can draw an ellipse in a picture box’s device context by declaring Ellipse as Private in a
form:

Private Declare Function Ellipse Lib "gdi32" Alias "Ellipse" (ByVal hdc _
 As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, _
 ByVal Y2 As Long) As Long

Then we draw the ellipse in a picture box, Picture1, when the user clicks a command button, Command1:

Private Sub Command1_Click()
 retval = Ellipse(Picture1.hdc, 10, 10, 160, 70)
End Sub

The result of this code appears in Figure 23.3. Now we’re drawing ellipses with the Windows API functions.

Figure 23.3 Drawing ellipses with the Windows API.

Drawing Rectangles In A Device Context

You draw rectangles in the Windows API with the Rectangle function:

Public Declare Function Rectangle Lib "gdi32" Alias "Rectangle" (ByVal _
 hdc As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, _
 ByVal Y2 As Long) As Long

Here’s what the arguments in this function mean:

• hdc—The device context to draw in

• X1—The x-coordinate of the upper-left corner of the rectangle

• Y1—The y-coordinate of the upper-left corner of the rectangle

• X2—The x-coordinate of the lower-right corner of the rectangle

• Y2—The y-coordinate of the lower-right corner of the rectangle

Let’s see an example. Here, we’ll draw a rectangle in a picture box, Picture1, when the user clicks a command button,
Command1. We declare Rectangle in the form as Private:

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\784-788.html (1 of 3) [3/14/2001 2:02:14 AM]

javascript:displayWindow('images/23-03.jpg',320,240)
javascript:displayWindow('images/23-03.jpg',320,240)

Private Declare Function Rectangle Lib "gdi32" (ByVal hdc As Long, _
 ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As _
 Long) As Long

Then we’re free to draw our rectangle, like this:

Private Sub Command1_Click()
 retval = Rectangle(Picture1.hdc, 10, 10, 160, 70)
End Sub

The result of this code appears in Figure 23.4. Now we’re drawing rectangles with the Windows API functions.

Figure 23.4 Drawing rectangles with the Windows API.

Setting Drawing Colors And Styles (Using Pens)

The Aesthetic Design Department is on the phone. The figures you’re drawing with the Windows API are nice, but what
they really wanted was a dotted blue ellipse. Can you create one?

Yes, you can, using device context pens. A pen sets the drawing color and style for the device context it’s loaded in. You
create a pen with CreatePen:

Declare Function CreatePen Lib "gdi32" Alias "CreatePen" (ByVal_
 nPenStyle As Long, ByVal nWidth As Long, ByVal crColor As Long) _
 As Long

Here’s what the arguments to this function mean:

• nPenStyle—The style for the pen. Here are the possibilities: PS_SOLID (0), PS_DASH (1), PS_DOT (2),
PS_DASHDOT (3), PS_DASHDOTDOT (4), PS_NUL L (5), PS_INSIDEFRAME (6), PS_USERSTYLE (7),
PS_ALTERNATE (8), and PS_STYLE_MASK (&HF).
• nWidth—Specifies the width of the pen. Note that if this is not 1, the pen will draw solid lines only.

• crColor—An RGB color for the pen.

To install the new pen in a device context, you use the SelectObject function, which you use to install graphics objects like
pens and brushes in device context:

Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, _
 ByVal hObject As Long) As Long

Here’s what the arguments to that function mean:

• hdc—The device context to install the object in

• hObject—The handle to the object to install

This function returns the handle of the device context object you’re replacing. Let’s see an example in which we’ll draw
that dotted blue ellipse in a picture box, Picture1, when the user clicks a command button, Command1. We add the
declarations we’ll need in the program in the form’s (General) section:

Private Declare Function CreatePen Lib "gdi32" (ByVal nPenStyle As Long, _
 ByVal nWidth As Long, ByVal crColor As Long) As Long
Private Const PS_SOLID = 0
Private Const PS_DASH = 1
Private Const PS_DOT = 2

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\784-788.html (2 of 3) [3/14/2001 2:02:14 AM]

javascript:displayWindow('images/23-04.jpg',320,240)
javascript:displayWindow('images/23-04.jpg',320,240)

Private Const PS_DASHDOT = 3
Private Const PS_DASHDOTDOT = 4
Private Const PS_NULL = 5
Private Const PS_INSIDEFRAME = 6
Private Const PS_USERSTYLE = 7
Private Const PS_ALTERNATE = 8
Private Const PS_STYLE_MASK = &HF
Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, _
 ByVal hObject As Long) As Long
Private Declare Function Ellipse Lib "gdi32" (ByVal hdc As Long, _
 ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As _
 Long) As Long

Next, we create the new pen when the user clicks the command button Command1, saving the pen’s handle as hPen. Note
that we specify the pen should be dotted by passing the PS_DOT constant, and we can use the Visual Basic RGB function
to set colors:

Private Sub Command1_Click()
 Dim hPen As Long

 hPen = CreatePen(PS_DOT, 1, RGB(0, 0, 255))
...

Next, we install that pen in the device context of the picture box, Picture1, using SelectObject:

Private Sub Command1_Click()
 Dim hPen As Long

 hPen = CreatePen(PS_DOT, 1, RGB(0, 0, 255))
 retval = SelectObject(Picture1.hdc, hPen)
...

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\784-788.html (3 of 3) [3/14/2001 2:02:14 AM]

Finally, we draw the dotted blue ellipse:

Private Sub Command1_Click()
 Dim hPen As Long

 hPen = CreatePen(PS_DOT, 1, RGB(0, 0, 255))
 retval = SelectObject(Picture1.hdc, hPen)
 retval = Ellipse(Picture1.hdc, 10, 10, 160, 70)
End Sub

The result of this code appears in Figure 23.5. Now we can set the color and style in Window API drawing
operations.

Figure 23.5 Drawing a dotted blue ellipse with Windows API functions.

TIP: Besides pens, you can also use brushes to fill figures in when you use a device context. To create a brush, you use
the CreateBrush function.

The code for this example is located in the dottedblue folder on this book’s accompanying CD-ROM.

Setting Drawing Modes (ROP2)

Besides setting what color and style to draw with, you can specify how a pen draws in a device context by setting
the device context’s binary raster operation, ROP2, mode. For example, if you want to draw using the inverse of the
screen color at each point, you can set the ROP2 mode to R2_NOT. The available ROP2 modes appear in Table
23.3—take a look at that table to see what kinds of drawing effects you can create.

Table 23.3 ROP2 modes.

ROP2 Mode Meaning

R2_BLACK (= 1) Pixel is always black

R2_COPYPEN (= 13) Pixel is the pen color

R2_MASKNOTPEN (= 12) Pixel = (NOT pen) AND screen pixel

R2_MASKPEN (=9) Pixel = pen AND screen pixel

R2_MASKPENNOT (=5) Pixel = (NOT screen pixel) AND pen

R2_MERGENOTPEN (=12) Pixel = (NOT pen) OR screen pixel

R2_MERGEPEN (= 15) Pixel = pen OR screen pixel

R2_MERGEPENNOT (= 14) Pixel = (NOT screen pixel) OR pen

R2_NOP (= 11) Pixel remains unchanged

R2_NOT (= 6) Pixel is the inverse of the screen color

R2_NOTCOPYPEN (= 4) Pixel is the inverse of the pen color

R2_NOTMASKPEN (= 8) Pixel = NOT(pen AND screen pixel)

R2_NOTMERGEPEN (= 2) Pixel = NOT(pen OR screen pixel)

R2_NOTXORPEN (= 10) Pixel = NOT(pen XOR screen pixel)

R2_WHITE (= 16) Pixel is always white

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\788-792.html (1 of 4) [3/14/2001 2:02:24 AM]

javascript:displayWindow('images/23-05.jpg',320,240)
javascript:displayWindow('images/23-05.jpg',320,240)

R2_XORPEN (= 7) Pixel = (pen XOR screen pixel)

We’ll see more about ROP2 modes in “Capturing Images From The Screen” later in this chapter.

You set the ROP2 mode with the SetROP2 function:

Declare Function SetROP2 Lib "gdi32" Alias "SetROP2" (ByVal hdc As _
 Long, ByVal nDrawMode As Long) As Long

Here’s what the arguments to that function mean:

• hdc—The device context to set the ROP2 mode in

• nDrawMode—New drawing mode

Handling The Mouse Outside Your Program’s Window

Sometimes you want to work with the mouse no matter where it is on the screen. To do that, you can use the
SetCapture and ReleaseCapture functions:

Private Declare Function SetCapture Lib "user32" (ByVal hwnd As Long) _
 As Long

Private Declare Function ReleaseCapture Lib "user32" () As Long

Here, hwnd is the handle of the window that the mouse should send mouse events to, no matter where it is in the
screen. SetCapture captures the mouse, and ReleaseCapture releases it.

Let’s see an example. In this case, we’ll capture the mouse when the user clicks a command button, Command1,
and let the user drag the mouse anywhere in the screen—reporting the mouse’s current x and y locations in two text
boxes, Text1 and Text2. Set the form’s ScaleMode to Pixels (3) so that we get our mouse locations in pixels.

We’ll use two Boolean flags here: blnStartCapture, which we set to True when the user clicks the command button
to capture the mouse, and blnAmCapturing, which we’ll set to True when the user starts dragging the mouse
(which means we should start reporting the mouse location in the two text boxes). Along with SetCapture and
ReleaseCapture, then, we add all the declarations to the form’s (General) section:

Dim blnStartCapture As Boolean
Dim blnAmCapturing As Boolean

Private Declare Function SetCapture Lib "user32" (ByVal hwnd As Long) _
 As Long
Private Declare Function ClientToScreen Lib "user32" (ByVal hwnd As_
 Long, lpPoint As POINTAPI) As Long
Private Declare Function ReleaseCapture Lib "user32" () As Long

Note also that we include the ClientToScreen function. You use this function to translate coordinates from window
coordinates to the whole screen. We’ll need to do that: the mouse coordinates passed to our mouse event handlers
are in window coordinates, but we’ll need screen coordinates because we’re using the mouse with the whole screen.

You pass a variable of type POINTAPI to ClientToScreen, so we include that type’s declaration in a new module
we add to the program:

Type POINTAPI

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\788-792.html (2 of 4) [3/14/2001 2:02:24 AM]

 x As Long
 y As Long
End Type

To start the program, we set our Boolean flags to False when the program’s form loads:

Private Sub Form_Load()

 blnStartCapture = False
 blnAmCapturing = False
End Sub

Now when the user clicks the command button, Command1, we capture the mouse with SetCapture and set the
blnStartCapture flag to True:

Private Sub Command1_Click()
 blnStartCapture = True
 intRetVal = SetCapture(hwnd)
 Command1.Caption = "Drag the mouse"
End Sub

When the mouse next goes down, we’ll set the blnCapturing flag to True and start reporting the mouse location in
the two text boxes, Text1 and Text2:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, x _
 As Single, y As Single)
 Dim ptPoint As POINTAPI

 If blnStartCapture Then
 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
 Text1.Text = Str(ptPoint.x)
 Text2.Text = Str(ptPoint.y)

 blnAmCapturing = True
 End If
End Sub

Similarly, in the MouseMove event, we check to see if we’re capturing the mouse, and if so, we display the mouse
location in the text boxes:

Sub Form_MouseMove(Button As Integer, Shift As Integer, x As Single, _
 y As Single)
 Dim ptPoint As POINTAPI

 If blnAmCapturing Then
 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
 Text1.Text = Str(ptPoint.x)

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\788-792.html (3 of 4) [3/14/2001 2:02:24 AM]

 Text2.Text = Str(ptPoint.y)

 End If
End Sub

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\788-792.html (4 of 4) [3/14/2001 2:02:24 AM]

Finally, when the user releases the mouse button, we release the mouse with ReleaseCapture and reset the Boolean flags:

Sub Form_MouseUp(Button As Integer, Shift As Integer, x As Single, _
 y As Single)

 If blnAmCapturing Then

 ReleaseCapture
 blnStartCapture = False
 blnAmCapturing = False
 Command1.Caption = "Start capture"

 End If
End Sub

That’s it—now run the program, as shown in Figure 23.6. Click the button in the program and drag the mouse. No matter
where you drag the mouse, the mouse location is displayed in the text boxes in the program. We’ve captured the mouse. To
release the mouse, just release the mouse button.

Figure 23.6 Using the mouse outside a program.

There’s one peculiarity you should know about here: starting with Windows 95, you can only capture the mouse for one
mouse operation; when you finish with the mouse, it is released. That means if you start the mouse drag by pressing the
mouse button while inside the program’s window, everything is fine—the program retains control of the mouse while you
drag. If, on the other hand, you press the mouse button outside the program’s window and start to drag, the mouse is released.

You can remedy this problem, as we do in our screen capture program later in this chapter, by using the right mouse button
for mouse operations. In that program, we have the users drag the mouse by pressing the mouse button in the program’s
window, dragging the mouse to the top left of the rectangle they want to capture, then use the right mouse button (while
holding the left one down) to capture that rectangle.

The code for this program is located in the mousecap folder on this book’s accompanying CD-ROM.

Copying Bitmaps Between Device Contexts Quickly

One of the most common reasons to use Windows API functions is to make fast bitmap transfers, which you can do with the
BitBlt function. This function lets you copy a bitmap from one device context to another very quickly:

Declare Function BitBlt Lib "gdi32" Alias "BitBlt" (ByVal hDestDC As _
 Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal _
 nHeight As Long, ByVal hSrcDC As Long, ByVal xSrc As Long, ByVal _
 ySrc As Long, ByVal dwRop As Long) As Long

Here’s what this function’s arguments mean:

• hDestDC—The destination device context to copy to

• x—The x-coordinate of the upper-left corner of the destination rectangle

• y—The y-coordinate of the upper-left corner of the destination rectangle

• nWidth—The width of the destination rectangle and source bitmap

• nHeight—The height of the destination rectangle and source bitmap

• hSrcDC—The source device context to copy from

• xSrc—The logical x-coordinate of the upper-left corner of the source bitmap

• ySrc—The logical y-coordinate of the upper-left corner of the source bitmap

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\792-795.html (1 of 3) [3/14/2001 2:02:34 AM]

javascript:displayWindow('images/23-06.jpg',384,250)
javascript:displayWindow('images/23-06.jpg',384,250)

• dwRop—The raster operation to be performed

You can find the possible values for the dwRop argument in Table 23.4.

Table 23.4 BitBlt raster operations.

dwRop Constant Operation

SRCCOPY = &HCC0020 destination = source

SRCPAINT = &HEE0086 destination = source OR destination

SRCAND = &H8800C6 destination = source AND destination

SRCINVERT = &H660046 destination = source XOR destination

SRCERASE = &H440328 destination = source AND (NOT destination)

NOTSRCCOPY = &H330008 destination = (NOT source)

NOTSRCERASE = &H1100A6 destination = (NOT src) AND (NOT destination)

MERGECOPY = &HC000CA destination = (source AND pattern)

MERGEPAINT = &HBB0226 destination = (NOT source) OR destination

PATCOPY = &HF00021 destination = pattern

PATPAINT = &HFB0A09 destination = pattern OR source

PATINVERT = &H5A0049 destination = pattern XOR destination

DSTINVERT = &H550009 destination = (NOT destination)

BLACKNESS = &H42 destination = BLACK

WHITENESS = &HFF0062 destination = WHITE

We’ll put BitBlt to work when we capture the screen in the next topic.

Capturing Images From The Screen

We’ll put together the previous topics in this chapter into one substantial screen capture example: screencap. Using this
program, you can capture sections of the screen and display them in a picture box.

When you run this program, press the left mouse button on the program’s form, then drag the mouse to the top left of the
rectangular region you want to capture. Then, using the right mouse button (while holding the left one down) draw the
rectangle you want to capture. A box outlining that region will appear on the screen as you move the mouse, as shown in
Figure 23.7.

Figure 23.7 Outlining a region on the screen.

When you release the mouse buttons, the region you’ve outline appears in the picture box in the program, as shown in Figure
23.8. You’ve captured an image from the screen.

Figure 23.8 Capturing a region of the screen.

Why do we have to drag the mouse before making the screen capture? There’s a peculiarity in mouse capture starting in
Windows 95: when you capture the mouse, you can only hold it until you finish with a mouse operation; when you do, the
mouse is released. To hold the mouse, we start the dragging process in the program’s form itself and only release all mouse
buttons when we’re done capturing the image we want.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\792-795.html (2 of 3) [3/14/2001 2:02:34 AM]

javascript:displayWindow('images/23-07.jpg',546,354)
javascript:displayWindow('images/23-07.jpg',546,354)
javascript:displayWindow('images/23-08.jpg',441,344)
javascript:displayWindow('images/23-08.jpg',441,344)

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\792-795.html (3 of 3) [3/14/2001 2:02:34 AM]

This program is a fairly complex one, involving lots of Visual Basic code, and it appears in Listing 23.1 for
reference. This program, screencap, puts together almost all of the Windows API operations we’ve seen so
far in this chapter, so it’s worth taking a look at as an example of a substantial program that uses the
Windows API.

Listing 23.1 screencap.frm

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 4755
 ClientLeft = 1425
 ClientTop = 2175
 ClientWidth = 6495
 LinkTopic = "Form1"
 PaletteMode = 1 'UseZOrder
 ScaleHeight = 317
 ScaleMode = 3 'Pixel
 ScaleWidth = 433
 Begin VB.PictureBox Picture1
 AutoRedraw = -1 'True
 BackColor = &H00FFFFFF&
 Height = 3735
 Left = 480
 ScaleHeight = 3675
 ScaleWidth = 5595
 TabIndex = 0
 Top = 120
 Width = 5655
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim blnStartCapture As Boolean
Dim blnAmCapturing As Boolean
Dim intHandleDisplay As Integer
Dim intStartX As Integer
Dim intStartY As Integer
Dim intMouseX As Integer
Dim intMouseY As Integer
Dim intOldMouseX As Integer
Dim intOldMouseY As Integer

Private Declare Function SetCapture Lib "user32" (ByVal hwnd As Long) _

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\795-800.html (1 of 5) [3/14/2001 2:02:43 AM]

 As Long
Private Declare Function CreateDC Lib "gdi32" Alias "CreateDCA" (ByVal _
 lpDriverName As String, ByVal lpDeviceName As String, ByVal _
 lpOutput As String, lpInitData As DEVMODE) As Long
Private Declare Function SetROP2 Lib "gdi32" (ByVal hdc As Long, ByVal_
 nDrawMode As Long) As Long
Private Declare Function MoveToEx Lib "gdi32" (ByVal hdc As Long,
 ByVal x As Long, ByVal y As Long, lpPoint As POINTAPI) As Long
Private Declare Function LineTo Lib "gdi32" (ByVal hdc As Long, ByVal x _
 As Long, ByVal y As Long) As Long
Private Declare Function DeleteDC Lib "gdi32" (ByVal hdc As Long) As Long
Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC As Long, _
 ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal _
 nHeight As Long, ByVal hSrcDC As Long, ByVal xSrc As Long, ByVal _
 ySrc As Long, ByVal dwRop As Long) As Long
Private Declare Function ReleaseCapture Lib "user32" () As Long
Private Declare Function ClientToScreen Lib "user32" (ByVal hwnd As _
 Long, lpPoint As POINTAPI) As Long

Const SRCCOPY = &HCC0020
Const R2_NOT = 6

Private Sub Form_Load()
 Dim devDevMode As DEVMODE

 blnStartCapture = False
 blnAmCapturing = False

 intHandleDisplay = CreateDC("DISPLAY", 0&, 0&, devDevMode)
End Sub

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, x As _
 Single, y As Single)
 Dim ptPoint As POINTAPI

 If Button = 1 Then
 blnStartCapture = True
 intRetVal = SetCapture(hwnd)
 End If

 If blnStartCapture And Button = 2 Then

 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
 intStartX = ptPoint.x
 intStartY = ptPoint.y

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\795-800.html (2 of 5) [3/14/2001 2:02:43 AM]

 intOldMouseX = intStartX
 intOldMouseY = intStartY

 blnAmCapturing = True
 End If
End Sub
Sub Form_MouseMove(Button As Integer, Shift As Integer, x As Single, y _
 As Single)

 If blnAmCapturing Then

 EraseOld x, y

 intOldMouseX = intMouseX
 intOldMouseY = intMouseY

 DrawNew x, y

 End If
End Sub

Sub Form_MouseUp(Button As Integer, Shift As Integer, x As Single, y As_
 Single)
 Dim intLeftX As Integer
 Dim intLeftY As Integer

 If blnAmCapturing Then
 ReleaseCapture
 blnStartCapture = False
 blnAmCapturing = False

 EraseOld x, y

 intLeftX = intMouseX
 If intStartX < intMouseX Then
 intLeftX = intStartX
 End If

 intLeftY = intMouseY
 If intStartY < intMouseY Then
 intLeftY = intStartY
 End If

 Picture1.Cls
 intRetVal = BitBlt(Picture1.hdc, 0, 0, Abs(intStartX - _
 intMouseX), Abs(intStartY - intMouseY), intHandleDisplay, _

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\795-800.html (3 of 5) [3/14/2001 2:02:43 AM]

 intLeftX, intLeftY, SRCCOPY)

 End If
End Sub

Private Sub EraseOld(ByVal x As Integer, ByVal y As Integer)
 Dim ptPoint As POINTAPI

 intRetVal = SetROP2(intHandleDisplay, R2_NOT)

 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
 intMouseX = ptPoint.x
 intMouseY = ptPoint.y

 lngRetVal = MoveToEx(intHandleDisplay, intOldMouseX, intOldMouseY, _
 ptPoint)
 intRetVal = LineTo(intHandleDisplay, intStartX, intOldMouseY)
 intRetVal = LineTo(intHandleDisplay, intStartX, intStartY)
 intRetVal = LineTo(intHandleDisplay, intOldMouseX, intStartY)
 intRetVal = LineTo(intHandleDisplay, intOldMouseX, intOldMouseY)

End Sub

Private Sub DrawNew(ByVal x As Integer, ByVal y As Integer)
 Dim ptPoint As POINTAPI

 intRetVal = SetROP2(intHandleDisplay, R2_NOT)

 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
 intMouseX = ptPoint.x
 intMouseY = ptPoint.y

 lngRetVal = MoveToEx(intHandleDisplay, intMouseX, intMouseY, _
 ptPoint)
 intRetVal = LineTo(intHandleDisplay, intStartX, intMouseY)
 intRetVal = LineTo(intHandleDisplay, intStartX, intStartY)
 intRetVal = LineTo(intHandleDisplay, intMouseX, intStartY)
 intRetVal = LineTo(intHandleDisplay, intMouseX, intMouseY)

End Sub

Private Sub Form_Unload(Cancel As Integer)
 intRetVal = DeleteDC(intHandleDisplay)

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\795-800.html (4 of 5) [3/14/2001 2:02:43 AM]

End Sub

Getting A Window Handle For Any Window On The Screen

To work with windows in the Windows API, you need a window handle. One way of getting a handle for
any window on the screen is to use the WindowFromPoint function. You just pass that function the x- and
y-coordinates (in screen coordinates) of a point inside the window for which you want the handle:

Private Declare Function WindowFromPoint Lib "user32" (ByVal xPoint As _
 Long, ByVal yPoint As Long) As Long

Let’s see an example. Here, we’ll let the users click a command button, Command1, with the caption
Choose Window. When they do, they can move the mouse to any window on the screen, click the window,
and get a handle for that window.

When the users click the Choose Window button, we’ll set up a form-wide Boolean variable, blnChoose, to
True, so we know the next time the users click the mouse, they’re indicating the window for which they want
a handle:

Dim blnChoose As Boolean

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\795-800.html (5 of 5) [3/14/2001 2:02:43 AM]

We set blnChoose to False when the form first loads:

Private Sub Form_Load()
 blnChoose = False
End Sub

To capture the mouse, we’ll need SetCapture and ReleaseCapture. To convert from window to screen coordinates, we’ll
need ClientToScreen, so we declare those functions as well:

Private Declare Function SetCapture Lib "user32" (ByVal hwnd As Long) As _
 Long
Private Declare Function ReleaseCapture Lib "user32" () As Long
Private Declare Function WindowFromPoint Lib "user32" (ByVal xPoint As _
 Long, ByVal yPoint As Long) As Long
Private Declare Function ClientToScreen Lib "user32" (ByVal hwnd As Long,_
 lpPoint As POINTAPI) As Long

We also need to declare the POINTAPI type because ClientToScreen uses that type, so we add that declaration to a
module we add to the program:

Type POINTAPI
 x As Long
 y As Long
End Type

Now when the user clicks the command button, we capture the mouse and set the blnChoose flag to True:

Private Sub Command1_Click()
 blnChoose = True
 intRetVal = SetCapture(hwnd)
End Sub

When the user clicks a window, our program’s MouseDown event handler will be called. To determine the screen location
at which the mouse went down, we use ClientToScreen:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, x As _
 Single, y As Single)
 Dim ptPoint As POINTAPI

 If blnChoose Then

 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
...
 End If
End Sub

Now we can get a window handle for the window the user clicked with WindowFromPoint:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, x As Single, y_
 As Single)
 Dim window As Long
 Dim ptPoint As POINTAPI

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\800-804.html (1 of 3) [3/14/2001 2:03:00 AM]

 If blnChoose Then

 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)
 window = WindowFromPoint(ptPoint.x, ptPoint.y)
...

 End If
End Sub

And that’s it—now we’ve gotten a window handle for any window on the screen the user wants to click. Using that handle
you can perform all kinds of operations on the window—resizing it, closing it, changing its style, and more, using API
functions. As an example, we’ll see how to get a window’s title bar text in the next topic.

Getting A Window’s Text

In the previous topic, we saw how to get a handle for any window on the screen when the user clicks that window. Here,
we’ll use the GetWindowText function to get the title bar text of a window:

Function GetWindowText Lib "user32" Alias "GetWindowTextA" (ByVal hwnd _
 As Long, ByVal lpszString As String, ByVal cch As Long) As Long

Here’s what the arguments to this function mean:

• hwnd—The handle of the window you want to get the text from.

• lpszString—The buffer that is to receive the copied string of the window’s title.

• cch—The maximum number of characters to be copied to the buffer. If the string is longer than the number of
characters specified in cch, it is truncated.

This function returns the length of the text it retrieved. Let’s see an example. Here, we use the window handle we got in the
previous topic with GetWindowText to get the title bar text of any window the user clicks and display that text in a text
box, Text1:

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, x As _
 Single, y As Single)
 Dim window As Long
 Dim buffer As String * 1024
 Dim ptPoint As POINTAPI

 If blnChoose Then
 ptPoint.x = x
 ptPoint.y = y
 retval = ClientToScreen(hwnd, ptPoint)

 window = WindowFromPoint(ptPoint.x, ptPoint.y)
 lngRetVal = GetWindowText(window, buffer, 1024)
 Text1.Text = buffer
 End If
End Sub

Run the program now, as shown in Figure 23.9. When you click the Choose Window button and then click another window,
the program reads the text in the clicked program’s title bar and displays it in a text box, as shown in Figure 23.9. Our
program is a success—now we can work with any window on the screen.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\800-804.html (2 of 3) [3/14/2001 2:03:00 AM]

Figure 23.9 Getting a window’s title bar text.

The code for this example is located in the windowinfo folder on this book’s accompanying CD-ROM.

Playing Sounds With API Functions

You can use the Windows API PlaySound function to play sounds:

Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal lpszName As _
 String, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Here’s what the arguments to PlaySound mean:

• lpszName—The path and name of the file to play

• hModule—The module handle of the program, which you usually set to 0

• dwFlags—Flag settings; see the following explanation for the settings

Here are the flags you can use in the dwFlags parameter of the PlaySound function:

• SND_SYNC—&H0; play the sound synchronously (the default)

• SND_ASYNC—&H1; play the sound asynchronously

• SND_NODEFAULT—&H2; silence is not the default, if sound is not found

• SND_MEMORY—&H4; lpszName points to a memory file

• SND_ALIAS—&H10000; name is a win.ini [sounds] entry

• SND_FILENAME—&H20000; name is a file name

• SND_RESOURCE—&H40004; name is a resource name or atom

• SND_ALIAS_ID—&H110000; name is a win.ini [sounds] entry identifie

• SND_ALIAS_START—0; must be > 4096 to keep strings in same section of resource file

• SND_LOOP—&H8; loop the sound until next PlaySound
• SND_NOSTOP—&H10; don’t stop any currently playing sound

• SND_NOWAIT—&H2000; don’t wait if the driver is busy

Declaring this function as a Private function lets us declare this in the (General) section of a form:

Private Declare Function PlaySound Lib "winmm.dll" Alias _
 "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, _
 ByVal dwFlags As Long) As Long

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\800-804.html (3 of 3) [3/14/2001 2:03:00 AM]

javascript:displayWindow('images/23-09.jpg',582,514)
javascript:displayWindow('images/23-09.jpg',582,514)

Now we can call PlaySound directly when the user clicks a command button, Command1 ; here, we pass it a
value of &H20000 to indicate that we’re reading the sound from a file and ignore the function’s return value this
way:

Private Sub Command1_Click()
 retVal = PlaySound("c:\windows\media\Tada.wav", 0&, &H20000)
End Sub

And that’s it—now we’re playing sounds with a Windows API function.

Allocating Memory And Storing Data

One reason programmers use Windows API calls is to work with a lot of memory, and you can use the
GlobalAlloc (allocate memory), GlobalLock (lock the memory and get a pointer to it), GlobalUnlock (unlock the
memory), and GlobalFree (deallocate the memory) functions for that. We’ll take a look at the first two of these
functions in this topic, and the last two in the following topic. We’ll also see how to copy data into and out of our
newly allocated memory with the MoveMemory function.

Here’s how you use GlobalAlloc to allocate memory; this function returns a non-zero handle to the memory if
successful:

Function GlobalAlloc Lib "kernel32" (ByVal wFlags As Long, ByVal
 dwBytes As Long) As Long

You set the flags you want to use in wFlags, and the number of memory bytes you want in dwBytes. Here are the
possible flags to use with GlobalAlloc:

• GMEM_FIXED—&H0

• GMEM_MOVEABLE—&H2

• GMEM_NOCOMPACT—&H10

• GMEM_NODISCARD—&H20

• GMEM_ZEROINIT—&H40

• GMEM_MODIFY—&H80

• GMEM_DISCARDABLE—&H100

• GMEM_NOT_BANKED—&H1000

• GMEM_SHARE—&H2000

• GMEM_DDESHARE—&H2000

• GMEM_NOTIFY—&H4000

• GMEM_LOWER—GMEM_NOT_BANKED

• GMEM_VALID_FLAGS—&H7F72

• GMEM_INVALID_HANDLE—&H8000

To get a pointer to the memory and so put it to use, you use GlobalLock, passing it the memory handle you got
from GlobalAlloc. GlobalLock returns a non-zero pointer to the memory if successful:

Function GlobalLock Lib "kernel32" (ByVal hMem As Long) As Long

Besides GlobalAlloc and GlobalLock, you can move data into the memory you’ve allocated with MoveMemory:

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\804-806.html (1 of 4) [3/14/2001 2:03:05 AM]

Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" (ByVal dest As _
 Any, ByVal src As Any, ByVal length As Long)

Here are what the arguments to MoveMemory mean:

• dest—Pointer to the destination buffer

• src—Pointer to the source buffer

• length—Number of bytes to move

Let’s see an example. Here, we’ll store a string of text that the user types into a text box in memory; in the next
topic in this chapter, we’ll read that string back. This example will give us a good general overview of working
with memory and memory buffers.

We start by setting up a 40-character-long buffer for the string to store in the form’s (General) declarations section:

Const DataLength = 40

Dim outbuffer As String * DataLength
...

We also declare the memory handle and pointer we’ll use:

Const DataLength = 40

Dim outbuffer As String * DataLength

Dim hMemory As Long
Dim hMemoryPointer As Long
...

Finally, we declare the functions we’ll use, GlobalAlloc, GlobalLock, and MoveMemory, as well as the memory
flag we’ll use, GMEM_MOVEABLE, which means that Windows can move the memory we are using if it needs
to as part of its memory-handling operations:

Const DataLength = 40

Dim outbuffer As String * DataLength

Dim hMemory As Long
Dim hMemoryPointer As Long

Private Declare Function GlobalAlloc Lib "kernel32" (ByVal wFlags As_
 Long, ByVal dwBytes As Long) As Long
rivate Declare Function GlobalLock Lib "kernel32" (ByVal hMem As Long) _
 As Long
Private Declare Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" _
 (ByVal dest As Any, ByVal src As Any, ByVal length As Long)
Const GMEM_MOVEABLE = &H2

When the user clicks a command button, Command1, we will allocate and lock the memory, and store the text
string now in Text1 in it. We start by storing the text from the text box in the buffer we’ve named outbuffer:

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\804-806.html (2 of 4) [3/14/2001 2:03:05 AM]

Private Sub Command1_Click()

 outbuffer = Text1.Text
...

Next, we use GlobalAlloc to allocate the memory we’ll use:

Private Sub Command1_Click()

 outbuffer = Text1.Text

 hMemory = GlobalAlloc(GMEM_MOVEABLE, DataLength)
...

Next, we pass the memory handle from GlobalAlloc to GlobalLock to get a pointer to the memory we’ve
allocated:

Private Sub Command1_Click()

 outbuffer = Text1.Text

 hMemory = GlobalAlloc(GMEM_MOVEABLE, DataLength)
 hMemoryPointer = GlobalLock(hMemory)
...

Finally, we copy the data from our buffer to our newly allocated memory with MoveMemory (note that because
MoveMemory is a subroutine, we use the Call keyword instead of assigning a return value to a variable):

Private Sub Command1_Click()

 outbuffer = Text1.Text

 hMemory = GlobalAlloc(GMEM_MOVEABLE, DataLength)
 hMemoryPointer = GlobalLock(hMemory)

 Call MoveMemory(hMemoryPointer, outbuffer, DataLength)

End Sub

And that’s it—when the user clicks Command1, we copy the text string to our allocated memory.

We’ve stored data in allocated memory now—how do we read it back? We’ll take a look at that in the next topic.

Reading Data From Memory And Deallocating Memory

In the previous topic, we stored a text string from a text box, Text1, in memory when the user clicked a button,
Command1. In this topic, we’ll read the string back when the user clicks another button, Command2, and display
that string in a new text box, Text2. We’ll also free and deallocate the memory we’ve used.

We’ll use MoveMemory to read the data from memory:

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\804-806.html (3 of 4) [3/14/2001 2:03:05 AM]

Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" (ByVal dest As _
 Any, ByVal src As Any, ByVal length As Long)

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\804-806.html (4 of 4) [3/14/2001 2:03:05 AM]

Here are what the arguments to MoveMemory mean:

• dest—Pointer to the destination buffer

• src—Pointer to the source buffer

• length—Number of bytes to move

To allocate memory, we used GlobalAlloc to get a handle to a memory area; to use that memory, we used
GlobalLock to get a pointer to the memory area. To unlock memory, you pass a pointer to that memory to
GlobalUnlock:

Function GlobalUnlock Lib "kernel32" (ByVal hMem As Long) As Long

To free memory, you pass a memory handle to GlobalFree:

Function GlobalFree Lib "kernel32" (ByVal hMem As Long) As Long

Let’s see this at work. Here, we add the declarations of the functions we’ll use to the program we developed in the
previous topic, as well as a buffer, inbuffer, to store the data we read:

Const DataLength = 40
Const GMEM_MOVEABLE = &H2

Dim outbuffer As String * DataLength
Dim inbuffer As String * DataLength

Dim memHandle As Long
Dim memPointer As Long

Private Declare Function GlobalAlloc Lib "kernel32" (ByVal wFlags As Long,_
 ByVal dwBytes As Long) As Long
Private Declare Function GlobalLock Lib "kernel32" (ByVal hMem As Long) _
 As Long
Private Declare Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory"
 (ByVal dest As Any, ByVal src As Any, ByVal length As Long)
Private Declare Function GlobalFree Lib "kernel32" (ByVal hMem As Long) _
 As Long
Private Declare Function GlobalUnlock Lib "kernel32" (ByVal hMem As Long) _
 As Long

Then, when the user clicks Command2, we can use the memory pointer we created in the program in the previous
topic, hMemoryPointer, with MoveMemory, to copy the string to the buffer:

Private Sub Command2_Click()

 Call MoveMemory(inbuffer, hMemoryPointer, DataLength)
...

Now we can move the string to Text2 from inbuffer:

Private Sub Command2_Click()

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\806-812.html (1 of 4) [3/14/2001 2:03:09 AM]

 Call MoveMemory(inbuffer, hMemoryPointer, DataLength)

 Text2.Text = inbuffer
...

Finally, we unlock and free the memory we’ve used:

Private Sub Command2_Click()

 Call MoveMemory(inbuffer, hMemoryPointer, DataLength)

 Text2.Text = inbuffer

 GlobalUnlock (hMemoryPointer)
 GlobalFree (hMemory)

End Sub

That’s it—when you run the program, as shown in Figure 23.10, and click the Store Text In Memory button, the
text in the top text box, Text1, is stored in memory. When you click the Read Text From Memory button, the
string is read back and displayed in the bottom text box, Text2, as you see in Figure 23.10. Now we’re using
memory with the Windows API.

Figure 23.10 Storing and reading memory data.

The code for this example is located in the winmemory folder on this book’s accompanying CD-ROM.

Making A Window Topmost

You can use SetWindowPos to make a window “topmost,” which means it’ll always stay on top of other
windows:

Function SetWindowPos Lib "user32" (ByVal hwnd As Long, ByVal _
 hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, ByVal _
 cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Here’s what the arguments to this function mean:

• hwnd—Handle of the window to work with.

• hWndInsertAfter—Handle to the window that will precede this window in the Z-order. This parameter can
be a window handle set to one of the following values: HWND_BOTTOM (= 1; places the window at the
bottom of the Z-order), HWND_TOP (= 0; places the window at the top of the Z-order),
HWND_TOPMOST (= –1; places the window above all non-topmost windows), or
HWND_NOTOPMOST (= –2; repositions the window to the top of all non-topmost windows).

• x—Specifies the new position of the left side of the window.

• y—Specifies the new position of the top of the window.

• cx—Specifies the new width of the window.

• cy—Specifies the new height of the window.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\806-812.html (2 of 4) [3/14/2001 2:03:09 AM]

javascript:displayWindow('images/23-10.jpg',320,240)
javascript:displayWindow('images/23-10.jpg',320,240)

• wFlags—Specifies sizing and positioning options, as shown in Table 23.5.

Table 23.5 SetWindowPos flags.

Constant Meaning

SWP_DRAWFRAME (= &H20) Draws a frame (defined when the window was
created) around the window.

SWP_FRAMECHANGED (= &H20) Sends a WM_NCCALCSIZE message to the
window, even if the window’s size is not being
changed. If this flag is not specified,
WM_NCCALCSIZE is sent only when the
window’s size is being changed.

SWP_HIDEWINDOW (=&H80) Hides the window.

SWP_NOACTIVATE (= &H10) Does not activate the window. If this flag is not set,
the window is activated and moved to the top of
either the topmost or the non-topmost group
(depending on the setting of the hWndInsertAfter
parameter).

SWP_NOCOPYBITS (= &H100) Discards the entire contents of the client area. If this
flag is not specified, the valid contents of the client
area are saved and copied back into the client area
after the window is sized or repositioned.

SWP_NOMOVE (= 2) Retains current position (ignores the x and y
parameters).

SWP_NOOWNERZORDER (= &H200) Does not change the owner window’s position in the
Z-order.

SWP_NOREDRAW (= 8) Does not redraw changes. If this flag is set, no
repainting of any kind occurs.

SWP_NOREPOSITION (= &H200) Same as SWP_NOOWNERZORDER.

SWP_NOSIZE (= 1) Retains current size (ignores the cx and cy
parameters).

SWP_NOZORDER (= 4) Retains current ordering (ignores hWndInsertAfter).

SWP_SHOWWINDOW (=&H40) Displays the window.

Let’s see an example. Here, we’ll size a window to 100 x 100 pixels and make it a topmost window. We start by
declaring SetWindowPos in our program, as well as the constants we’ll use, SWP_SHOWWINDOW,
SWP_DRAWFRAME, and HWND_TOPMOST:

Private Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
 ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long,
 ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Const HWND_TOPMOST = -1
Const SWP_SHOWWINDOW = &H40
Const SWP_DRAWFRAME = &H20

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\806-812.html (3 of 4) [3/14/2001 2:03:09 AM]

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\806-812.html (4 of 4) [3/14/2001 2:03:09 AM]

Now when the window loads, we can make the window topmost this way:

Private Sub Form_Load()

 retVal = SetWindowPos(Me.hwnd, HWND_TOPMOST, 100, 100, _
 100, 100, SWP_DRAWFRAME Or SWP_SHOWWINDOW)

End Sub

That’s all it takes. Now the window will stay on top of other windows, as you see in Figure 23.11. Our topmost
program is a success.

Figure 23.11 Making a window topmost.

Determining Free And Total Disk Space

The Testing Department is calling again. Your program, SuperDuperDataCrunch, is overflowing users’ disks.
Can’t you check how much disk space is available before writing out your 800MB database? Hmm, you think,
how would that work?

You can use the GetDiskFreeSpace function to check how much space there is on a disk:

Private Declare Function GetDiskFreeSpace Lib "kernel32" Alias _
 GetDiskFreeSpaceA (ByVal lpRootPathName As String, _
 lpSectorsPerCluster As Long, lpBytesPerSector As Long, _
 lpNumberOfFreeClusters As Long, lpTotalNumberOfClusters As Long) _
 As Long

Here’s what this function’s arguments mean:

• lpRootPathName—The disk you want to check (for example, “c:\”)

• lpSectorsPerCluster—The number of sectors per cluster on the disk

• lpBytesPerSector—The number of bytes per sector

• lpNumberOfFreeClusters—The number of free clusters

• lpTotalNumberOfClusters—The total number of clusters

To find the total free space, you multiply SectorsPerCluster * BytesPerSector * NumberOfFreeClusters. To find
the total space on the drive, you multiply SectorsPerCluster * BytesPerSector * TotalNumberOfClusters.

Let’s see an example. Here, we’ll determine the free space on the c: drive. We start by declaring
GetDiskFreeSpace:

Private Declare Function GetDiskFreeSpace Lib "kernel32" Alias _
 "GetDiskFreeSpaceA" (ByVal lpRootPathName As String,_
 lngSectorsPerCluster As Long, lngBytesPerSector As Long, _
 lngNumberOfFreeClusters As Long, lngTotalNumberOfClusters As Long)_
 As Long

Next, when the form loads, we fill the variables lngSectorsPerCluster, lngBytesPerSector,

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\812-816.html (1 of 4) [3/14/2001 2:03:29 AM]

javascript:displayWindow('images/23-11.jpg',593,310)
javascript:displayWindow('images/23-11.jpg',593,310)

lngNumberOfFreeClusters, and lngTotalNumberOfClusters with GetDiskFeeSpace for drive C:

Private Sub Form_Load()
 Dim lngSectorsPerCluster As Long
 Dim lngBytesPerSector As Long
 Dim lngNumberOfFreeClusters As Long
 Dim lngTotalNumberOfClusters As Long

 retVal = GetDiskFreeSpace("c:\", lngSectorsPerCluster, _
 lngBytesPerSector, lngNumberOfFreeClusters, lngTotalNumberOfClusters)
...

Finally, we can display the total number of free bytes in a label, Label1, this way:

Private Sub Form_Load()
 Dim lngSectorsPerCluster As Long
 Dim lngBytesPerSector As Long
 Dim lngNumberOfFreeClusters As Long
 Dim lngTotalNumberOfClusters As Long

 retVal = GetDiskFreeSpace("c:\", lngSectorsPerCluster, _
 lngBytesPerSector, lngNumberOfFreeClusters, _
 lngTotalNumberOfClusters)

 Label1.Caption = "Free space on drive c: " & _
 Str(lngSectorsPerCluster * lngBytesPerSector * _
 lngNumberOfFreeClusters) & " bytes"

End Sub

When you run the program, you’ll see the number of free bytes on the computer’s C: drive, something like the
display in Figure 23.12.

Figure 23.12 Determining free disk space.

Determining The Windows Directory

Sometimes you want to determine where Windows is installed on a system to be able to install files such as
initialization files or DLLs. You can use the GetWindowsDirectory function to find the Windows directory:

Private Declare Function GetWindowsDirectory Lib "kernel32" Alias _
 "GetWindowsDirectoryA" (ByVal lpBuffer As String, ByVal nSize As _
 Long) As Long

Here are the arguments for the GetWindowsDirectory function:

• lpBuffer—Pointer to a buffer to store the Windows directory

• nSize—Size of the buffer in bytes.

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\812-816.html (2 of 4) [3/14/2001 2:03:29 AM]

javascript:displayWindow('images/23-12.jpg',287,167)
javascript:displayWindow('images/23-12.jpg',287,167)

Let’s see an example. Here, we’ll add some code to the example we started in the previous topic that displays free
disk space. We add the declaration we’ll need for GetWindowsDirectory:

Private Declare Function GetDiskFreeSpace Lib "kernel32" Alias _
 "GetDiskFreeSpaceA" (ByVal lpRootPathName As String, _
 lpSectorsPerCluster As Long, lpBytesPerSector As Long, _
 lpNumberOfFreeClusters As Long, lpTotalNumberOfClusters As Long)
 As Long

 Private Declare Function GetWindowsDirectory Lib "kernel32" Alias _
 "GetWindowsDirectoryA" (ByVal lpBuffer As String, ByVal nSize As _
 Long) As Long

Next, we set up a text buffer, get the Windows directory with GetWindowsDirectory, and display the Windows
directory in a new label, Label2:

Private Sub Form_Load()
 Dim lngSectorsPerCluster As Long
 Dim lngBytesPerSector As Long
 Dim lngNumberOfFreeClusters As Long
 Dim lngTotalNumberOfClusters As Long
 Dim strBuffer As String * 1024

 retVal = GetDiskFreeSpace("c:\", lngSectorsPerCluster, _
 lngBytesPerSector, lngNumberOfFreeClusters, lngTotalNumberOfClusters)

 Label1.Caption = "Free space on drive c: " & Str(lngSectorsPerCluster_
 * lngBytesPerSector * lngNumberOfFreeClusters) & "bytes"

 retVal = GetWindowsDirectory(strBuffer, 1024)
 Label2.Caption = "Windows directory: " & strBuffer

End Sub

That’s it—the result appears in Figure 23.13. As you can see, we’re now able to find the directory in which
Windows itself is installed.

Figure 23.13 Determining the Windows directory.

The code for this example is located in the windisk folder on this book’s accompanying CD-ROM.

TIP: If you just want to find the current, default directory, use the Visual Basic command CurDir. To set the current
drive, use ChDrive, and to change directories, use ChDir.

Connecting To Visual C++

The Testing Department is calling again. Another company programmer has written a great routine for
alphabetizing spreadsheets that would be great in your program, SuperDuperDataCrunch. Terrific, you say. They

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\812-816.html (3 of 4) [3/14/2001 2:03:29 AM]

javascript:displayWindow('images/23-13.jpg',287,167)
javascript:displayWindow('images/23-13.jpg',287,167)

say, the only problem is that those routines are written in Visual C++, and you’ll have to interface them to Visual
Basic. Visual C++. You say, what’s that?

Visual Basic 6 Black Book:Connecting To The Windows API And Visual C++

http://24.19.55.56:8080/temp/ch23\812-816.html (4 of 4) [3/14/2001 2:03:29 AM]

Chapter 24
Databases: Using DAO, RDO, And ADO
If you need an immediate solution to:

Creating And Managing Databases With The Visual Data Manager

Creating A Table With The Visual Data Manager

Creating A Field With The Visual Data Manager

Entering Data In A Database With The Visual Data Manager

Adding A Data Control To A Program

Opening A Database With The Data Control

Connecting A Data Control To A Bound Control

Registering An ODBC Source

Opening A Database With A Remote Data Control

Connecting A Remote Data Control To A Bound Control

Opening A Database With An ADO Data Control

Connecting An ADO Data Control To A Bound Control

The Data Form Wizard: Creating A Data Form

Using Database Control Methods: Adding, Deleting, And Modifying Records

Adding Records To Databases

Deleting Records In Databases

Refreshing A Data Control

Updating A Database With Changes

Moving To The Next Record

Moving To The Previous Record

Moving To The First Record

Moving To The Last Record

The Data-Bound Controls: From Text Boxes To Flex Grids

The ADO Data-Bound Controls

In Depth

This is our first chapter on databases. In this chapter, we’re going to see what databases are, exploring
the difference between the Microsoft database programming object sets: Data Access Objects (DAO),
Remote Data Objects (RDO), and ActiveX Data Objects (ADO).

You may wonder why there are three different sets of database objects in Visual Basic. As it turns out,
the reason is historical. At first, Visual Basic only supported DAO, which connected to the Microsoft
Jet database engine (the database engine in Microsoft Access). Then, recognizing that there are other

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\821-824.html (1 of 3) [3/14/2001 2:03:34 AM]

database types available, Microsoft created the open database connectivity (ODBC) standard and
supported ODBC with Remote Data Objects in Visual Basic. Finally, Microsoft saw that the Web was
available too and created Active Data Objects, which make up a flexible standard that allows
connections on the same computer, over networks, and through the Web, and is intended to supercede
ODBC. ADO is also called OLE DB, and in fact, it’s based on COM programming techniques (which
we’ll see a lot more of in Chapter 26). We’ll see how to work with all three of these object sets in this
and the next chapter.

There are two ways to work with the DAO, RDO, and ADO object sets in Visual Basic. The first way
is working with the special controls that support them: the data control (supports DAO), the remote
data control (supports ODBC), and the ADO data control (supports ADO). You use those controls to
connect to and move through databases, but they don’t actually display data—you bind them to other
Visual Basic controls, and those bound controls handle the display. The second way is working with
the three database object sets directly in code, without controls like the data control or the ADO data
control, and that’s what we’ll do in the next chapter.

In this chapter, then, we’ll see what databases are all about and how to create and edit them with the
Visual Basic Visual Data Manager tool. Next, we’ll examine the data control, the remote data control,
and the ADO data control to see how to connect to databases, and we’ll use the bound controls to
handle those databases in depth. In the next chapter, we’ll see how to access the data object libraries
directly and put them to work in code for additional power.

What Are Databases?

We’ll begin our discussion of databases by asking just what they are. Like many other programming
concepts, databases have become more complex over the years, but the fundamental concept is still a
simple one. Say you were in charge of teaching a class and were supposed to hand a grade in for each
student. You might make up a table much like the one in Figure 24.1 to record the grade for each
student.

Figure 24.1 A table of data.

In fact, you’ve already created a database—or more specifically, a database table. The transition from a
table on paper to one in a computer is natural: with a computer, you can sort, index, update, and
organize large tables of data in an easy way (and without a great waste of paper). You can even connect
tables together, creating relational databases.

Each individual data entry in a table, such as a student’s name, goes into a field in the table. A
collection of fields together, such as the Name and Grade fields in our table, make up a record. Each
record gets its own row in a table, and each column in that row represents a different field.

A collection of records—that is, rows of records where each column is a field—becomes a table. What,
then, is a database? A database is just a collection of one or more tables. In fact, you can go farther
than that in Visual Basic—you can have collections of databases. In DAO, those collections are called
the workspace, and in RDO and ADO, they are referred to as the data environment. You can also have

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\821-824.html (2 of 3) [3/14/2001 2:03:34 AM]

javascript:displayWindow('images/24-01.jpg',458,541)
javascript:displayWindow('images/24-01.jpg',458,541)

indices in databases, and those are pointers to specific fields, either in the current database or another
one.

Now that you’ve set up a database, how do you work with the data in that database? One popular way
is to use Structured Query Language (SQL), which we’ll see more about in the next chapter. You use
SQL to set up a query, which when applied to a database gives you a record set. This record set is made
up of the records from the database that matched your query—for example, you may have asked for all
students that got a grade of B or better. We’ll see more about working with databases in code like this
in the next chapter.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\821-824.html (3 of 3) [3/14/2001 2:03:34 AM]

Flat And Relational Databases

So far, we’ve defined a certain type of database: a flat or flat-file database. There is a second type of
database as well: relational databases. Relational databases are called relational because they are set up
to relate the data in multiple tables together. To make a table relational, you choose certain fields to be
primary keys and foreign keys.

The primary key in a table is usually the most important one—the one you might use to sort on, for
instance. The foreign key usually represents the primary key in another table, giving you access to that
table in an organized way. For example, we might add a field for student IDs to our student grade table.
That same field, student ID, may be the primary key in the school registrar’s database table, which lists
all students. In our table, then, the student ID field is a foreign key, allowing us to specify individual
records in the registrar’s table.

We’ve gotten an overview of databases at this point; the next step is to look into the three different
ways of working with them in Visual Basic, and we’ll do that now.

DAO

When Visual Basic first started working with databases, it used the Microsoft Jet database engine,
which is what Microsoft Access uses. Using the Jet engine represented a considerable advance for
Visual Basic, because now you could work with all kinds of data formats in the fields of a database:
text, numbers, integers, longs, singles, doubles, dates, binary values, OLE objects, currency values,
Boolean values, and even memo objects (up to 1.2GB of text). The Jet engine also supports SQL,
which database programmers found attractive.

To support the Jet database engine, Microsoft added the data control to Visual Basic, and you can use
that control to open Jet database (.mdb) files. Microsoft also added a set of Data Access Objects (DAO)
to Visual Basic:

• DBEngine—The Jet database engine

• Workspace—An area can hold one or more databases

• Database—A collection of tables

• TableDef—The definition of a table

• QueryDef—The definition of a query

• Recordset—The set of records that make up the result of a query

• Field—A column in a table

• Index—An ordered list of records

• Relation—Stored information about the specific relationship between tables

We’ll work with these Data Access Objects in the next chapter; in this chapter, we’ll work with the data
control.

The Data Control

The data control enables you to move around in a database from record to record and to display and

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\824-827.html (1 of 3) [3/14/2001 2:03:39 AM]

manipulate data from the records in bound controls. This control displays a set of arrow buttons the
user can manipulate to move through a database, and the records from that database are displayed in
bound controls. You can see a data control operating with bound controls in Figure 24.2, where we’ve
placed our students table into a database and opened it with a data control.

Figure 24.2 Using a data control.

In fact, you can perform most data access operations using the data control—without writing any code.
Data-bound controls automatically display data from one or more fields for the current record, and the
data control performs all operations on the current record. If the data control is made to move to a
different record, all bound controls automatically pass any changes to the data control to be saved in the
database. The data control then moves to the requested record and passes back data from the current
record to the bound controls where it’s displayed.

When an application begins, Visual Basic uses data control properties to open a selected database,
create a DAO Database object, and create a Recordset object. The data control’s Database and
Recordset properties refer to those Database and Recordset objects, and you can manipulate the data
using those properties. For example, if you have an SQL statement to execute, you place that statement
in the data control’s RecordSource property, and the result appears in the Recordset property.

RDO

Remote Data Objects (RDO) connect to databases using ODBC. You set up ODBC connections to
databases using the ODBC item in the Windows Control Panel, and then use one of those connections
with the RDO objects. The Remote Data Objects are designed in parallel with the Data Access Objects;
for example, the database engine is rdoEngine instead of DBEngine, Recordsets have become
rdoResultsets, TableDefs became rdoTables, Workspaces became rdoEnvironments, Field objects
became rdoColumn objects, and so on. Although the names have changed, the command set is very
similar to DAO.

Although Microsoft intends ADO to supercede RDO, many programmers will use RDO for some time
to come. In this chapter, we’ll take a look at RDO with the remote data control.

The Remote Data Control

Like the data control, the remote data control gives you access to a database and displays data in bound
controls. Unlike the data control, however, you use the remote data control to access ODBC data
sources (which can include databases built with all the popular commercial database programs).

As with the data control, if the remote data control is instructed to move to a different row, all bound
controls automatically pass any changes to the remote data control to be saved to the ODBC data
source. The remote data control then moves to the requested row and passes back data from the current
row to the bound controls where it’s displayed.

In fact, the remote data control behaves like the data control in most respects, with some differences;
for example, you can treat the remote data control’s SQL property like the data control’s

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\824-827.html (2 of 3) [3/14/2001 2:03:39 AM]

javascript:displayWindow('images/24-02.jpg',434,235)
javascript:displayWindow('images/24-02.jpg',434,235)

RecordSource property, but it cannot accept the name of a table by itself unless you populate the
rdoTables collection first.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\824-827.html (3 of 3) [3/14/2001 2:03:39 AM]

ADO

Microsoft’s latest set of data access objects are the ActiveX Data Objects (ADO). These objects let you
access data in a database server through any OLE DB provider. ADO is intended to give you a
consistent interface for working with a wide variety of data sources, from text files to ODBC relational
databases to complex groups of databases.

The way Microsoft implements connections to all those data sources is with the OLE DB set of COM
interfaces, but that standard is a very complex one. Our interface to that interface, so to speak, is ADO,
a set of objects with properties, events, and methods. Here are the ADOs:

• Connection—Access from your application to a data source is through a connection, the
environment necessary for exchanging data. The Connection object is used to specify a particular
data provider and any parameters.

• Command—A command issued across an established connection manipulates the data source
in some way. The Command object lets ADO make it easy to issue commands.

• Parameter—Commands can require parameters that can be set before you issue the command.
For example, if you require a debit from a charge account, you would specify the amount of
money to be debited as a parameter in a Parameter object.

• Recordset—If your command is a query that returns data as rows of information in a table,
then those rows are placed in local storage in a Recordset object.

• Field—A row of a Recordset consists of one or more fields, which are stored in Field objects.

• Error—Errors can occur when your program is not able to establish a connection, execute a
command, or perform an operation, and ADO supports an Error object to hold the resulting error.

• Collection—ADO provides collections, an object that contains other objects of a particular
type. ADO provides four types of collections: the Connection object has the Errors collection,
the Command object has the Parameters collection, the Recordset object has the Fields
collection, and the Connection, Command, Recordset, and Field objects all have a Properties
collection, which contains all the Property objects that apply to them.

• Events—ADO uses the concept of events, just like other interface objects in Visual Basic. You
use event handling procedures with events. There are two types of events: ConnectionEvents
(issued when transactions occur, when commands are executed, and when connections start or
end) and RecordsetEvents (events used to report the progress of data changes).

ADO also includes the Remote Data Service (RDS), with which you can move data from a server to a
client application or Web page, manipulate the data on the client, and return updates to the server in
one round-trip.

In this chapter, we’re going to use the ADO data control to handle our ADO work.

The ADO Data Control

The ADO data control is similar to the data control and the remote data control. The ADO data control
is designed to create a connection to a database using Microsoft ActiveX Data Objects (ADO). At
design time, you create a connection by setting the ConnectionString property to a valid connection
string, then set the RecordSource property to a statement appropriate to the database manager.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\827-831.html (1 of 3) [3/14/2001 2:03:49 AM]

You can also set the ConnectionString property to the name of a file that defines a connection (the file
is generated by a Data Link dialog box, which appears when you click ConnectionString on the
Properties window and then click either Build or Select). You then connect the ADO data control to a
data-bound control such as the data grid, data combo, or data list control by setting its DataSource
properties to the ADO data control.

At runtime, you can set the Provider, ConnectionString, and RecordSource properties to change the
database.

We’ll see how to work with the ADO control in this chapter. We’ll use controls like the data control,
the remote data control, and the ADO data control with bound controls.

The Data-Bound Controls

You can bind certain controls to the data control, the remote data control, and the ADO data control,
and those controls are called bound controls. To bind a control to a database control, you use properties
like DataSource to specify the database control, and then use properties like DataField or
BoundColumn to specify what field to display in the bound control, as we’ll see. Here are the controls
that can function as bound controls:

• Picture boxes

• Labels

• Text boxes

• Checkboxes

• Image controls

• OLE controls

• List boxes

• Masked edit controls

• Rich text boxes

• Combo boxes

In addition, there are special controls that are designed to be used as bound controls:

• DBList

• DBCombo

• FlexGrid

• MSFlexGrid

Finally, a number of bound controls are specially built to be used with the ADO control only:

• DataList

• DataCombo

• DataGrid

We’ll see these controls at work in this chapter.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\827-831.html (2 of 3) [3/14/2001 2:03:49 AM]

That’s it, then, for the overview of databases. We’ve seen how the process works in overview; now it’s
time to turn to the Immediate Solutions.

Immediate Solutions

Creating And Managing Databases With The Visual Data Manager

You can create and manage databases with the Visual Data Manager. Open this tool from the Visual
Basic Add-Ins menu, as shown in Figure 24.3.

Figure 24.3 The Visual Data Manager.

You can use this tool to create and modify databases. You create a new database with the File menu’s
New item and open an existing database with the Open item. Let’s see an example. Here, we’ll create a
new database with the Visual Data Manager. Click the Table Type Recordset button, which is the
button at the extreme left in the toolbar, and the Use Data Control On New Form button, which is the
fourth button from the left.

Next, select the New item in the File menu. The Visual Data Manager lets you design databases in
several different formats; for this example, choose Microsoft Access Version 7 MDB or later. The
Visual Data Manager asks you for a name and path for this new database; we’ll call it “db.mdb”, so
enter that name now and click on OK.

That’s it—now we’ve created a new database, db.mdb. We’ll add a table to it in the next topic.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\827-831.html (3 of 3) [3/14/2001 2:03:49 AM]

javascript:displayWindow('images/24-03.jpg',609,460)
javascript:displayWindow('images/24-03.jpg',609,460)

Creating A Table With The Visual Data Manager

To add a table named “students” to the db.mdb database we created in the previous topic, right-click
the Properties item in the Visual Data Manager’s Database window and select the New Table item,
opening the Table Structure window you see in Figure 24.4.

Figure 24.4 The Visual Data Manager’s Table Structure window.

Give this new table the name “students” by typing that into the Table Name field, as shown in Figure
24.4. That’s it—it was as quick as that to create a new table.

Now that we’ve created a new table, we’ll add the new fields in this table (Name and Grade) in the next
topic.

Creating A Field With The Visual Data Manager

To add fields to the database table named “students” we created in the previous topic, click the Add
Field button in the Visual Data Manager’s Table Structure window, opening the Add Field dialog box
you see in Figure 24.5.

Figure 24.5 The Visual Data Manager’s Add Field dialog box.

Give this new field the name “Name” by typing that into the box labeled Name and clicking on the OK
button. The Add Field dialog box stays open, and the new field is added to the students table. Add
another field named “Grade” in the same way. Click on OK to add the field, then click Close to close
the Add Field dialog box.

Now in the Table Structure window, click the Build The Table item to build the new table with our two
new fields. This creates the students table with two fields: Name and Grade, and opens that table in the
Visual Data Manager’s Database window, as you can see in Figure 24.6.

Figure 24.6 Our newly created database.

In the next topic, we’ll enter data into our new table.

Entering Data In A Database With The Visual Data Manager

To enter data into a table in the Visual Data Manager, right-click the table’s entry in the Visual Data
manager’s Database window and select the Open item in the menu that opens. In our case, doing so
opens the Table: students dialog box you see in Figure 24.7. We’ll use this dialog box to enter the data
in our database’s records. We’ll use the data you saw in Figure 24.1, but you can also use it to edit that

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\831-835.html (1 of 3) [3/14/2001 2:04:05 AM]

javascript:displayWindow('images/24-04.jpg',518,434)
javascript:displayWindow('images/24-04.jpg',518,434)
javascript:displayWindow('images/24-05.jpg',414,274)
javascript:displayWindow('images/24-05.jpg',414,274)
javascript:displayWindow('images/24-06.jpg',609,460)
javascript:displayWindow('images/24-06.jpg',609,460)

data.

Figure 24.7 Editing a record in a database.

Using the data in Figure 24.1, enter the name “Ann” and the grade “C” for the first student in the
labeled boxes in the Table: students dialog box, as shown in Figure 24.7. Then click Update to add that
new record to the database; when the Visual Data manager displays a message box asking if you want
to add the new record to the database, click Yes.

To add a new record, click the Add button and add the name “Mark” and the grade “B”, and click
Update. Click Yes when the Visual Data Manager asks you if you want to add the new record to the
database.

When you’re done entering your records, click the Close button in the Table: students dialog box and
close the database with the Close item in the Visual Data manager’s File menu.

Congratulations—you’ve created a new database.

Adding A Data Control To A Program

The Testing Department is calling again. Now that you’ve created a new database file, how about using
it in a program? Okay, you say, I’ll look into it.

The database we’ve created in the previous few topics is in Microsoft Access (Jet) format, which is a
format you can use with all three data access object sets: DAO, RDO, and ADO. We’ll see how to use
the simplest method first: connecting that database to a data control in a Visual Basic program and
using that data control with data-bound controls.

The data control is the only intrinsic database control—it’s already in the toolbox. This control’s tool
appears as the tenth tool down on the right in the toolbox in Figure 24.8. Double-click that tool now to
add a data control to your form.

Figure 24.8 The Data Control tool.

Stretch the data control as you want it. When you stretch the control beyond its original size, you’ll see
a space for text in the center of the control; set the control’s Caption property to the name of the
database table we’ll be working with—students.

That’s all it takes to add a data control to your program. In the next topic, we’ll see how to connect the
data control to a database.

Opening A Database With The Data Control

To connect a data control to a database, you just set the data control’s DatabaseName property to the
path and name of the Access/Jet database file you want to open. Here, we’ll use the db.mdb file we’ve

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\831-835.html (2 of 3) [3/14/2001 2:04:05 AM]

javascript:displayWindow('images/24-07.jpg',609,460)
javascript:displayWindow('images/24-07.jpg',609,460)
javascript:displayWindow('images/24-08.jpg',321,555)
javascript:displayWindow('images/24-08.jpg',321,555)

created at the beginning of this chapter. In addition, you select the table you want to work with in that
file with the data control’s RecordSource property. After connecting the control to the db.mdb
database, select the students table in the drop-down list box for the RecordSource property in the
Properties window.

You’ve connected the data control to a table in a database. But how do you actually see or modify the
data in the database? You do that with bound controls, and we’ll get an introduction to that in the next
topic.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\831-835.html (3 of 3) [3/14/2001 2:04:05 AM]

Connecting A Data Control To A Bound Control

In the previous few topics, we connected a database to a data control. To see that data, we’ll use a
data-bound control—a text box. We’ll investigate all the data-bound controls later in this
chapter—after we’ve gone through the ways of connecting to databases—so this is just to get us
started.

To connect a text box to a data control, set the text box’s DataSource property to the name of the data
control (or remote data control or ADO control). To display a particular field in the text box, place that
field’s name in the text box’s DataField property.

Let’s see an example. Here, we’ll use the database, db.mdb, and the data control we’ve developed over
the previous few topics. Add a text box, Text1, to the program now and set its DataSource property to
Data1. When you move through the database with the data control, the data control will hold the
current record; to display a field in the current record, place that field’s name in the text box’s
DataField property; here, we’ll place the Name field in that property.

TIP: Set the text box’s DataSource and DataField properties after adding and connecting the data
control. When you do, you’ll find the text box’s DataSource and DataField properties can be set with
drop-down list boxes in the Properties window, making that process easier.

When we run the program, we get the result in Figure 24.9. Using the data control, you can move to the
beginning or end of the database, and step through record by record as well. Congratulations—now
you’re working with databases. The code for this example is located in the dao folder on this book’s
accompanying CD-ROM.

Figure 24.9 Using a data control to move through a database.

Registering An ODBC Source

The Testing Department is calling again. Your program with the data control, SuperDuperDataBase, is
terrific, but what if you want to work with an ODBC database? Hmm, you think, is that possible?

It is, with the remote data control. You can use an ODBC data source with a remote data control, but
first you have to configure a new connection for the ODBC source. You configure an ODBC
connection with the 32-bit ODBC item in your computer’s control panel. Open that item now, click the
System DSN tab (DSN stands for data source name), and click the Add button to open the Create New
Data Source dialog box you see in Figure 24.10.

Figure 24.10 The Create New Data Source dialog box.

You can see the ODBC drivers installed on your system in this dialog box. Select the one you want to
use and click Finish; to install the db.mdb file we’ve developed in the previous few topics, we’ll select

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\835-838.html (1 of 3) [3/14/2001 2:04:21 AM]

javascript:displayWindow('images/24-09.jpg',320,240)
javascript:displayWindow('images/24-09.jpg',320,240)
javascript:displayWindow('images/24-10.jpg',510,323)
javascript:displayWindow('images/24-10.jpg',510,323)

the Microsoft Access Driver entry here.

This opens the ODBC Microsoft Access dialog box you see in Figure 24.11. Use the Select button to
select the database file, db.mdb in our example, and click on the OK button in the ODBC Microsoft
Access dialog box. We give the name db to this source.

Figure 24.11 The ODBC Microsoft Access dialog box.

This creates a new ODBC connection for our file, and that connection appears in the ODBC Data
Source Administrator, as shown in Figure 24.12.

Figure 24.12 The ODBC Data Source Administrator.

Click on the OK button to close the ODBC Data Source Administrator. Now you’ve added a new
ODBC source to your computer’s data environment. We’ll use this data source, db, in the next topic.

Opening A Database With A Remote Data Control

To add a new remote data control to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Microsoft Remote Data Control entry in the Controls list box.

4. Click on OK to close the Components dialog box.

5. This adds the Remote Data Control tool to the toolbox; draw that control as you want it on
your form.

6. Connect the remote data control to an ODBC data source with the DataSource property.

7. Create a result set (unlike data controls and ADO data controls, which use record sets, remote
data controls use result sets) that you can work with by supplying an SQL statement in the SQL
property.

Let’s see an example. Add a remote data control, MSRDC1, to a form now. We’ll connect it to the db
ODBC data source we’ve created in the previous few topics, and you do that by setting the remote data
control’s DataSourceName property to “db”.

Unlike the data control or the ADO data control, you need to create a result set to work with in the
remote data control, and we create a result set by selecting the entire students table with the SQL
statement SELECT * FROM students. Place that string in the control’s SQL property.

Now we’ve connected our database to the remote data control—but how do we connect the remote data
control to bound controls? We’ll look at that in the next topic.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\835-838.html (2 of 3) [3/14/2001 2:04:21 AM]

javascript:displayWindow('images/24-11.jpg',471,312)
javascript:displayWindow('images/24-11.jpg',471,312)
javascript:displayWindow('images/24-12.jpg',461,377)
javascript:displayWindow('images/24-12.jpg',461,377)

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\835-838.html (3 of 3) [3/14/2001 2:04:21 AM]

Connecting A Remote Data Control To A Bound Control

In the previous topic, we connected a database to a remote data control. To see that data, we’ll use a
data-bound control—a text box. We’ll investigate all the data-bound controls later in this
chapter—after we’ve gone through the ways of connecting to databases—so this is just to get us
started.

To connect a text box to a remote data control, set the text box’s DataSource property to the name of
the remote data control. To display a particular field in the text box, place that field’s name in the text
box’s DataField property.

Let’s see an example. Here, we’ll use the database, db.mdb, and the remote data control we’ve in the
previous topic. Add a text box, Text1, to the program now, and set its DataSource property to the
remote data control, MSRDC1.

When you move through the database with the remote data control, the remote data control will hold
the current record; to display a field in the current record, place that field’s name in the text box’s
DataField property; here, we’ll place the Name field in that property.

TIP: Set the text box’s DataSource and DataField properties after adding and connecting the remote
data control. When you do, you’ll find the text box’s DataSource and DataField properties can be set
with drop-down list boxes in the Properties window, making that process easier.

When we run the program, we get the result in Figure 24.13. Using the remote data control, you can
move to the beginning or end of an ODBC database and step through record by record as well.
Congratulations—now you’re working with ODBC databases. The code for this example is located in
the rdo folder on this book’s accompanying CD-ROM.

Figure 24.13 Opening a database with the remote data control.

Opening A Database With An ADO Data Control

To add a new ADO data control to a form, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select the Microsoft ADO Data Control entry in the Controls list box.

4. Click on OK to close the Components dialog box.

5. This adds the ADO data control tool to the toolbox; draw that control as you want it on your
form.

6. Connect the ADO data control’s Connection object to a data source with the
ConnectionString property, separating items in that string with semicolons. At the least, you
should specify the Provider (the type of OLE DB) and Data Source (database name) values in
the ConnectionString. See the following material for more information.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\838-841.html (1 of 3) [3/14/2001 2:04:37 AM]

javascript:displayWindow('images/24-13.jpg',418,240)
javascript:displayWindow('images/24-13.jpg',418,240)

Let’s see an example. Here, we’ll connect an ADO data control to the database we’ve constructed in
the early parts of this chapter, db.mdb. To do that, add an ADO data control, Adodc1, to a form, and set
its ConnectionString property to specify the data provider type and the data source for that database
like this:

"PROVIDER=Microsoft.Jet.OLEDB.3.51;Data Source=c:\vbbb\ado\db.mdb;"

TIP: One way of connecting an ADO control to a database easily is with the Data Form Wizard, which
generates the connection string for you automatically. We’ll see more of this wizard later in this chapter.

Next, set the ADO data control’s RecordSource property to the table to work with, which is students
in our example database, db.mdb.

Now you’ve connected a database to the ADO data control. To connect the ADO data control to bound
controls, see the next topic.

Connecting An ADO Data Control To A Bound Control

In the previous topic, we connected a database to an ADO data control. To see that data, we’ll use a
data-bound control—a text box. We’ll investigate all the data-bound controls later in this
chapter—after we’ve gone through the ways of connecting to databases—so this is just to get us
started.

To connect a text box to an ADO data control, set the text box’s DataSource property to the name of
the remote data control. To display a particular field in the text box, place that field’s name in the text
box’s DataField property.

Let’s see an example. Here, we’ll use the database, db.mdb, and the ADO data control we developed
over the previous few topics. Add a text box, Text1, to the program now, and set its DataSource
property to the ADO data control, Adodc1. When you move through the database with the ADO data
control, the ADO data control will hold the current record; to display a field in the current record,
place that field’s name in the text box’s DataField property; here, we’ll place the Name field in that
property.

TIP: Set the text box’s DataSource and DataField properties after adding and connecting the remote
data control. When you do, you’ll find the text box’s DataSource and DataField properties can be set
with drop-down list boxes in the Properties window, making that process easier.

When we run the program, we get the result in Figure 24.14. Using the ADO data control, you can
move to the beginning or end of databases, and step through record by record as well.
Congratulations—now you’re working with ADO databases. The code for this example is located in the
ado folder on this book’s accompanying CD-ROM.

Figure 24.14 Opening a database with the ADO data control.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\838-841.html (2 of 3) [3/14/2001 2:04:37 AM]

javascript:displayWindow('images/24-14.jpg',346,240)
javascript:displayWindow('images/24-14.jpg',346,240)

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\838-841.html (3 of 3) [3/14/2001 2:04:37 AM]

The Data Form Wizard: Creating A Data Form

You can use the Visual Basic Data Form Wizard to create a form using an ADO control or ADO code
that lets you open and edit a database. To use the Data Form Wizard, select it in the Visual Basic
Add-Ins menu (if it’s not there, add it with the Add-Ins Manager in the Add-Ins menu) and follow the
steps in the Data Form Wizard, one step for each successive window that appears in the Wizard:

1. Introduction window. This window asks if you want to load a profile to create the data form;
click Next.

2. Database Type. This window lets you select the database format, like Microsoft Access or
ODBC. For the example database we’ve developed in this chapter, db.mdb, select the Access
type. Click Next.

3. Database. This window lets you select the database to work with. Use the Name box and the
Browse button to select your database or data source. The Data Form Wizard will create the
correct connection string for the ADO data control. Click Next.

4. Form. This window lets you specify the name for the form you’re creating, as well as the
form layout (how the data will be displayed): single record, grid, and so on, as shown in Figure
24.15. You can also specify how to bind the database to the form: with an ADO control or ADO
code, or with a class (we’ll see more about classes when we discuss code components in Chapter
27). For our example database, we will use an ADO control for the binding. Click Next to go to
the next window.

Figure 24.15 Setting up a data entry form.

5. Record Source. In this window, select the table name and the fields you want displayed, as
shown in Figure 24.16. Click Next to go to the next window.

Figure 24.16 Selecting the record source.

6. Control Selection. Specify the buttons you want in the data entry form: Add, Delete, Refresh,
and so on. For the example we’ll create later in this topic, leave all options selected and click
Next.

7. Finished!. Click Finish in this window to create the new data form.

Let’s see an example to make this clearer.

Create a new project, and remove Form1. Next, follow the preceding steps to create a new data form
named Form1 using our db.mdb database, and set the project’s startup object (using the Visual Basic
Project|Properties menu item) to Form1.

When you run this example, the records of our database appear in the data form, as shown in Figure
24.17. You can move through the database, editing the records as you like. When you change a record,
click the Update button to change the actual record in the database file itself. Now we’re editing

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\841-845.html (1 of 3) [3/14/2001 2:05:07 AM]

javascript:displayWindow('images/24-15.jpg',483,370)
javascript:displayWindow('images/24-15.jpg',483,370)
javascript:displayWindow('images/24-16.jpg',483,370)
javascript:displayWindow('images/24-16.jpg',483,370)

databases with our own programs in Visual Basic. The code for this example is located in the dataentry
folder on this book’s accompanying CD-ROM.

Figure 24.17 The ADO data entry form.

Using Database Control Methods: Adding, Deleting, And Modifying Records

The Testing Department is calling again: your SuperDuperDataBase program is terrific, but instead of
restricting users to simply moving through a database, how about letting them edit the data in that text
box, adding new records and so on? Hmm, you think, how would that work?

Like most controls, the DAO, RDO, and ADO controls have methods, events, and properties. To make
these controls consistent, Microsoft has given them the same core methods, and we’ll take a look at
those methods in this chapter. Using these methods, users can add records to a database, change those
records, delete them, and move around in the database.

In the next few topics, we’ll develop the program you see in Figure 24.18, where we’re editing the
db.mdb database we developed in the beginning of the chapter. Because all data controls have the same
core methods, we’ll use a data control, Data1, in this example to keep this example easy. We also use
two text boxes, Text1 and Text2, connected to Data1 and the Name and Grade fields in our database,
respectively. Now all we have to do is to make all the buttons in the program active, and we’ll do that
in the following few topics. The code for this example is located in the dbmethods folder on this book’s
accompanying CD-ROM.

Figure 24.18 Using data control methods to add, edit, and delete records.

Adding Records To Databases

You can add a new record to a database with the AddNew method of the Recordset property of a data
or ADO data control, or of the Resultset property of a remote data control. Let’s see an example. When
the user clicks the Add button in the dbmethods example we’re developing in this and the previous few
topics, we can add a new record like this:

Private Sub cmdAdd_Click()
 Data1.Recordset.AddNew
End Sub

This adds a new, blank record. You can enter the data you want in the record’s fields, and to update the
database, you click the Update button.

Deleting Records In Databases

You can delete a record in a database with the Delete method of the Recordset property of a data or an

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\841-845.html (2 of 3) [3/14/2001 2:05:07 AM]

javascript:displayWindow('images/24-17.jpg',376,117)
javascript:displayWindow('images/24-17.jpg',376,117)
javascript:displayWindow('images/24-18.jpg',392,216)
javascript:displayWindow('images/24-18.jpg',392,216)

ADO data control, or of the Resultset property of a remote data control. Let’s see an example. When
the user clicks the Delete button in the dbmethods example we’re developing in this and the previous
few topics, we can delete a record like this:

Private Sub cmdDelete_Click()
 Data1.Recordset.Delete
...
End Sub

To avoid displaying a blank record, we also move to the next record this way:

Private Sub cmdDelete_Click()
 Data1.Recordset.Delete
 Data1.Recordset.MoveNext
End Sub

Refreshing A Data Control

When working with multiple databases, you can refresh the data in the current database control with the
Refresh method of the data, ADO data control, or the remote data control. Let’s see an example. When
the user clicks the Refresh button in the dbmethods example we’re developing in this and the previous
few topics, we can refresh the control like this:

Private Sub cmdRefresh_Click()
 Data1.Refresh
End Sub

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\841-845.html (3 of 3) [3/14/2001 2:05:07 AM]

Updating A Database With Changes

After changing the fields in a record, you can update a database with the UpdateRecord method of the
data, ADO data control, or remote data control. Let’s see an example. When the user clicks the Update
button in the dbmethods example we’re developing in this and the previous few topics, we can update
the database with the new record like this:

Private Sub cmdUpdate_Click()
 Data1.UpdateRecord
End Sub

Moving To The Next Record

You can move to the next record of a database with the MoveNext method of the Recordset property
of a data or ADO data control, or of the Resultset property of a remote data control. Let’s see an
example. When the user clicks the Next button in the dbmethods example we’re developing in this and
the previous few topics, we can move to the next record like this:

Private Sub cmdNext_Click()
 Data1.Recordset.MoveNext
End Sub

TIP: You can use the RecordCount property of a Recordset or Resultset to determine how many
records you have to work with, and so make sure you don’t go past the end of the database.

Moving To The Previous Record

You can move to the previous record of a database with the MovePrevious method of the Recordset
property of a data or ADO data control, or of the Resultset property of a remote data control. Let’s see
an example. When the user clicks the Previous button in the dbmethods example we’re developing in
this and the previous few topics, we can move to the previous record like this:

Private Sub cmdPrevious_Click()
 Data1.Recordset.MovePrevious
End Sub

TIP: When you use MovePrevious, make sure you don’t try to move back before the first record of the
database.

Moving To The First Record

You can move to the first record of a database with the MoveFirst method of the Recordset property
of a data or ADO data control, or of the Resultset property of a remote data control. Let’s see an
example. When the user clicks the First button in the dbmethods example we’re developing in this and
the previous few topics, we can move to the first record like this:

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\845-847.html (1 of 3) [3/14/2001 2:05:12 AM]

Private Sub cmdFirst_Click()
 Data1.Recordset.MoveFirst
End Sub

Moving To The Last Record

You can move to the last record of a database with the MoveLast method of the Recordset property of
a data or ADO data control, or of the Resultset property of a remote data control. Let’s see an example.
When the user clicks the Last button in the dbmethods example we’re developing in this and the
previous few topics, we can move to the last record like this:

Private Sub cmdLast_Click()
 Data1.Recordset.MoveLast
End Sub

The Data-Bound Controls: From Text Boxes To Flex Grids

After installing a data, remote data, or ADO data control, you can connect that control to other controls
through a process called data binding. You bind controls to a data control using the data properties of
the bound control. The standard bound controls and their data properties appear in Table 24.1. Using
the information in that table, you can connect the listed Visual Basic controls to data controls, remote
data controls, and ADO data controls.

Table 24.1 The bound controls.

Control Properties To Set

Checkbox DataField = Desired Boolean field; DataSource = Data control’s name

Combo box DataField = Desired field; DataSource = Data control’s name

DBCombo box BoundColumn = Desired field; DataField = Desired field; DataSource =
Data control’s name; ListField = Desired field to display in the combo’s
list; RowSource = Data control’s name

DBList box DataField = Desired field; DataSource = Data control’s name;
RowSource = Data control’s name

FlexGrid DataSource = Data control’s name

Image control DataField = Desired field; DataSource = Data control’s name

Label DataField = Desired field; DataSource = Data control’s name

List box DataField = Desired field; DataSource = Data control’s name

MaskedEdit DataField = Desired field; DataSource = Data control’s name

MSFlexFrid DataSource = Data control’s name

Picture box DataField = Desired field; DataSource = Data control’s name

Text box DataField = Desired field; DataSource = Data control’s name

Rich text box DataField = Desired field; DataSource = Data control’s name

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\845-847.html (2 of 3) [3/14/2001 2:05:12 AM]

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\845-847.html (3 of 3) [3/14/2001 2:05:12 AM]

Note that Visual Basic also supports some additional data-bound controls to work with the ADO data
control specifically, and those controls are covered in the following topic.

Let’s see an example. In the program in Figure 24.19, we’ve added a number of controls that we bind
to a data control, Data1. The data control, in turn, is connected to the db.mdb database we created in
the beginning of the chapter. When you move through the database with the data control, the data in
each bound control is updated. The code for this example is located in the dbcontrols folder on this
book’s accompanying CD-ROM.

Figure 24.19 An example program showing the use of bound controls.

The ADO Data-Bound Controls

There are three data-bound controls that are specially optimized for use with the ADO data control:
DataGrid controls, DataCombo controls, and DataList controls (don’t confuse these controls with the
non-ADO optimized data-bound controls like the DBCombo and DBList controls). These controls are
specifically designed to work with ADO data controls and won’t work with standard controls like the
data control.

To add these controls to a program, follow these steps:

1. Select the Project|Components menu item.

2. Click the Controls tab in the Components dialog box that opens.

3. Select both the Microsoft DataGrid Control entry and the Microsoft DataList Controls entry
in the Controls list box.

4. Click on OK to close the Components dialog box.

5. This adds the DataGrid, DataCombo, and DataList control tools to the toolbox; draw those
controls as you want them on your form.

Here are the principal data properties you use with these three controls:

• DataGrid—DataSource = ADO data control’s name. You can also set the AllowAddNew,
AllowDelete, AllowUpdate properties to True or False to enable or disable those operations.

• DataCombo—DataSource = ADO data control’s name; DataField = Name of the field to
display in the combo’s text box; ListField = Name of field to display in the list; RowSource =
ADO data control’s name; and BoundColumn = Name of the source field with which you can
provide data to another control.

• DataList—DataSource = ADO data control’s name; DataField = Name of the field to display
in the current selection, ListField = Name of field to display in the list, RowSource = ADO data
control’s name, BoundColumn = Name of the source field with which you can provide data to
another control.

Let’s see an example. In this case, we’ve added an ADO data control and the three ADO data-bound
controls to a program, as shown in Figure 24.20, and connected them to the ADO data control using
their various properties. That’s all it takes, and we’re in business. The code for this example is located

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\848-850.html (1 of 2) [3/14/2001 2:05:18 AM]

javascript:displayWindow('images/24-19.jpg',434,235)
javascript:displayWindow('images/24-19.jpg',434,235)

in the dbcontrols2 folder on this book’s accompanying CD-ROM.

Figure 24.20 Using the ADO bound controls.

Visual Basic 6 Black Book:Databases: Using DAO, RDO, And ADO

http://24.19.55.56:8080/temp/ch24\848-850.html (2 of 2) [3/14/2001 2:05:18 AM]

javascript:displayWindow('images/24-20.jpg',320,252)
javascript:displayWindow('images/24-20.jpg',320,252)

Chapter 25
Working With Database Objects In Code
If you need an immediate solution to:

A Full-Scale DAO Example

Using The Daocode Example To Create And Edit A Database

DAO: Creating A Database

DAO: Creating A Table With A TableDef Object

DAO: Adding Fields To A TableDef Object

DAO: Adding An Index To A TableDef Object

DAO: Creating A Record Set

DAO: Opening A Database

DAO: Adding A Record To A Record Set

DAO: Editing A Record In A Record Set

DAO: Updating A Record In A Record Set

DAO: Moving To The First Record In A Record Set

DAO: Moving To The Last Record In A Record Set

DAO: Moving To The Next Record In A Record Set

DAO: Moving To The Previous Record In A Record Set

DAO: Deleting A Record In A Record Set

DAO: Sorting A Record Set

DAO: Searching A Record Set

DAO: Executing SQL

A Full-Scale RDO Example

RDO: Opening A Connection

RDO: Creating A Result Set

RDO: Moving To The First Record In A Result Set

RDO: Moving To The Last Record In A Result Set

RDO: Moving To The Next Record In A Result Set

RDO: Moving To The Previous Record In A Result Set

RDO: Executing SQL

A Full-Scale ADO Example

ADO: Opening A Connection

ADO: Creating A Record Set From A Connection

ADO: Binding Controls To Record Sets

ADO: Adding A Record To A Record Set

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\851-854.html (1 of 3) [3/14/2001 2:05:23 AM]

ADO: Refreshing The Record Set

ADO: Updating A Record In A Record Set

ADO: Moving To The First Record In A Record Set

ADO: Moving To The Last Record In A Record Set

ADO: Moving To The Next Record In A Record Set

ADO: Moving To The Previous Record In A Record Set

ADO: Deleting A Record In A Record Set

ADO: Executing SQL In A Record Set

In Depth

Programming database objects is an enormously complex topic that in itself can take up a dozen
volumes. There is a career’s worth of work here, so we’ll have our hands full in this chapter.

Here, we’re going to perform many of the tasks we first saw in the previous chapter, but while we used
the data, remote data, and ADO data controls in that chapter, we’ll execute those tasks in code directly
in this chapter, using the Visual Basic data object libraries. Working with the data object libraries
provides more flexibility, more power—and a great deal more complexity.

DAO

We’ll use Data Access Object (DAO) methods to do what we did in the beginning of the last chapter:
build a database and allow users to move through that database, editing it as they like. To construct a
database, we’ll create it, create a table with fields and add it to that database, and also construct an
index for the database that will let us sort it.

Working with DAO, you can use the Database and Recordset Data Access Objects in your procedures.
The Database and Recordset objects each have properties and methods of their own, and you can write
procedures that use these properties and methods to manipulate your data.

TIP: Note that in the Learning Edition of Visual Basic, you can’t declare (with the Dim keyword)
variables as Data Access Objects in code. This means that only the data control can create Database and
Recordset objects, not your code.

To open a database in DAO, you just open a Database object or create a new one. This object can
represent a Microsoft Jet database (.mdb) file, an ISAM database (for example, Paradox), or an ODBC
database connected through the Microsoft Jet database engine. When the Database object is available,
you create a Recordset object and use that object’s methods, like MoveFirst and MoveNext, to work
with the database.

DAO also supports a client/server connection mode called ODBCDirect. ODBCDirect establishes a
connection directly to an ODBC data source, without loading the Microsoft Jet database engine into
memory, and is a good solution when you need ODBC features in your program.

In the ODBCDirect object model, the Connection object contains information about a connection to an
ODBC data source, such as the server name, the data source name, and so on. It is similar to a Database

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\851-854.html (2 of 3) [3/14/2001 2:05:23 AM]

object; in fact, a Connection object and a Database object represent different references to the same
object. (In this chapter, we’ll stick with the Database/Recordset model.)

RDO

With the Remote Data Objects (RDO) library of data objects, you establish an rdoConnection to an
ODBC data source, then create an rdoResultset (please note, it is not an rdoRecordset). The Remote
Data Objects behave like the DAO objects in many ways, because there is a core set of methods that
work with both record sets and result sets.

The big difference between DAO and RDO objects is that the RDO objects are largely SQL-driven. For
example, although you can move through a database using methods like MoveNext and MoveLast,
just as you would with the DAO objects, programmers often update and modify RDO data sources
using SQL statements directly with the rdoConnection object’s Execute method. (In this book, we’ll
stick to what you can do with Visual Basic.)

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\851-854.html (3 of 3) [3/14/2001 2:05:23 AM]

ADO

As we saw in the last chapter, ActiveX Data Objects (ADO) access data from OLE DB providers. The
Connection object is used to specify a particular provider and any parameters. To connect to a data
source, you use a Connection object. Using that connection, you can create a new record set, and using
the Recordset object’s methods and properties, you can work with your data.

An ADO transaction marks the beginning and end of a series of data operations that are executed
across a connection. ADO makes sure that changes to a data source resulting from operations in a
transaction either all occur successfully, or not at all. If you cancel the transaction or one of its
operations fails, then the result will be as if none of the operations in the transaction had occurred.

In this chapter, we’ll see how to create connections using the ADO Connection object and how to open
data providers, creating an ADO Recordset object. We’ll read data from the data provider and see how
to display and modify it. In fact, we’ll see how to support data-bound controls directly in code.

Although the ADO model is a complex one, and OLE DB is even more complex, we’ll see that many
of the core ADO Resultset methods are the same as the DAO Resultset methods.

TIP: Note that in DAO and ADO you work with record sets, and in RDO with result sets; it’s very easy
to confuse the terminology here.

That’s it, then, for the overview of databases. We’ve seen how the process works in overview; now it’s
time to turn to the Immediate Solutions.

Immediate Solutions

A Full-Scale DAO Example

To illustrate DAO data handling in code, we’ll build a fully functional DAO project—the daocode
project. This program has a File menu with the following items:

• New Database—Creates a new database.

• Open Database—Opens a database.

• Close Database—Closes the current database.

• New Table—Creates a new table.

• Search—Searches the database.

• Sort—Sorts the database.

• Exit—Exits the application.

Using The Daocode Example To Create And Edit A Database

To create a database file, select the New Database menu item. Next, add a table to that database with
the New Table menu item, then add records to that table. When you’re ready to store the database on
disk, use the Close Database item.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\854-857.html (1 of 2) [3/14/2001 2:05:25 AM]

WARNING! If you don’t create a table in a database before trying to add data to a table in that database
with the Add or Edit buttons, the daocode program generates an error.

In addition, the program has buttons that let users add, edit, update, and delete records, as well as
letting them move through a database, as shown in Figure 25.1. Each time you want to add a record
(including when you enter the first record of a new database), click the Add New Record button, type
in the data for the record’s fields, and click the Update Database button to update the database.

Figure 25.1 Our DAO database-building application, the daocode project.

To edit a record, open the record, click the Edit button, edit the data in the record’s fields, and click the
Update Database button to update the database. For simplicity, this program only creates tables with
two fields, although you can place as many records as you like in each table.

We’ll develop the code for this example program in the next several topics of this chapter. For
reference, the main form of this example program is located in the daocode folder on this book’s
accompanying CD-ROM; the form the user uses to specify the names of the fields in a new table is
located in the TableForm folder on CD-ROM; and the code for the form in which the user can enter a
text string to search for is located in the SearchForm folder on the CD-ROM.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\854-857.html (2 of 2) [3/14/2001 2:05:25 AM]

javascript:displayWindow('images/25-01.jpg',439,229)
javascript:displayWindow('images/25-01.jpg',439,229)

DAO: Creating A Database

The Testing Department is calling again. How about creating a DAO database—in code? Hmm, you
think, is that possible?

It is, with the objects in the Microsoft DAO Object Library. To add a reference to that library, select the
Project|References menu item, select the Microsoft DAO Object Library, and click on OK to close the
References dialog box. Now we can make use of the data objects in that library to create a new
database using CreateDatabase. CreateDatabase is a method of the DAO Workspace object (there
are a collection of Workspace objects in the DAO DBEngine object’s Workspaces collection). Here’s
how you use CreateDatabase:

Set database = workspace.CreateDatabase (name, locale [, options])

Here are the arguments to CreateDatabase:

• name—A string up to 255 characters long that is the name of the database file that you’re
creating. It can be the full path and file name, such as C:vbbb\db.mdb. If you don’t supply a file
name extension, .mdb is added.

• locale—A string that specifies a collating order for creating the database, like dbLangGeneral
(which includes English), dbLangGreek, and so on.

TIP: You can create a password for a new Database object by concatenating the password (starting with
“;pwd=”) with a constant in the locale argument, like this: dbLangGreek & “;pwd=NewPassword”. If
you want to use the default locale, but specify a password, simply enter a password string for the locale
argument: “;pwd=NewPassword”.

Here are the possible settings for the options argument:

• dbEncrypt—Creates an encrypted database.

• dbVersion10—Creates a database that uses the Jet engine version 1 file format.

• dbVersion11—Creates a database that uses the Jet database engine version 1.1 file format.

• dbVersion20—Creates a database that uses the Jet database engine version 2 file format.

• dbVersion30—The default. Creates a database that uses the Jet database engine version 3 file
format (compatible with version 3.5).

Let’s see an example to make this clearer. When the user selects the New database item in our example
DAO program, daocode (see the first topic in this chapter), we will create a new database. First, we
declare that database, db, as a form-wide variable:

Dim db As Database

Next, we add a Common Dialog control, CommonDialog1, to the program and show it to get the name
of the database file the user wants to create:

Private Sub NewDatabase_Click()
 CommonDialog1.ShowSave

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\857-859.html (1 of 3) [3/14/2001 2:05:32 AM]

 If CommonDialog1.FileName <> "" Then
...

Finally, we create the new database, passing the CreateDatabase method the name of the database file
and indicating that we want to use the default collating order by passing the constant dbLangGeneral:

Private Sub NewDatabase_Click()
 CommonDialog1.ShowSave
 If CommonDialog1.FileName <> "" Then
 Set db = DBEngine.Workspaces(0).CreateDatabase_
 (CommonDialog1.FileName, dbLangGeneral)
 End If
End Sub

And that’s it—we’ve created a new, empty database. The next step is to add a table to that database,
and we’ll take a look at that in the next topic.

DAO: Creating A Table With A TableDef Object

How do you create a table in a DAO database? You define it with a TableDef object. After you do so,
you can append fields to the table, and then you can append the new table definition to a database’s
TableDefs collection.

Let’s see an example. After the users create a new database with our DAO code example, the daocode
project (see the first topic in this chapter), they can create a new table using the New Table item in the
File menu. That item opens the New Table dialog box you see in Figure 25.2.

Figure 25.2 The New Table dialog box.

Users can enter the name of the new table to create in the text boxes in the New Table dialog box, and
we can use that information to create a new TableDef object, td, which we declare as a form-wide
variable:

Dim td As TableDef

We create a new TableDef for the Database object we created in the previous topic, db, using the name
for the table the user has placed in Text1 in the New Table dialog box:

Sub CreateTable()
 Set td = db.CreateTableDef(TableForm.Text1.Text)
...

This code creates a new, empty TableDef object named td. An empty table isn’t much use,
though—we’ll see about adding fields to this object in the next topic.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\857-859.html (2 of 3) [3/14/2001 2:05:32 AM]

javascript:displayWindow('images/25-02.jpg',303,211)
javascript:displayWindow('images/25-02.jpg',303,211)

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\857-859.html (3 of 3) [3/14/2001 2:05:32 AM]

DAO: Adding Fields To A TableDef Object

How do you add fields to a DAO TableDef object? You can use that object’s CreateField method to
do that, passing that method the name of the new field and a constant indicating that field’s type:

TableDef.CreateField(FieldName, FieldType)

Here are the constants specifying the possible field types:

• dbBigInt
• dbBinary
• dbBoolean
• dbByte
• dbChar
• dbCurrency
• dbDate
• dbDecimal
• dbDouble
• dbFloat
• dbGUID
• dbInteger
• dbLong
• dbLongBinary (OLE object)

• dbMemo
• dbNumeric
• dbSingle
• dbText
• dbTime
• dbTimeStamp
• dbVarBinary

Let’s see an example to make this clearer. In the previous topic, we created a TableDef object named td
for the daocode example project (see the first topic in this chapter), and now we can add two fields to
that object, which we declare in an array named fields of type Field (which is defined in the DAO
library):

Dim fields(2) As Field

The users have specified what names they want to give to those two new fields in the New Table dialog
box’s text boxes, so we create the new fields this way:

Sub CreateTable()

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\859-863.html (1 of 3) [3/14/2001 2:05:36 AM]

 Set td = db.CreateTableDef(TableForm.Text1.Text)

 Set fields(0) = td.CreateField(TableForm.Text2.Text, dbText)
 Set fields(1) = td.CreateField(TableForm.Text3.Text, dbText)
...

Now that the new fields are created, we can append them to the actual TableDef object td:

Sub CreateTable()
 Set td = db.CreateTableDef(TableForm.Text1.Text)

 Set fields(0) = td.CreateField(TableForm.Text2.Text, dbText)
 Set fields(1) = td.CreateField(TableForm.Text3.Text, dbText)
 td.fields.Append fields(0)
 td.fields.Append fields(1)
...
End Sub

That’s it—we’ve defined two new fields, named them, and appended them to a TableDef object. Next,
we’ll add an index to our table to allow the user to sort the data in that object.

DAO: Adding An Index To A TableDef Object

You use an index to sort a table, and you create an index with the DAO CreateIndex method. The
CreateIndex method creates an Index object, and you can make one of the fields in a table that table’s
index with that Index object’s CreateField method.

Let’s see an example to make this clearer. We’ll create an index for our DAO example, the daocode
project (see the first topic in this chapter) named dbindex, which we declare as a form-wide variable:

Dim dbindex As Index

We name the index when we create it; here, we’ll just use the first field that the user has placed in this
table as the table’s index so all sort operations will sort using that field. In this example, we name our
index by adding the word “index” to the name of that field this way:

Sub CreateTable()
 Set td = db.CreateTableDef(TableForm.Text1.Text)

 Set fields(0) = td.CreateField(TableForm.Text2.Text, dbText)
 Set fields(1) = td.CreateField(TableForm.Text3.Text, dbText)
 td.fields.Append fields(0)
 td.fields.Append fields(1)

 Set dbindex = td.CreateIndex(TableForm.Text2.Text & "index")
...

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\859-863.html (2 of 3) [3/14/2001 2:05:36 AM]

Next, we create a new field, indexfield, in the index, using the name of the first field in the table:

Sub CreateTable()
 Set td = db.CreateTableDef(TableForm.Text1.Text)

 Set fields(0) = td.CreateField(TableForm.Text2.Text, dbText)
 Set fields(1) = td.CreateField(TableForm.Text3.Text, dbText)
 td.fields.Append fields(0)
 td.fields.Append fields(1)

 Set dbindex = td.CreateIndex(TableForm.Text2.Text & "index")
 Set indexfield = dbindex.CreateField(TableForm.Text2.Text)
...

Finally, we append indexfield to our Index object, dbindex, and append that object to the TableDef
object’s Indexes collection:

Sub CreateTable()
 Set td = db.CreateTableDef(TableForm.Text1.Text)

 Set fields(0) = td.CreateField(TableForm.Text2.Text, dbText)
 Set fields(1) = td.CreateField(TableForm.Text3.Text, dbText)
 td.fields.Append fields(0)
 td.fields.Append fields(1)

 Set dbindex = td.CreateIndex(TableForm.Text2.Text & "index")
 Set indexfield = dbindex.CreateField(TableForm.Text2.Text)
 dbindex.fields.Append indexfield
 td.Indexes.Append dbindex
...
End Sub

And that’s it—we’ve created a new index for our table. In fact, we’ve set up the whole TableDef object
td now, so we can create a record set to start working with data, and we’ll do that in the next topic.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\859-863.html (3 of 3) [3/14/2001 2:05:36 AM]

DAO: Creating A Record Set

After you’ve finished defining a database table with a DAO TableDef object, you can append that object to a
Database object, which adds that table to that database. After you’ve installed the new table, you can use the
OpenRecordset method to open a record set and start working with data:

Set recordset = Database.OpenRecordset (source, type, options, lockedits)

Here are the arguments for OpenRecordset:
• source—A string specifying the source of the records for the new Recordset object. The source can
be a table name, a query name, or an SQL statement that returns records. (For table-type Recordset
objects in Jet-type databases, the source can only be a table name.)

• type—Indicates the type of Recordset to open.

• options—Combination of constants that specify characteristics of the new Recordset.

• lockedits—Constant that determines the locking for Recordset.

Here are the possible settings for type:

• dbOpenTable—Opens a table-type Recordset object.

• dbOpenDynamic—Opens a dynamic-type Recordset object, which is like an ODBC dynamic
cursor.

• dbOpenDynaset—Opens a dynaset-type Recordset object, which is like an ODBC keyset cursor.

• dbOpenSnapshot—Opens a snapshot-type Recordset object, which is like an ODBC static cursor.

• dbOpenForwardOnly—Opens a forward-only-type Recordset object (where you can only use
MoveNext to move through the database).

Here are the possible settings for options:

• dbAppendOnly—Allows users to append new records to the Recordset but prevents them from
editing or deleting existing records (Microsoft Jet dynaset-type Recordset only).

• dbSQLPassThrough—Passes an SQL statement to a Microsoft Jet-connected ODBC data source
for processing (Jet snapshot-type Recordset only).

• dbSeeChanges—Generates a runtime error if one user is changing data that another user is editing
(Jet dynaset-type Recordset only).

• dbDenyWrite—Prevents other users from modifying or adding records (Jet Recordset objects
only).

• dbDenyRead—Prevents other users from reading data in a table (Jet table-type Recordset only).

• dbForwardOnly—Creates a forward-only Recordset (Jet snapshot-type Recordset only). It is
provided only for backward compatibility, and you should use the dbOpenForwardOnly constant in
the type argument instead of using this option.

• dbReadOnly—Prevents users from making changes to the Recordset (Microsoft Jet only). The
dbReadOnly constant in the lockedits argument replaces this option, which is provided only for
backward compatibility.

• dbRunAsync—Runs an asynchronous query (ODBCDirect workspaces only).

• dbExecDirect—Runs a query by skipping SQLPrepare and directly calling SQLExecDirect
(ODBCDirect workspaces only).

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\863-865.html (1 of 3) [3/14/2001 2:05:38 AM]

• dbInconsistent—Allows inconsistent updates (Microsoft Jet dynaset-type and snapshot-type
Recordset objects only).

• dbConsistent—Allows only consistent updates (Microsoft Jet dynaset-type and snapshot-type
Recordset objects only).

Here are the possible settings for the lockedits argument:

• dbReadOnly—Prevents users from making changes to the Recordset (default for ODBCDirect
workspaces).

• dbPessimistic—Uses pessimistic locking to determine how changes are made to the Recordset in a
multiuser environment.

• dbOptimistic—Uses optimistic locking to determine how changes are made to the Recordset in a
multiuser environment.

• dbOptimisticValue—Uses optimistic concurrency based on row values (ODBCDirect workspaces
only).

• dbOptimisticBatch—Enables batch optimistic updating (ODBCDirect workspaces only).

Let’s see an example to make this clearer. In the previous few topics, we’ve developed a TableDef object, td,
in our DAO code example, the daocode project. To append that object to the Database object we created, db,
we use the Append method of the database object’s TableDefs collection. After installing the table, we open
it for use with the Database object’s OpenRecordset method this way, creating a new DAO Recordset,
which we name dbrecordset:

Sub CreateTable()
 Set td = db.CreateTableDef(TableForm.Text1.Text)

 Set fields(0) = td.CreateField(TableForm.Text2.Text, dbText)
 Set fields(1) = td.CreateField(TableForm.Text3.Text, dbText)
 td.fields.Append fields(0)
 td.fields.Append fields(1)

 Set dbindex = td.CreateIndex(TableForm.Text2.Text + "index")
 Set IxFlds = dbindex.CreateField(TableForm.Text2.Text)
 dbindex.fields.Append IxFlds
 td.Indexes.Append dbindex
 db.TableDefs.Append td

 Set dbrecordset = db.OpenRecordset(TableForm.Text1.Text, dbOpenTable)
End Sub

In this case, we’re opening the new record set as a standard DAO table by passing the constant
dbOpenTable. We also declare dbrecordset as a form-wide variable:

Dim dbrecordset As Recordset

At this point in the daocode project, then, we’ve created a new database with a table in it that has two fields,
using the names that the user supplied for the fields and the table itself. And we’ve opened that table as a
record set, so we’re ready to work with it and add data to it, which we’ll do in later topics in this chapter.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\863-865.html (2 of 3) [3/14/2001 2:05:38 AM]

Besides creating a new database as we’ve done, however, the user may want to open an existing database,
and we’ll see how to do that in the next topic.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\863-865.html (3 of 3) [3/14/2001 2:05:38 AM]

DAO: Opening A Database

To open an existing DAO database, you use the DAO OpenDatabase method, passing it the name of the
database to open, and these arguments:

Set database = workspace.OpenDatabase (dbname, [options [, read-only _
 [, connect]]])

Here are the arguments for OpenDatabase:

• dbname—The name of an existing database file, or the data source name (DSN) of an ODBC
data source.

• options—Setting options to True opens the DAO database in exclusive mode; setting it to False
(the default) opens the database in shared mode.

• read-only—True if you want to open the database with read-only access, or False (the default) if
you want to open the database with read/write access.

• connect—Optional. A Variant (String subtype) that specifies various connection information,
including passwords.

Let’s see an example to make this clearer. In our DAO code example, the daocode project (see the first
topic in this chapter), the user can click the Open Database menu item to open a database. In the program,
we get the name of the database the user wants to open with a Common Dialog control, and open the
database like this:

Private Sub OpenDatabase_Click()

 CommonDialog1.ShowOpen
 If CommonDialog1.FileName <> "" Then
 Set db = _
 DBEngine.Workspaces(0).OpenDatabase(CommonDialog1.FileName)
...

Next, if you know the name of the table you want to open in the database, you can open that table by
name immediately with the OpenRecordset method. However, because we let the user set the name of
tables in the databases we create in the daocode project, we don’t know the names of the tables in the
database we’ve opened. Instead, we’ll open the first user-defined table in this database.

When you open a DAO database, there are a number of system tables already in it, so to open the first
user-defined table, we find the index of that table in the TableDefs collection by first skipping the system
tables (which have the dbSystemObject flag set in their Attributes properties):

Private Sub OpenDatabase_Click()
 Dim table1index As Integer
 CommonDialog1.ShowOpen
 If CommonDialog1.FileName <> "" Then
 Set db = _
 DBEngine.Workspaces(0).OpenDatabase(CommonDialog1.FileName)

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\865-869.html (1 of 4) [3/14/2001 2:05:41 AM]

 table1index = 0
 While (db.TableDefs(table1index).Attributes And dbSystemObject)
 table1index = table1index + 1
 Wend
...

We’ll open the first table after the system tables. We open a new record set for that table with the
OpenRecordset method and fill the text boxes Text1 and Text2 in the program’s main window with the
fields of the first record in that table (note that in this example program, we are assuming the table we’re
opening has at least one record):

Private Sub OpenDatabase_Click()
 Dim table1index As Integer
 CommonDialog1.ShowOpen
 If CommonDialog1.FileName <> "" Then
 Set db = _
 DBEngine.Workspaces(0).OpenDatabase(CommonDialog1.FileName)

 table1index = 0
 While (db.TableDefs(table1index).Attributes And dbSystemObject)
 table1index = table1index + 1
 Wend

 Set dbrecordset = db.OpenRecordset_
 (db.TableDefs(table1index).Name, dbOpenTable)
 Set td = db.TableDefs(table1index)

 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
 End If
End Sub

And that’s it—now we’ve opened a database file.

DAO: Adding A Record To A Record Set

To add a new record to a DAO record set, you use the AddNew method (this method takes no
parameters). After you’ve updated the fields of the current record, you save that record to the database
with the Update method.

Here’s an example using AddNew. When the user clicks the Add button in our DAO code example, the
daocode project (see the first topic in this chapter), we execute the AddNew method on the program’s
record set and clear the two data field text boxes:

Private Sub Command1_Click()
 dbrecordset.AddNew
 Text1.Text = ""

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\865-869.html (2 of 4) [3/14/2001 2:05:41 AM]

 Text2.Text = ""
End Sub

Now users can enter data for the new record’s fields and click the program’s Update button. When they
click the Update Database button, the new data is written to the database.

DAO: Editing A Record In A Record Set

Besides adding new records to the record set, users might want to edit the existing records. To do that,
you use the Edit method like this in our DAO code example, the daocode project (see the first topic in
this chapter):

Private Sub Command2_Click()
 dbrecordset.Edit
End Sub

After users edit the data in the record’s fields (by entering new data in the text fields in the daocode
project’s main window), they must update the database with the new data, and they do that in the daocode
project by clicking the Update Database button. That button executes the Update method, as we’ll see in
the next topic.

DAO: Updating A Record In A Record Set

When the user changes the data in a record or adds a new record, we must update the database to record
that change, and you use the record set Update method to do that:

recordset.Update ([type [, force]])

Here are the arguments in this function:

• type—Constant indicating the type of update, as specified in Settings (ODBCDirect workspaces
only).

• force—Boolean value indicating whether or not to force the changes into the database, regardless
of whether the data has been changed by another user (ODBCDirect workspaces only).

Let’s see an example. When the user clicks the Update button in our DAO code example, the daocode
project (see the first topic in this chapter), we will update the database with the new data for the current
record. We get the new data for the current record from the text boxes Text1 and Text2, where the user
has entered that data, and load the data into the record set’s fields using the fields collection:

Private Sub Command3_Click()
 dbrecordset.fields(0) = Text1.Text
 dbrecordset.fields(1) = Text2.Text
...
End Sub

After loading the data into the current record’s fields, we save that record to the database using the
Update method:

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\865-869.html (3 of 4) [3/14/2001 2:05:41 AM]

Private Sub Command3_Click()
 dbrecordset.fields(0) = Text1.Text
 dbrecordset.fields(1) = Text2.Text
 dbrecordset.Update
End Sub

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\865-869.html (4 of 4) [3/14/2001 2:05:41 AM]

DAO: Moving To The First Record In A Record Set

To make the first record in a record set the current record, you use the MoveFirst method. For
example, here’s how we move to the first record when the user clicks the appropriate button in our
DAO code example, the daocode project (see the first topic in this chapter):

Private Sub Command4_Click()
 dbrecordset.MoveFirst
...
End Sub

After moving to the first record, we display that record’s fields in the two text boxes in the program,
Text1 and Text2:

Private Sub Command4_Click()
 dbrecordset.MoveFirst
 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
End Sub

DAO: Moving To The Last Record In A Record Set

To make the last record in a record set the current record, you use the MoveLast method. For example,
here’s how we move to the last record when the user clicks the appropriate button in our DAO code
example, the daocode project (see the first topic in this chapter):

Private Sub Command7_Click()
 dbrecordset.MoveLast
...
End Sub

After moving to the last record, we display that record’s fields in the two text boxes in the program,
Text1 and Text2:

Private Sub Command7_Click()
 dbrecordset.MoveLast
 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
End Sub

DAO: Moving To The Next Record In A Record Set

To move to the next record in a record set, making that record the current record, you use the
MoveNext method. For example, in our DAO code example, the daocode project (see the first topic in
this chapter), we move to the next record when the user clicks the appropriate button:

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\869-873.html (1 of 4) [3/14/2001 2:05:43 AM]

Private Sub Command6_Click()
 dbrecordset.MoveNext
...

We can check if we’ve gone past the end of the record set with the EOF property; if this property is
True, we should move back one record:

Private Sub Command6_Click()
 dbrecordset.MoveNext
 If dbrecordset.EOF Then
 dbrecordset.MovePrevious
...

On the other hand, if the record we’ve moved to is a valid record, we display its fields in the program’s
two text boxes, Text1 and Text2:

Private Sub Command6_Click()
 dbrecordset.MoveNext
 If dbrecordset.EOF Then
 dbrecordset.MovePrevious
 Else
 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
 End If
End Sub

DAO: Moving To The Previous Record In A Record Set

To move to the previous record in a record set, making that record the current record, you use the
MovePrevious method. For example, in our DAO code example, the daocode project (see the first
topic in this chapter), we move to the previous record when the user clicks the appropriate button:

Private Sub Command5_Click()
 dbrecordset.MovePrevious
...

We can check if we’ve gone past the beginning of the record set with the BOF property; if this property
is True, we should move forward one record:

Private Sub Command5_Click()
 dbrecordset.MovePrevious
 If dbrecordset.BOF Then
 dbrecordset.MoveNext
...

On the other hand, if the record we’ve moved to is a valid record, we display its fields in the program’s

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\869-873.html (2 of 4) [3/14/2001 2:05:43 AM]

two text boxes, Text1 and Text2:

Private Sub Command5_Click()
 dbrecordset.MovePrevious
 If dbrecordset.BOF Then
 dbrecordset.MoveNext
 Else
 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
 End If
End Sub

DAO: Deleting A Record In A Record Set

To delete a record in a DAO record set, you use the Delete method, and then you update the record set.
For example, when the user clicks the Delete button in our DAO code example, the daocode project
(see the first topic in this chapter), we clear the two text boxes, Text1 and Text2, that display the data
for the current record and delete that record:

Private Sub Command8_Click()
 Text1.Text = ""
 Text2.Text = ""
 dbrecordset.Delete
End Sub

DAO: Sorting A Record Set

To sort a record set, you can install the index you want to sort with in the record set’s Index property.
For example, we can sort the record set in our DAO code example, the daocode project, with the index
we’ve created this way:

Sub Sort_Click()
 Set dbindex = td.Indexes(0)
 dbrecordset.Index = dbindex.Name
...

After the record set is sorted, we display the first record in the two main text boxes, Text1 and Text2:

Sub Sort_Click()
 Set dbindex = td.Indexes(0)
 dbrecordset.Index = dbindex.Name
 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
End Sub

DAO: Searching A Record Set

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\869-873.html (3 of 4) [3/14/2001 2:05:43 AM]

You can search a record set with an index; we just set its Index property to the index we want to search
and then set its Seek property to the string we want to search for. Let’s see an example. When the user
selects the Search menu item in our DAO code example, the daocode project (see the first topic in this
chapter), we install the index based on the first field in the record set and show the dialog box named
Search…, which appears in Figure 25.3:

Private Sub Search_Click()
 Set dbindex = td.Indexes(0)
 dbrecordset.Index = dbindex.Name
 SearchForm.Show
End Sub

Figure 25.3 The DAO code example’s Search… dialog box.

After the user dismisses the Search… dialog box, we retrieve the text to search for from that dialog
box’s text box and place that text in the record set’s Seek property, along with the command “=”,
which indicates we want to find exact matches to the search text:

Sub SearchTable()
 dbrecordset.Seek "=", SearchForm.Text1.Text
...

Besides =, you can also search using <, <=, >=, and >. When the search is complete, we display the
found record in the daocode project’s main text boxes, Text1 and Text2:

Sub SearchTable()
 dbrecordset.Seek "=", SearchForm.Text1.Text
 Text1.Text = dbrecordset.fields(0)
 Text2.Text = dbrecordset.fields(1)
End Sub

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\869-873.html (4 of 4) [3/14/2001 2:05:43 AM]

javascript:displayWindow('images/25-03.jpg',300,202)
javascript:displayWindow('images/25-03.jpg',300,202)

DAO: Executing SQL

You can execute an SQL statement when you create a DAO record set using the OpenRecordset method by
placing that SQL statement in the source argument:

Set recordset = Database.OpenRecordset (source, type, options, lockedits)

Here are the arguments for OpenRecordset:
• source—A string specifying the source of the records for the new Recordset. The source can be a
table name, a query name, or an SQL statement that returns records. (For table-type Recordset objects in
Jet-type databases, the source can only be a table name.)

• type—Indicates the type of Recordset to open.

• options—Combination of constants that specify characteristics of the new Recordset.

• lockedits—Constant that determines the locking for Recordset.

Here are the possible settings for type:

• dbOpenTable—Opens a table-type Recordset object.

• dbOpenDynamic—Opens a dynamic-type Recordset object, which is like an ODBC dynamic cursor.

• dbOpenDynaset—Opens a dynaset-type Recordset object, which is like an ODBC keyset cursor.

• dbOpenSnapshot—Opens a snapshot-type Recordset object, which is like an ODBC static cursor.

• dbOpenForwardOnly—Opens a forward-only-type Recordset object.

Here are the possible settings for options:

• dbAppendOnly—Allows users to append new records to the Recordset but prevents them from
editing or deleting existing records (Microsoft Jet dynaset-type Recordset only).

• dbSQLPassThrough—Passes an SQL statement to a Microsoft Jet-connected ODBC data source for
processing (Microsoft Jet snapshot-type Recordset only).

• dbSeeChanges—Generates a runtime error if one user is changing data that another user is editing
(Microsoft Jet dynaset-type Recordset only).

• dbDenyWrite—Prevents other users from modifying or adding records (Microsoft Jet Recordset
objects only).

• dbDenyRead—Prevents other users from reading data in a table (Microsoft Jet table-type Recordset
only).

• dbForwardOnly—Creates a forward-only Recordset (Microsoft Jet snapshot-type Recordset only). It
is provided only for backward compatibility, and you should use the dbOpenForwardOnly constant in
the type argument instead of using this option.

• dbReadOnly—Prevents users from making changes to the Recordset (Microsoft Jet only). The
dbReadOnly constant in the lockedits argument replaces this option, which is provided only for
backward compatibility.

• dbRunAsync—Runs an asynchronous query (ODBCDirect workspaces only).

• dbExecDirect—Runs a query by skipping SQLPrepare and directly calling SQLExecDirect
(ODBCDirect workspaces only).

• dbInconsistent—Allows inconsistent updates (Microsoft Jet dynaset-type and snapshot-type
Recordset objects only).

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\874-876.html (1 of 2) [3/14/2001 2:05:51 AM]

• dbConsistent—Allows only consistent updates (Microsoft Jet dynaset-type and snapshot-type
Recordset objects only).

Here are the possible settings for the lockedits argument:

• dbReadOnly—Prevents users from making changes to the Recordset (default for ODBCDirect
workspaces).

• dbPessimistic—Uses pessimistic locking to determine how changes are made to the Recordset in a
multiuser environment.

• dbOptimistic—Uses optimistic locking to determine how changes are made to the Recordset in a
multiuser environment.

• dbOptimisticValue—Uses optimistic concurrency based on row values (ODBCDirect workspaces
only).

• dbOptimisticBatch—Enables batch optimistic updating (ODBCDirect workspaces only).

A Full-Scale RDO Example

To illustrate RDO data handling in code, we’ll build a fully functional RDO project—the rdocode
project—over the next few examples. You can see that project at work in Figure 25.4. This program is
designed to open the ODBC data source we set up in the previous chapter (where we created a database,
db.mdb, and registered it as an ODBC data source) and let the user move around in it record by record.

Figure 25.4 The rdocode project opening an ODBC database.

Using the buttons in the rdocode project, you can move through the database, and we’ll see how to write the
code for the rdocode project in the following few topics. For reference, the code for this example is located in
the rdocode folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\874-876.html (2 of 2) [3/14/2001 2:05:51 AM]

javascript:displayWindow('images/25-04.jpg',391,189)
javascript:displayWindow('images/25-04.jpg',391,189)

RDO: Opening A Connection

To open an RDO connection to a database, you can use the RDO OpenConnection method.
OpenConnection is a method of the rdoEnvironment object, and you’ll find a collection of those objects
in the rdoEngine object’s rdoEnvironments collection. To add the RDO objects to a program, select the
Project|References menu item in Visual Basic, select the Microsoft Remote Data Object entry in the
References dialog box, and click on OK. Now we’re free to use rdoEnvironment methods like
OpenConnection:

workspace.OpenConnection(datasource, [prompt, [read-only, [connect, _
 [options]]]])

Here are the arguments to OpenConnection:

• datasource—The name of the data source.

• prompt—ODBC prompting characteristic: rdDriverPrompt asks the user for a driver/database,
rdDriverNoPrompt uses specified driver/database, rdDriverComplete specifies the connection
string itself, and rdDriverCompleteRequired is the same as rdDriverComplete, with the
additional requirement that the driver should disable the controls for information not needed for the
connection.

• read-only—True if you want to open the data source as read-only.

• connect—The connect string.

• options—Set to rdAsyncEnable if you want to execute commands asynchronously (that is,
without waiting for the command to be completed).

Let’s see an example. In our RDO code example, the rdocode project (see “A Full-Scale RDO Example”
earlier in this chapter), we create an rdoEnvironment object named re this way when the form loads:

Dim re As Object

Private Sub Form_Load()

 Set re = rdoEngine.rdoEnvironments(0)
...
End Sub

Now we open a connection named db to the ODBC source (we set up this ODBC source in the previous
chapter) this way:

Dim re As Object
Dim db As rdoConnection

Private Sub Form_Load()

 Set re = rdoEngine.rdoEnvironments(0)
 Set db = re.OpenConnection("db")

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\876-879.html (1 of 4) [3/14/2001 2:05:57 AM]

End Sub

That’s it—now we have a connection to our ODBC data source in the rdoConnection object named db.
How do we access the records in that source? We’ll look into that next.

RDO: Creating A Result Set

After opening an ODBC data source and creating an rdoConnection object, we can create an RDO result
set to start working with the records in that data source. To create a result set, we can use the
rdoConnection method OpenResultset:

Set resultset = rdoConnection.OpenResultset (name, [type, [locktype,_
 [options]]])

Here are the arguments for OpenResultset:
• name—Source for the result set; can be an rdoTable object, an rdoQuery object, or an SQL
statement.

• type—Specifies the result set type (see the following list).

• locktype—Can be one of these values: rdConcurReadOnly (read-only), rdConcurLock
(pessimistic concurrency), rdConcurRowVer (optimistic row-based concurrency),
rdConcurValues (optimistic value-based concurrency), or rdConcurBatch (optimistic
concurrency using batch updates).

• options—Set to rdAsyncEnable if you want to execute commands asynchronously (that is,
without waiting for the command to be completed).

Here are the possible values for the type argument:

• rdOpenKeyset—Opens a dynaset-type rdoResultset object, which is like an ODBC keyset
cursor.

• rdOpenDynamic—Opens a dynamic-type rdoResultset object, which lets the application see
changes made by other users.

• rdOpenStatic—Opens a static-type rdoResultset object.

• rdOpenForwardOnly—Opens a forward-only-type rdoResultset object, where you can only use
MoveNext to move.

Let’s see an example. Here, we’ll create an SQL-based result set in our RDO code example, the rdocode
project (see “A Full-Scale RDO Example” earlier in this chapter), when the form loads, using the
rdoConnection object we’ve created—db. In this case, we’ll set up an SQL statement, SQLSel, to place
all the fields from the data source’s table named students in the result set:

Dim re As Object
Dim db As rdoConnection
Dim SQLSel As String

Private Sub Form_Load()

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\876-879.html (2 of 4) [3/14/2001 2:05:57 AM]

 SQLSel = "Select * from students"
 Set re = rdoEngine.rdoEnvironments(0)
 Set db = re.OpenConnection("db")
...

Now we use OpenResultset to create an rdoResultset object, resultset:

Dim re As Object
Dim db As rdoConnection
Dim resultset As rdoResultset
Dim SQLSel As String

Private Sub Form_Load()
 SQLSel = "Select * from students"
 Set re = rdoEngine.rdoEnvironments(0)
 Set db = re.OpenConnection("db")

 Set resultset = db.OpenResultset(SQLSel, rdOpenKeyset)
...

Now that we’ve opened a result set, we can use rdoResultset methods like MoveFirst to move to the first
record and display the data in that record’s Name and Grade fields with the rdocode project’s text boxes,
Text1 and Text2:

Dim re As Object
Dim db As rdoConnection
Dim resultset As rdoResultset
Dim SQLSel As String

Private Sub Form_Load()

 SQLSel = "Select * from students"
 Set re = rdoEngine.rdoEnvironments(0)
 Set db = re.OpenConnection("db")

 Set resultset = db.OpenResultset(SQLSel, rdOpenKeyset)
 resultset.MoveFirst

 Text1.Text = resultset("Name")
 Text2.Text = resultset("Grade")

End Sub

And that’s it—we’ve opened an RDO result set and displayed some of the data in that result set.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\876-879.html (3 of 4) [3/14/2001 2:05:57 AM]

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\876-879.html (4 of 4) [3/14/2001 2:05:57 AM]

RDO: Moving To The First Record In A Result Set

To move to the first record in an RDO result set, you can use the rdoResultset method MoveFirst.
Let’s see an example. In this case, we’ll move to the first record in the result set named resultset that
we’ve opened in our RDO code example, the rdocode project (see “A Full-Scale RDO Example”
earlier in this chapter), when the user clicks the appropriate button:

Private Sub cmdFirst_Click()
 On Error GoTo ErrLabel
 resultset.MoveFirst
...
 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

After moving to the new record, we display the data in that record’s fields in the program’s text boxes,
Text1 and Text2:

Private Sub cmdFirst_Click()
 On Error GoTo ErrLabel

 resultset.MoveFirst
 Text1.Text = resultset("Name")
 Text2.Text = resultset("Grade")

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

RDO: Moving To The Last Record In A Result Set

To move to the last record in an RDO result set, you can use the rdoResultset method MoveLast. Let’s
see an example. In this case, we’ll move to the last record in the result set named resultset that we’ve
opened in our RDO code example, the rdocode project (see “A Full-Scale RDO Example” earlier in
this chapter), when the user clicks the appropriate button:

Private Sub cmdLast_Click()
 On Error GoTo ErrLabel

 resultset.MoveLast
...

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\879-884.html (1 of 5) [3/14/2001 2:06:04 AM]

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

After moving to the new record, we display the data in that record’s fields in the program’s text boxes,
Text1 and Text2:

Private Sub cmdLast_Click()
 On Error GoTo ErrLabel

 resultset.MoveLast

 Text1.Text = resultset("Name")
 Text2.Text = resultset("Grade")

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

RDO: Moving To The Next Record In A Result Set

To move to the next record in an RDO result set, you can use the rdoResultset method MoveNext.
Let’s see an example. In this case, we’ll move to the next record in the result set named resultset that
we’ve opened in our RDO code example, the rdocode project (see “A Full-Scale RDO Example”
earlier in this chapter), when the user clicks the appropriate button. We check to make sure we’re not
trying to move past the end of the record set with the EOF property, and if so, we make sure to move to
the last record instead:

Private Sub cmdNext_Click()
 On Error GoTo ErrLabel

 If Not resultset.EOF Then resultset.MoveNext
 If resultset.EOF And resultset.RowCount > 0 Then
 resultset.MoveLast
 End If
...
 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\879-884.html (2 of 5) [3/14/2001 2:06:04 AM]

After moving to the new record, we display the data in that record’s fields in the program’s text boxes,
Text1 and Text2:

Private Sub cmdNext_Click()
 On Error GoTo ErrLabel

 If Not resultset.EOF Then resultset.MoveNext
 If resultset.EOF And resultset.RowCount > 0 Then
 resultset.MoveLast
 End If

 Text1.Text = resultset("Name")
 Text2.Text = resultset("Grade")

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

RDO: Moving To The Previous Record In A Result Set

To move to the previous record in an RDO result set, you can use the rdoResultset method
MovePrevious. Let’s see an example. In this case, we’ll move to the previous record in the result set
named resultset that we’ve opened in our RDO code example, the rdocode project (see “A Full-Scale
RDO Example” earlier in this chapter), when the user clicks the appropriate button. We check to make
sure we’re not trying to move past the beginning of the record set with the BOF property, and if so, we
make sure to move to the first record instead:

Private Sub cmdPrevious_Click()
 On Error GoTo ErrLabel

 If Not resultset.BOF Then resultset.MovePrevious
 If resultset.BOF And resultset.RowCount > 0 Then
 resultset.MoveFirst
 End If

 Text1.Text = resultset("Name")
 Text2.Text = resultset("Grade")

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\879-884.html (3 of 5) [3/14/2001 2:06:04 AM]

After moving to the new record, we display the data in that record’s fields in the program’s text boxes,
Text1 and Text2:

Private Sub cmdPrevious_Click()
 On Error GoTo ErrLabel

 If Not resultset.BOF Then resultset.MovePrevious
 If resultset.BOF And resultset.RowCount > 0 Then
 resultset.MoveFirst
 End If

 Text1.Text = resultset("Name")
 Text2.Text = resultset("Grade")

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

RDO: Executing SQL

You can execute SQL statements with RDO objects when you open a result set, as we saw in “RDO:
Creating A Result Set” in this chapter. You can also execute an SQL statement with the rdoConnection
object’s Execute statements like this:

SQLSel = "Select * from students"
rdoConnection.Execute SQLSel

A Full-Scale ADO Example

To illustrate ADO data handling in code, we’ll build an ADO project—the adocode project. This
application lets you open the db.mdb file we built in the previous chapter using ADO objects to edit
records, add records, and even delete records. You can also move through the database using the arrow
buttons you see in Figure 25.5.

Figure 25.5 The adocode project at work.

To edit a record, just type the new value(s) into the text box(es) and click the Update button. To add a
record, use the Add button, type the new value(s) into the text box(es), and click the Update button.
That’s all there is to it—your changes will be reflected in the original database. For reference, the code
for this example is located in the adocode folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\879-884.html (4 of 5) [3/14/2001 2:06:04 AM]

javascript:displayWindow('images/25-05.jpg',376,195)
javascript:displayWindow('images/25-05.jpg',376,195)

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\879-884.html (5 of 5) [3/14/2001 2:06:04 AM]

ADO: Opening A Connection

The Testing Department is calling again. The company is switching to using ActiveX Data Objects—how
about setting up an ADO database-editing program? Already on it, you say.

The first step in editing an ADO database is to open that database, which is called a data source in ADO
terminology, by setting up a Connection object. To use that and other ADO objects in code, you use the
Project|References item, select the Microsoft ActiveX Data Objects Library item, and click on OK, adding
the ADO Object Library to your program.

Now we’re free to create a new ADO Connection object with the Connection object’s Open method:

connection.Open ConnectionString [,UserID [, Password [, OpenOptions]]]

Here are the arguments for this method:

• ConnectionString—String containing connection information.

• UserID—String containing a username to use when establishing the connection.

• Password—String containing a password to use when establishing the connection.

• OpenOptions—If set to adConnectAsync, the connection will be opened asynchronously.

Let’s see an example. When we start our ADO code example, the adocode example (see “A Full-Scale ADO
Example” in this chapter), we’ll establish a connection, db, to the database we built in the previous chapter,
db.mdb:

Private Sub Form_Load()
 Dim db As Connection
 Set db = New Connection

 db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.51;Data _
 Source=C:\vbbb\adocode\db.mdb;"
...
End Sub

And that’s it—now we have a connection to the data source. To actually work with the data in that data
source, we’ll create an ADO record set in the next topic.

ADO: Creating A Record Set From A Connection

Now that you’ve created an ADO connection, you can open a record set from that connection using the
Recordset object’s Open method:

recordset.Open [Source, [ActiveConnection, [Type, [LockType, [Options]]]]

Here are the arguments for this method:

• Source—A valid Command object variable name, an SQL statement, a table name, a stored
procedure call, or the file name of a Recordset.

• ActiveConnection—A valid Connection object variable name or a string containing
ConnectionString parameters.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\884-887.html (1 of 3) [3/14/2001 2:06:09 AM]

• Type—Sets the Recordset type (see the following list).

• LockType—A value that determines what type of locking (concurrency) the provider should use
when opening the Recordset (see the following list).

• Options—A Long value that indicates how the provider should evaluate the Source argument if it
represents something other than a Command object, or that the Recordset should be restored from a
file where it was previously saved (see the following list).

Here are the possible values for the Type argument:

• dbOpenKeyset—Opens a dynaset-type Recordset object, which is like an ODBC keyset cursor.

• dbOpenDynamic—Opens a dynamic-type Recordset object, which lets the application see changes
made by other users.

• dbOpenStatic—Opens a static-type Recordset object.

• dbOpenForwardOnly—Opens a forward-only-type Recordset object, where you can only use
MoveNext to move.

Here are the possible values for the LockType argument:

• adLockReadOnly—The default; read-only.

• adLockPessimistic—Pessimistic locking, record by record.

• adLockOptimistic—Optimistic locking, record by record.

• adLockBatchOptimistic—Optimistic batch updates.

Here are the possible values for the Options argument:

• adCmdText—Provider should evaluate Source as a definition of a command.

• adCmdTable—ADO should generate an SQL query to return all rows from the table named in
Source.

• adCmdTableDirect—Provider should return all rows from the table named in Source.

• adCmdStoredProc—Provider should evaluate Source as a stored procedure.

• adCmdUnknown—Type of command in the Source argument is not known.

• adCommandFile—Record set should be restored from the file named in Source.

• adExecuteAsync—Source should be executed asynchronously.

• adFetchAsync—After the initial quantity specified in the CacheSize property is fetched, any
remaining rows should be fetched asynchronously.

Let’s see an example. In our ADO code example, the adocode example (see “A Full- Scale ADO Example”
in this chapter), we create a record set, adoRecordset, by first declaring it as a form-wide variable:

Dim adoRecordset As Recordset

Next, we select all the records in the students table this way when the form loads, using the Open method:

Private Sub Form_Load()
 Dim db As Connection
 Set db = New Connection

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\884-887.html (2 of 3) [3/14/2001 2:06:09 AM]

 db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.51;Data _
 Source=C:\vbbb\adocode\db.mdb;"
 Set adoRecordset = New Recordset
 adoRecordset.Open "select Grade, Name from students", _
 db, adOpenStatic, adLockOptimistic
...
End Sub

Now that we’ve opened our result set, we can bind that result set to various controls, like text boxes, as we’ll
do in the next topic.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\884-887.html (3 of 3) [3/14/2001 2:06:09 AM]

ADO: Binding Controls To Record Sets

To bind a control to an ADO Recordset object, you just set that control’s DataSource property to that
object, and then set whatever other data properties that control needs to have set (see, for example,
Table 24.1 in the previous chapter, which lists the data properties of various controls).

Let’s see an example. In our ADO code example, the adocode example (see “A Full-Scale ADO
Example” in this chapter), we create a record set, adoRecordset, and open the db.mdb database we
created in the last chapter in it. We can bind the fields in that database to the text boxes Text1 and
Text2 this way when the adocode main form loads:

Private Sub Form_Load()
 Dim db As Connection
 Set db = New Connection

 db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.51;Data _
 Source=C:\vbbb\adocode\db.mdb;"

 Set adoRecordset = New Recordset
 adoRecordset.Open "select Grade, Name from students", _
 db, adOpenStatic, adLockOptimistic

 Set Text1.DataSource = adoRecordset
 Text1.DataField = "Name"
 Set Text2.DataSource = adoRecordset
 Text2.DataField = "Grade"

End Sub

That’s all it takes—now we’ve bound two text boxes to an ADO record set.

ADO: Adding A Record To A Record Set

To add a new record to an ADO record set, you use the AddNew method. After you’ve updated the
fields of the current record, you save that record to the database with the Update method. Here’s how
you use AddNew:

recordset.AddNew [Fields [, Values]]

Here are the arguments for this method:

• Fields—A single name or an array of names or ordinal positions of the fields in the new
record.

• Values—A single value or an array of values for the fields in the new record. If Fields is an
array, Values must also be an array with the same number of members. The order of field names
must match the order of field values in each array.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\887-891.html (1 of 4) [3/14/2001 2:06:12 AM]

Let’s see an example. Here, we’ll add a new record to the record set adoRecordset in our ADO code
example, the adocode example (see “A Full-Scale ADO Example” in this chapter), when the user clicks
the appropriate button:

Private Sub cmdAdd_Click()
 On Error GoTo ErrLabel
 adoRecordset.AddNew

 Text1.Text = ""
 Text2.Text = ""

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

Note that we also clear the two text boxes that display the field data, Text1 and Text2, so users can
enter the data they want in the new record. When done, they press the Update button to update the data
source.

ADO: Refreshing The Record Set

Sometimes you want to refresh the data in a record set—you might be dealing with multiply-connected
databases, for instance, where other users are making changes as well—and you can use the ADO
Refresh method for that. Let’s see an example. Here, we’ll refresh the record set adoRecordset in our
ADO code example, the adocode example (see “A Full-Scale ADO Example” in this chapter), when the
user clicks the appropriate button:

Private Sub cmdRefresh_Click()
 On Error GoTo ErrLabel

 adoRecordset.Requery

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

And that’s all it takes to refresh the record set.

ADO: Updating A Record In A Record Set

After changing the data in a record’s fields or adding a new record, you update the data source to
record the change, using the Update method:

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\887-891.html (2 of 4) [3/14/2001 2:06:12 AM]

recordset.Update Fields, Values

Here are the arguments for this method:

• Fields—A single name or an array of names or ordinal positions of the fields in the new
record.

• Values—A single value or an array of values for the fields in the new record. If Fields is an
array, Values must also be an array with the same number of members. The order of field names
must match the order of field values in each array.

Let’s see an example. When users want to update records in our ADO code example, the adocode
example (see “A Full-Scale ADO Example” in this chapter), they click the appropriate button, and
we’ll update the data source this way:

Private Sub cmdUpdate_Click()
 On Error GoTo ErrLabel

 adoRecordset.Update

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

That’s all we need—now we’re ready to update records in an ADO record set.

ADO: Moving To The First Record In A Record Set

To move to the first record in an ADO record set, you use the Recordset object’s MoveFirst method
(this method takes no parameters). Let’s see an example. When the user clicks the appropriate button in
our ADO code example, the adocode example (see “A Full-Scale ADO Example” in this chapter), we’ll
move to the first record in our record set, adoRecordset:

Private Sub cmdFirst_Click()
 On Error GoTo ErrLabel

 adoRecordset.MoveFirst

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

And that’s all the code we need to move to the first record.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\887-891.html (3 of 4) [3/14/2001 2:06:12 AM]

ADO: Moving To The Last Record In A Record Set

To move to the last record in an ADO record set, you use the Recordset object’s MoveLast method
(this method takes no parameters). Let’s see an example. When the user clicks the appropriate button in
our ADO code example, the adocode example (see “A Full-Scale ADO Example” in this chapter), we’ll
move to the last record in our record set, adoRecordset:

Private Sub cmdLast_Click()
 On Error GoTo ErrLabel

 adoRecordset.MoveLast

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

And that’s all the code we need to move to the last record.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\887-891.html (4 of 4) [3/14/2001 2:06:12 AM]

ADO: Moving To The Next Record In A Record Set

To move to the next record in an ADO record set, you use the Recordset object’s MoveNext method (this
method takes no parameters). Let’s see an example. When the user clicks the appropriate button in our ADO
code example, the adocode example (see “A Full-Scale ADO Example” in this chapter), we’ll move to the
next record in our record set, adoRecordset. Note that we make sure we don’t move past the end of the record
set by checking the record set’s EOF property:

Private Sub cmdNext_Click()
 On Error GoTo ErrLabel

 If Not adoRecordset.EOF Then
 adoRecordset.MoveNext
 End If

 If adoRecordset.EOF And adoRecordset.RecordCount > 0 Then
 adoRecordset.MoveLast
 End If

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

ADO: Moving To The Previous Record In A Record Set

To move to the next record in an ADO record set, you use the Recordset object’s MovePrevious method (this
method takes no parameters). Let’s see an example. When the user clicks the appropriate button in our ADO
code example, the adocode example (see “A Full-Scale ADO Example” in this chapter), we’ll move to the
previous record in our record set, adoRecordset. Note that we make sure we don’t move past the end of the
record set by checking the record set’s BOF property:

Private Sub cmdPrevious_Click()
 On Error GoTo ErrLabel

 If Not adoRecordset.BOF Then adoRecordset.MovePrevious
 If adoRecordset.BOF And adoRecordset.RecordCount > 0 Then
 adoRecordset.MoveFirst
 End If

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

ADO: Deleting A Record In A Record Set

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\891-894.html (1 of 3) [3/14/2001 2:06:14 AM]

To delete a record in an ADO record set, you use the Delete method:

recordset.Delete AffectRecords

Here, AffectRecords is a value that determines how many records the Delete method will affect. It can be one
of the following constants:

• adAffectCurrent—The default; deletes only the current record.

• adAffectGroup—Deletes the records that satisfy the current Filter property setting.

Let’s see an example. Here, we delete a record in our ADO code example, the adocode example (see “A
Full-Scale ADO Example” in this chapter), when the user presses the appropriate button:

Private Sub cmdDelete_Click()
 On Error GoTo ErrLabel

 adoRecordset.Delete
...

In addition, we move to the next record this way:

Private Sub cmdDelete_Click()
 On Error GoTo ErrLabel

 adoRecordset.Delete

 adoRecordset.MoveNext
 If adoRecordset.EOF Then
 adoRecordset.MoveLast
 End If

 Exit Sub

ErrLabel:
 MsgBox Err.Description
End Sub

And that’s it—now we’ve deleted a record.

ADO: Executing SQL In A Record Set

You can execute an SQL statement when you open a record set using the Open method by passing that
statement as the Source argument:

recordset.Open [Source, [ActiveConnection, [Type, [LockType, [Options]]]]

Here are the arguments for this method:

• Source—A valid Command object variable name, an SQL statement, a table name, a stored procedure
call, or the file name of a Recordset.

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\891-894.html (2 of 3) [3/14/2001 2:06:14 AM]

• ActiveConnection—A valid Connection object variable name or a string containing
ConnectionString parameters.

• Type—Sets the Recordset type (see the following list).

• LockType—A value that determines what type of locking (concurrency) the provider should use when
opening the Recordset object (see the following list).

• Options—A Long value that indicates how the provider should evaluate the Source argument if it
represents something other than a Command object, or that the Recordset object should be restored from
a file where it was previously saved (see the following list).

Here are the possible values for the Type argument:

• dbOpenKeyset—Opens a dynaset-type Recordset object, which is like an ODBC keyset cursor.

• dbOpenDynamic—Opens a dynamic-type Recordset object, which lets the application see changes
made by other users.

• dbOpenStatic—Opens a static-type Recordset object.

• dbOpenForwardOnly—Opens a forward-only-type Recordset object, where you can only use
MoveNext to move.

Here are the possible values for the LockType argument:

• adLockReadOnly—The default; read-only.

• adLockPessimistic—Pessimistic locking, record by record.

• adLockOptimistic—Optimistic locking, record by record.

• adLockBatchOptimistic—Optimistic batch updates.

Here are the possible values for the Options argument:

• adCmdText—Provider should evaluate Source as a definition of a command.

• adCmdTable—ADO should generate an SQL query to return all rows from the table named in
Source.

• adCmdTableDirect—Provider should return all rows from the table named in Source.

• adCmdStoredProc—Provider should evaluate Source as a stored procedure.

• adCmdUnknown—Type of command in the Source argument is not known.

• adCommandFile—Record set should be restored from the file named in Source.

• adExecuteAsync—Source should be executed asynchronously.

• adFetchAsync—After the initial quantity specified in the CacheSize property is fetched, any
remaining rows should be fetched asynchronously.

Here’s an example where we open a record set with the SQL statement “select * from students”:

adoRecordset.Open "select * from students", db, adOpenStatic,
 adLockOptimistic

Visual Basic 6 Black Book:Working With Database Objects In Code

http://24.19.55.56:8080/temp/ch25\891-894.html (3 of 3) [3/14/2001 2:06:14 AM]

Chapter 26
OLE
If you need an immediate solution to:

Adding An OLE Control To A Form

Creating And Embedding An OLE Object At Design Time

Linking Or Embedding An Existing Document At Design Time

Autosizing An OLE Control

Determining How An Object Is Displayed In An OLE Container Control

Using The OLE Control’s Pop-Up Menus At Design Time

Inserting An OLE Object Into An OLE Control At Runtime

Deactivating OLE Objects

Using Paste Special To Insert A Selected Part Of A Document Into An OLE Control

How To Activate The OLE Objects In Your Program

Activating OLE Objects With A Pop-Up Menu That Lists All OLE Verbs

Activating OLE Objects From Code

Is An Object Linked Or Embedded?

Handling Multiple OLE Objects

Using OLE Control Arrays To Handle Multiple OLE Objects

Loading New OLE Controls At Runtime

Dragging OLE Objects In A Form

Deleting OLE Objects

Copying And Pasting OLE Objects With The Clipboard

Zooming OLE Objects

Saving And Retrieving Embedded Object’s Data

Handling OLE Object Updated Events

Disabling In-Place Editing

In Depth

For obvious reasons, Object Linking and Embedding (OLE) is a very popular programming topic.
Using OLE you can give the users of your program direct access to OLE server programs like
Microsoft Word or Excel. In fact, you can integrate all kinds of programs together using OLE, giving
your program the power of database, spreadsheet, word processor, and even graphics programs all
wrapped into one.

Visual Basic lets you do this with the OLE control. This control can display OLE objects, and those
objects appear as mini-versions of the programs connected to them. For example, if you display an
Excel spreadsheet in an OLE control, the control displays what looks like a small version of Excel right

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\895-898.html (1 of 3) [3/14/2001 2:06:19 AM]

there in your program. The program that creates the object displayed in the OLE control is an OLE
server, and your program, which displays the OLE object, is called an OLE container. In fact, the
proper name for the OLE control is the OLE container control.

You can use the OLE object in the OLE control just as you would in the program that created it; for
example, you can work with an Excel spreadsheet in an OLE control just as if it was open in Excel
itself. How does that work? There are two primary ways of working with the OLE objects in an OLE
control: opening them and editing them in place.

When you open them, the OLE server application is launched in its own window and the OLE object
appears in that application. When you want to save your changes to the OLE object in the OLE control,
you use the server’s Update item in the File menu.

When you edit an OLE object in place, the server application is not launched in its own window;
instead, the object becomes active in the OLE control itself and may be edited directly. The OLE
container program’s menu system is taken over by the OLE server—and you may be startled to see
Microsoft Word’s or Excel’s menu system in your program’s menu bar. To close an OLE object that is
open for in-place editing, you click the form outside the object.

As an example, the Microsoft Excel spreadsheet in Figure 26.1 is open for in-place editing.

Figure 26.1 Opening an Excel spreadsheet in an OLE control for in-place editing.

When the OLE object in an OLE control is closed, it appears in its inactive state, as shown in Figure
26.2.

Figure 26.2 An inactive OLE object.

OLE actions are called verbs; for example, opening an OLE object is accomplished with the
VbOLEOpen verb, and editing it in place is accomplished with the VbOLEInPlaceActivate verb.
We’ll see how to handle OLE verbs in this chapter when we use the OLE control’s DoVerb method.

What other methods does the OLE control support? Those methods and what they do appear in Table
26.1. You can also use the OLE control’s Action method to invoke the methods in Table 26.1, and the
values for this property also appear in Table 26.1. When you use the Action property, the control often
uses other properties of the control, such as the SourceDoc property, to find the data it needs to
perform the requested operation. Note, however, that the Action property is considered obsolete, and
we’ll use the OLE methods instead.

Table 26.1 OLE methods.

Method Action Value Meaning

CreateEmbed 0 Creates embedded object

CreateLink 1 Creates linked object from the contents of a file

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\895-898.html (2 of 3) [3/14/2001 2:06:19 AM]

javascript:displayWindow('images/26-01.jpg',320,240)
javascript:displayWindow('images/26-01.jpg',320,240)
javascript:displayWindow('images/26-02.jpg',320,240)
javascript:displayWindow('images/26-02.jpg',320,240)

Copy 4 Copies the object to the system Clipboard

Paste 5 Copies data from the system Clipboard to an OLE
container control

Update 6 Retrieves the current data from the application that
supplied the object and displays that data as a picture
in the OLE container control

DoVerb 7 Opens an object for an operation, such as editing

Close 9 Closes an object and terminates the connection to the
application that provided the object

Delete 10 Deletes the specified object and frees the memory
associated with it

SaveToFile 11 Saves an object to a data file

ReadFromFile 12 Loads an object that was saved to a data file

InsertObjDlg 14 Displays the Insert Object dialog box

PasteSpecialDlg 15 Displays the Paste Special dialog box

FetchVerbs 17 Updates the list of verbs an object supports

SaveToOle1File 18 Saves an object to the OLE version 1 file format

The term Object Linking and Embedding implies two ways of inserting objects into an OLE
control—through linking and embedding such objects. How do those operations differ?

Linking Vs. Embedding

What’s the difference between linking and embedding OLE objects in the OLE control? The main
difference has to do with where the object’s data (such as the data in a spreadsheet) is stored. Data
associated with a linked object is manipulated by the OLE server application that created it and is
stored outside an OLE container control. Data associated with an embedded object is contained in an
OLE container control, and that data can be saved with your Visual Basic application.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\895-898.html (3 of 3) [3/14/2001 2:06:19 AM]

When you embed an object into an OLE control, that control stores the name of the application that
supplied the object, along with its data. The OLEType property of the control is set to Embedded (1).
When you link an object to an OLE control, that control stores the name of the application that supplied
the object and a reference to the data. The OLEType property of the control is set to Linked (0).

Note that because an embedded object’s data is stored in your program, you’re responsible for storing
and reading that data if it changes. To do that, we’ll use the SaveToFile and ReadFromFile methods
in this chapter.

You can also specify the types of objects that an OLE control can take by setting its OLETypeAllowed
property to Linked (0), Embedded (1), or Either (2).

To embed objects into an OLE control at runtime, you usually use the Insert Object object of the
container program’s Object menu. To link objects to an OLE control, you usually copy the object in the
server application and use the Paste special menu object in the OLE container.

TIP: To place an object in an OLE container control, the component that provides the object must be
registered in your system Registry as an OLE server.

That’s it, then, for the overview of OLE. We’ve seen how the process works in overview; now it’s time
to turn to this chapter’s Immediate Solutions.

Immediate Solutions

Adding An OLE Control To A Form

The Testing Department is on the phone again. How about providing all the functionality that
Microsoft Excel has in your new program? Um…you say. It would be really great, they say, if we
could let users work with spreadsheets using all the Excel commands they’re used to. Can you have it
done by next week?

Using the OLE control, you can embed or link objects from OLE server programs like Excel into your
own program. In this way, you can present your program’s users with a spreadsheet that’s not just like
Excel—it is Excel.

The OLE control is an intrinsic Visual Basic control, and it appears in the toolbox when Visual Basic
first starts. The OLE Control tool is the eleventh tool down on the left in the toolbox in Figure
26.3—you can’t miss it; it’s the one with the letters “OLE” in it.

Figure 26.3 The OLE Control tool.

Add an OLE control to a form now by double-clicking the OLE Control tool. When you do, the OLE
control appears in the form, and a moment later, the Insert Object dialog box appears, as shown in
Figure 26.4.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\898-900.html (1 of 3) [3/14/2001 2:06:33 AM]

javascript:displayWindow('images/26-03.jpg',838,1051)
javascript:displayWindow('images/26-03.jpg',838,1051)

Figure 26.4 The Insert Object dialog box.

Now that you’ve created an OLE control, you can use the Insert Object dialog box to embed or link an
OLE object into that control, and we’ll see how that works in the next two topics in this chapter.

Creating And Embedding An OLE Object At Design Time

When you add an OLE control to a Visual Basic program, the Insert Object dialog box appears, as
shown in Figure 26.4, and you can use this dialog box to create and embed a new OLE object in your
OLE control. Make sure the Create New option is selected, find the name of the OLE server application
you want to use, and click on OK.

For example, we’ve embedded a new Microsoft Excel spreadsheet in the OLE control we’ve added to a
form at design time in Figure 26.5. This spreadsheet is activated for in-place editing by default; to close
the object, click the form itself outside the OLE control.

Figure 26.5 Embedding an Excel spreadsheet at design time.

Linking Or Embedding An Existing Document At Design Time

When you add an OLE control to a form, the Insert Object dialog box appears in order to allow you to
insert an OLE object into the new control. As we saw in the previous topic, you can create a new OLE
object with the Insert Object dialog box. However, you can also embed or link to an existing file. To do
so, click the Create From File option button in the Insert Object dialog box.

When you select a file by typing its path and name into the File text box or by using the Browse button,
and then click on OK, that file is embedded as an OLE object in the OLE control. Embedding an
existing file this way is handy if you’ve already got a file you want to display and work with in your
program, and it saves you the time of creating the file over again from scratch in a new OLE object.

You can also link an OLE object to an OLE control using the Insert Object dialog box. To do that, click
the box labeled Link In The Insert Object Dialog, then select the file as we did before to embed an
object.

Autosizing An OLE Control

After you’ve added an OLE control to a form, you can specify how you want that control to handle
OLE object insertions: for example, should the control resize itself when an OLE object is inserted in it
or not? You can specify how the control should handle object insertions with the SizeMode property.

Here are the possible values for the SizeMode property:

• vbOLESizeClip—0 (the default); Clip. The object is displayed in actual size. If the object is
larger than the OLE control, its image is clipped by the control’s borders.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\898-900.html (2 of 3) [3/14/2001 2:06:33 AM]

javascript:displayWindow('images/26-04.jpg',446,269)
javascript:displayWindow('images/26-04.jpg',446,269)
javascript:displayWindow('images/26-05.jpg',774,480)
javascript:displayWindow('images/26-05.jpg',774,480)

• vbOLESizeStretch—1; Stretch. The object’s image is sized to fill the OLE control. (Note that
the image may not maintain the original proportions of the object.)

• vbOLESizeAutoSize—2; Autosize. The OLE control is resized to display the entire object.

• vbOLESizeZoom—3; Zoom. The object is resized to fill the OLE container control as much
as possible while still maintaining the original proportions of the object.

TIP: While we’re on the subject of customizing the appearance of OLE controls, we might add that you
can remove the border of an OLE control by setting its Border property to None (0).

Determining How An Object Is Displayed In An OLE Container Control

There are two ways of displaying an OLE object in an OLE control: displaying that object’s content
and displaying it as an icon. Throughout this chapter, we’ll use the content display, which is the
default, but you can also display it in icon form using the OLE control’s DisplayType property. Here
are the possible settings for DisplayType:

• vbOLEDisplayContent—0 (the default); Content. When the OLE container control contains
an object, the object’s data is displayed in the control.

• vbOLEDisplayIcon—1; Icon. When the OLE container control contains an object, the
object’s icon is displayed in the control.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\898-900.html (3 of 3) [3/14/2001 2:06:33 AM]

For example, we’ve set the DisplayType property of the OLE control in Figure 26.6 to
vbOLEDisplayIcon so it displays the icon of its OLE object, which in this case is an Excel object.
Note that you cannot open an iconic OLE object for in-place editing, but you can open it for editing in
the OLE server program (in other words, when you double-click the object, the OLE server application
opens in its own window).

Figure 26.6 Displaying an OLE object in iconic form.

TIP: Note that you must set the DisplayType property before you insert an OLE object into the OLE
control because you cannot set the DisplayType property while the OLE control contains an object.

Using The OLE Control’s Pop-Up Menus At Design Time

When you add an OLE control to a form, the Insert Object dialog box appears, and you can insert an
object into the control at that time. However, if you don’t want to insert an object right away, you can
use the control’s pop-up menu later. To open the OLE control’s pop-up menu, just right-click the
control at design time. Here are the primary items in the menu that appears:

• Insert Object—Open the Insert Object dialog box.

• Paste Special—Link to Clipboard object.

• Delete—Delete embedded object.

• Create Link—Create a link to the document in the SourceDoc property.

• Create Embedded Object—Creates an embedded object using the Class or SourceDoc
property.

Note that you can link to or embed a document in the OLE control if you’ve set the control’s
SourceDoc property. You can also create a new embedded object if you’ve set the control’s Class
property; classes specify what code components (formerly called OLE automation servers) are
available. (We’ll see how classes work in the next chapter.)

TIP: You can get a list of the class names available to your application by selecting the Class property in
the Properties window and clicking the arrow button in that property’s entry.

Inserting An OLE Object Into An OLE Control At Runtime

The Testing Department is on the phone again. It’s fine that you’ve been able to embed an OLE object
in an OLE control at design time, but don’t you think it would be great if you could let users embed
their own OLE objects? Maybe, you say.

To let users insert their own OLE objects into an OLE control, you can display the same Insert Object
dialog box that appears at design time when you created the OLE control, and you use the control’s
InsertObjDlg method to do that (this method takes no parameters).

Let’s see an example. Add an OLE control, OLE1, to a form now, and click Cancel when the Insert

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\900-907.html (1 of 4) [3/14/2001 2:06:39 AM]

javascript:displayWindow('images/26-06.jpg',320,240)
javascript:displayWindow('images/26-06.jpg',320,240)

Object dialog box appears. Set the OLE control’s SizeMode property to VbOLESizeAutoSize (note
that when you set an OLE control’s SizeMode property to VbOLESizeAutoSize, the OLE server sets
the size of the OLE object, so the size of the OLE control, OLE1, will probably change when the
object is inserted). Finally, add an Insert menu to the form with one item in it: Insert Object.

When users click the Insert Object menu item, they want to insert an OLE object in OLE1, and we can
let them create and embed a new object, embed an existing file, or embed a link to an existing file with
the InsertObjDlg method. We do so like this:

Private Sub InsertObject_Click()
 OLE1.InsertObjDlg
...
End Sub

When we execute this method, InsertObjDlg, the program displays the Insert Object dialog box, which
appears in Figure 26.4. Using this dialog box, the user can embed new objects, existing files, or link to
existing files. In fact, that’s all the code we need—when the InsertObjDlg method finishes, it inserts
the new OLE object in the OLE control.

We can do one more thing here—we can check to make sure the OLE insertion operation was
completed successfully. To do that, we’ll use the OLE control’s OLEType property to check if there’s
an OLE object in OLE1. This property can take the values vbOLELinked, vbOLEEmbedded, or
vbOLENone. Here, we check that property, and if it’s set to vbOLENone, we indicate to the user that
there was an error:

Private Sub InsertObject_Click()
 OLE1.InsertObjDlg
 If OLE1.OLEType = vbOLENone Then
 MsgBox "OLE operation failed."
 End If
End Sub

Using this code allows us to insert OLE objects like the Excel spreadsheet you see in our OLE control
in Figure 26.7. Here, when the object is first inserted, it’s opened for in-place editing by default.

Figure 26.7 Inserting an OLE object into a program.

TIP: The Insert Object dialog box only lets the user perform the actions you’ve allowed with the
OLETypeAllowed property; this property can be set to Linked (0), Embedded (1), or Either (2).

There’s a problem here, however. Now that we’ve inserted a new OLE object and activated it, how do
we deactivate it? There are no Exit items in the Excel menu system that’s taken over our program’s
menu system. Usually you deactivate an OLE object by clicking the form around the OLE control, and
we’ll see how that works in the next topic.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\900-907.html (2 of 4) [3/14/2001 2:06:39 AM]

javascript:displayWindow('images/26-07.jpg',320,187)
javascript:displayWindow('images/26-07.jpg',320,187)

The code for this example so far, insertole.frm version 1, appears in Listing 26.1 (version 2 will also
support a Paste Special menu item). (The final version of this code, version 3, is located in the insertole
folder on this book’s accompanying CD-ROM.)

Listing 26.1 insertole.frm version 1

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 2115
 ClientLeft = 165
 ClientTop = 735
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 2115
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.OLE OLE1
 Height = 1095
 Left = 840
 SizeMode = 2 'AutoSize
 TabIndex = 0
 Top = 360
 Width = 3015
 End
 Begin VB.Menu File
 Caption = "File"
 End
 Begin VB.Menu Insert
 Caption = "Insert"
 Begin VB.Menu InsertObject
 Caption = "Insert object"
 End
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub InsertObject_Click()
 OLE1.InsertObjDlg
 If OLE1.OLEType = vbOLENone Then
 MsgBox "OLE operation failed."
 End If

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\900-907.html (3 of 4) [3/14/2001 2:06:39 AM]

End Sub

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\900-907.html (4 of 4) [3/14/2001 2:06:39 AM]

Deactivating OLE Objects

You’ve inserted and activated a new OLE object in an OLE control. However, there doesn’t seem to be
any way to deactivate the object now—the OLE server’s menus have taken over your program’s menu
system, and there’s no Exit item. How do you close the OLE object?

Usually you click the form around an OLE object to deactivate that object. Deactivating an OLE object
is easy: you just set its AppIsRunning property to False. You can also use the OLE control’s Close
method to do the same thing.

As an example, we add this code to the oleinsert program we developed in the previous topic, allowing
the user to deactivate OLE objects by clicking the form around the OLE control:

Private Sub Form_Click()
 OLE1.AppIsRunning = False
End Sub

Now the user can close an open OLE object just by clicking the form around the object.

Using Paste Special To Insert A Selected Part Of A Document Into An OLE Control

Besides using the InsertObjDlg method we saw two topics ago, you can also insert OLE objects using
the Paste Special menu item in most OLE container programs. Besides embedding or linking to an
entire document, Paste Special allows you to link or embed just the part of that document you want.

Users select the part of the document they want to embed or link to in the OLE server application,
select the Copy item in that application’s Edit menu, and then select Paste Special in your container
program to paste the part of the document they’ve selected into an OLE control. You support Paste
Special with the OLE control’s PasteSpecialDlg method (this method takes no parameters).

Let’s see an example. Here, we add a Paste Special menu item to the Insert menu in the oleinsert
example we developed two topics ago (see Listing 26.1). When users click that menu item, they’ve
made a selection in an OLE server program, and we should paste that selection into our OLE control,
OLE1. For this example, we select (using the mouse) a range of cells in an Excel spreadsheet, as
shown in Figure 26.8, and copy them using Excel’s Copy menu item. (You must also have saved the
Excel document you’re working with to disk so there is an actual document to which to link.)

Figure 26.8 Selecting and copying a range of cells in Microsoft Excel.

In the Paste Special event handler in our oleinsert example, then, we first check to make sure there’s
something to paste with the OLE control’s PasteOK property; if True, we can paste an OLE object:

Private Sub PasteSpecial_Click()
 If OLE1.PasteOK Then
...

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\907-912.html (1 of 4) [3/14/2001 2:06:53 AM]

javascript:displayWindow('images/26-08.jpg',600,411)
javascript:displayWindow('images/26-08.jpg',600,411)

To get the object to paste, we use PasteSpecialDlg:

Private Sub PasteSpecial_Click()
 If OLE1.PasteOK Then
 OLE1.PasteSpecialDlg
 End If
...

The Paste Special dialog box appears at this point, indicating that we can paste an Excel object (see
Figure 26.9). We can paste this object as an embedded object if we click the Paste option button, or as a
link if we click the Paste Link option button. Here, we click Paste Link and click on OK. This pastes
the new OLE link in our OLE control, OLE1, as shown in Figure 26.10.

Figure 26.9 The Paste Special dialog box.

Figure 26.10 Inserting a link to part of a document.

We can do one more thing here—we can check to make sure the OLE paste operation was completed
successfully. To do that, we’ll use the OLE control’s OLEType property to check if there’s an OLE
object in OLE1. This property can take the values vbOLELinked, vbOLEEmbedded, or
vbOLENone. Here, we check that property, and if it’s set to vbOLENone, we indicate to the user that
there was an error:

Private Sub PasteSpecial_Click()
 If OLE1.PasteOK Then
 OLE1.PasteSpecialDlg
 End If
 If OLE1.OLEType = vbOLENone Then
 MsgBox "OLE operation failed."
 End If

End Sub

That’s it—the new version of this program, oleinsert.frm version 2, appears in Listing 26.2. (The final
version, Version 3—which is located in the insertole folder on this book’s accompanying
CD-ROM—will let the user activate OLE objects from a menu.)

Listing 26.2 insertole.frm version 2

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\907-912.html (2 of 4) [3/14/2001 2:06:53 AM]

javascript:displayWindow('images/26-09.jpg',446,253)
javascript:displayWindow('images/26-09.jpg',446,253)
javascript:displayWindow('images/26-10.jpg',320,187)
javascript:displayWindow('images/26-10.jpg',320,187)

 ClientHeight = 2115
 ClientLeft = 165
 ClientTop = 735
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 2115
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.OLE OLE1
 Height = 1095
 Left = 840
 SizeMode = 2 'AutoSize
 TabIndex = 0
 Top = 360
 Width = 3015
 End
 Begin VB.Menu File
 Caption = "File"
 End
 Begin VB.Menu Insert
 Caption = "Insert"
 Begin VB.Menu InsertObject
 Caption = "Insert object"
 End
 Begin VB.Menu PasteSpecial
 Caption = "Paste special"
 End
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Form_Click()
 OLE1.AppIsRunning = False
End Sub

Private Sub InsertObject_Click()
 OLE1.InsertObjDlg
 If OLE1.OLEType = vbOLENone Then
 MsgBox "OLE operation failed."
 End If
End Sub

Private Sub PasteSpecial_Click()

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\907-912.html (3 of 4) [3/14/2001 2:06:53 AM]

 If OLE1.PasteOK Then
 OLE1.PasteSpecialDlg
 End If
 If OLE1.OLEType = vbOLENone Then
 MsgBox "OLE operation failed."
 End If

End Sub

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\907-912.html (4 of 4) [3/14/2001 2:06:53 AM]

How To Activate The OLE Objects In Your Program

You can set the conditions under which an OLE object is activated using the AutoActivate property.
Here are the possible values for that property (we’ll stick with vbOLEActivateDoubleclick, the
default, in this chapter):

• vbOLEActivateManual—0; Manual. The object isn’t automatically activated. You can
activate an object in code using the DoVerb method.

• vbOLEActivateGetFocus—1; Focus. If the OLE container control contains an object that
supports single-click activation, the application that provides the object is activated when the
OLE container control receives the focus.

• vbOLEActivateDoubleclick—2 (the default); Double-click. If the OLE container control
contains an object, the application that provides the object is activated when the user
double-clicks the OLE container control or presses Enter when the control has the focus.

• vbOLEActivateAuto—3; Automatic. If the OLE container control contains an object, the
application that provides the object is activated based on the object’s normal method of
activation either when the control receives the focus or when the user double-clicks the control.

For example, if you leave the OLE control’s AutoActivate property set to
vbOLEActivateDoubleclick, the object is activated when the user double-clicks it. In fact, what really
happens is that the OLE object primary verb is executed, and that verb is almost always a command to
open the object for in-place editing. (For a list of the OLE verbs, see “Activating OLE Objects From
Code” later in this chapter.) What that means in practice is that when you double-click an OLE object
in a Visual Basic OLE control, the usual response is that the OLE object is opened for in-place editing.

What if you don’t want to edit the control in place? What if you prefer to launch the OLE server
application in a separate window and work with the object there? In that case, you want to execute the
object’s Open verb, not its Edit verb. To let the user use all the OLE verbs the object supports, you
enable its OLE verb pop-up menu, and we’ll see how to do that in the next topic.

Activating OLE Objects With A Pop-Up Menu That Lists All OLE Verbs

To let the user select from among all the OLE verbs an object is capable of supporting, you set the
AutoVerbMenu to True. When this property is True (the default), and the user right-clicks an inactive
OLE object, a pop-up menu appears listing the OLE verbs the object supports.

For example, when you right-click an inactive Excel object in the OLE container example we’ve
developed in the last few topics, a pop-up menu appears, displaying the possible OLE verbs you can us
(see Figure 26.11). Selecting a verb in the pop-up menu executes that verb; here, the Edit verb opens
the OLE object for in-place editing, and the Open verb launches Excel and opens the OLE object in
Excel.

Figure 26.11 Pop-up menu listing the OLE verbs an Excel OLE object supports.

WARNING! When the AutoVerbMenu property is True, Click events and MouseDown events don’t

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\912-915.html (1 of 3) [3/14/2001 2:06:57 AM]

javascript:displayWindow('images/26-11.jpg',320,187)
javascript:displayWindow('images/26-11.jpg',320,187)

occur when the OLE container control is clicked with the right mouse button.

Activating OLE Objects From Code

In the previous few topics, we’ve seen how to add an OLE object to an OLE control and how to
deactivate it. In fact, we’ve even seen how the object is activated when the user double-clicks it. But
how can we activate an OLE object in code? To do that, you use the OLE control’s DoVerb method:

OLEControl.DoVerb ([verb])

Here are the possible values for the verb argument—an OLE object’s primary verb is considered its
default verb, and it usually opens the object for in-place editing:

• vbOLEPrimary—0; the default action for the object.

• vbOLEShow—1; activates the object for editing. If the application that created the object
supports in-place activation, the object is activated within the OLE container control.

• vbOLEOpen—2; opens the object in a separate application window. If the application that
created the object supports in-place activation, the object is activated in its own window.

• vbOLEHide—3; for embedded objects, hides the application that created the object.

• vbOLEUIActivate—4; if the object supports in-place activation, activates the object for
in-place activation and shows any user interface tools. If the object doesn’t support in-place
activation, the object doesn’t activate and an error occurs.

• vbOLEInPlaceActivate—5; if the user moves the focus to the OLE container control, creates
a window for the object and prepares the object to be edited. An error occurs if the object doesn’t
support activation on a single mouse click.

• vbOLEDiscardUndoState—6; used when the object is activated for editing to discard all
record of changes that the object’s application can undo.

Let’s see an example. Here, we add a new item, Activate Object, to the File menu in the oleinsert
example we’ve developed over the previous few topics. If the user clicks this item, we want to activate
the OLE object in the OLE1 control, and we’ll do that by executing its primary verb:

Private Sub ActivateObject_Click()
 OLE1.DoVerb 0
End Sub

For example, if there’s an inactive Excel spreadsheet in the OLE control, selecting the Activate Object
menu item will open it for in-place editing. The final code for this example is located in the oleinsert
folder on this book’s accompanying CD-ROM.

Is An Object Linked Or Embedded?

You can use an OLE control’s OLEType property to determine how if an OLE object is linked or
embedded. If the object is linked, OLEType will be set to Linked (0). If the object is embedded,
OLEType will be set to Embedded (1).

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\912-915.html (2 of 3) [3/14/2001 2:06:57 AM]

Handling Multiple OLE Objects

So far, we’ve only dealt with a single OLE object in our example program, oleinsert. However, when
you start working with multiple OLE controls in a program, there are some issues that you might not
think of at first. For example, if you have two OLE controls in a form, and the user selects your
program’s Insert Object menu item, which control do you insert the new OLE object into?

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\912-915.html (3 of 3) [3/14/2001 2:06:57 AM]

You usually handle this problem by checking to see which control is the active control—that is, the
control with the focus—in the program. In this way, the user clicks a control to give it the focus and
uses the Insert Object menu item. Then you can use the Visual Basic form ActiveControl property to
see which control to use.

Let’s see an example. Here, we’ll create a new program, olemultiple, with two OLE controls, OLE1
and OLE2. We’ll develop this program over the next few topics to handle multiple OLE objects and
even load new OLE controls in if the user wants to work with more than two objects at once.

For now, add two OLE controls, OLE1 and OLE2 (setting their SizeMode properties to
VbOLESizeAutoSize), to a new program, olemultiple. When the Insert Object dialog box comes up
for each control, just click Cancel to make sure we don’t insert any OLE objects before runtime. Add
two menus as well: a File menu with the item Activate Object and an Insert menu with two items,
Insert Object and Paste Special.

When users select the Activate Object menu item, they want to activate the OLE object with the focus,
and we can do that with the OLE control’s DoVerb method. To determine which control to activate, we
use the form’s ActiveControl property. In fact, we can even make sure that the active control is really
an OLE control by checking its type using the TypeOf keyword:

Private Sub ActivateObject_Click()
 If TypeOf ActiveControl Is OLE Then
...
End Sub

If the control with the focus is an OLE control, we activate the object in that control, executing its
primary verb:

Private Sub ActivateObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.DoVerb 0
 End If
End Sub

In the same way, we can insert a new OLE object into the OLE control with the focus using the
InsertObjDlg method when the user clicks the Insert Object menu item:

Private Sub InsertObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.InsertObjDlg
 If ActiveControl.OLEType = None Then
 MsgBox "OLE operation failed."
 End If
 End If
End Sub

And we can perform Paste Special operations on the OLE control with the focus when the user selects

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\915-918.html (1 of 3) [3/14/2001 2:06:59 AM]

the Paste Special menu item:

Private Sub PasteSpecial_Click()
 If TypeOf ActiveControl Is OLE Then
 If ActiveControl.PasteOK Then
 ActiveControl.PasteSpecialDlg
 End If
 If ActiveControl.OLEType = None Then
 MsgBox "OLE operation failed."
 End If
 End If
End Sub

In fact, we can even deactivate our OLE objects when the user clicks the form outside any OLE control
with the AppIsRunning property:

Private Sub Form_Click()
 OLE1.AppIsRunning = False
 OLE2.AppIsRunning = False
End Sub

Note that this last subroutine contains some awkward code: we need to address each OLE control by
name (what if we had 50 OLE controls?), and addressing each control by name precludes the
possibility of loading in new OLE controls at runtime (you need a control array for that). We’ll look at
these two issues in the next topic.

Using OLE Control Arrays To Handle Multiple OLE Objects

When you’ve got a number of OLE objects to work with in a program, it helps to store them in an OLE
control array because you can address those objects using an array index instead of by name, and that
allows you to loop over them. Let’s see an example. Here, we will modify the olemultiple example we
started in the previous topic to use an array of OLE controls instead of individual OLE controls. As the
program stands, we have to address each OLE control by name like this, where we deactivate any
active objects when the user clicks the form:

Private Sub Form_Click()
 OLE1.AppIsRunning = False
 OLE2.AppIsRunning = False
End Sub

To install the OLE control array in the olemultiple example, delete the two OLE controls already there,
OLE1 and OLE2. Add two OLE controls named OLEControls now, answering Yes when Visual
Basic asks if you want to create a control array. Set these new controls’ SizeMode properties to
AutoSize. Because we’ll load new OLE controls into this program under user control in the next topic,
we keep track of the total number of OLE controls in an integer named intTotalOLEControls:

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\915-918.html (2 of 3) [3/14/2001 2:06:59 AM]

Dim intTotalOLEControls As Integer

And we set intTotalOLEControls to 2 when we start the program:

Private Sub Form_Load()
 intTotalOLEControls = 2
End Sub

Now when the user clicks the form to deactivate any running OLE objects, we can simply loop over the
OLE controls in the OLEControls array:

Private Sub Form_Click()
 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To intTotalOLEControls - 1
 OLEControls(intLoopIndex).AppIsRunning = False
 Next intLoopIndex
End Sub

Now we’re able to insert two OLE objects into the olemultiple program, as shown in Figure 26.12.
However, standard OLE container programs should be able to load new OLE controls on demand to
handle additional objects as the user requires, and we’ll see how to do that in the next topic.

Figure 26.12 Inserting multiple OLE objects into a program.

The code for this example, olemultiple.frm version 1, appears in Listing 26.3 (version 2 will let the user
load additional OLE controls as required). (Version 3, the final version of this example, is located in
the olemultiple folder on this book’s accompanying CD-ROM.)

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\915-918.html (3 of 3) [3/14/2001 2:06:59 AM]

javascript:displayWindow('images/26-12.jpg',320,247)
javascript:displayWindow('images/26-12.jpg',320,247)

Listing 26.3 olemultiple.frm version 1

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 3015
 ClientLeft = 165
 ClientTop = 735
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 3015
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.OLE OLEControls
 Height = 1215
 Index = 1
 Left = 840
 SizeMode = 2 'AutoSize
 TabIndex = 1
 Top = 1680
 Width = 3015
 End
 Begin VB.OLE OLEControls
 Height = 1215
 Index = 0
 Left = 840
 SizeMode = 2 'AutoSize
 TabIndex = 0
 Top = 240
 Width = 3015
 End
 Begin VB.Menu File
 Caption = "File"
 Begin VB.Menu ActivateObject
 Caption = "Activate object"
 End
 Begin VB.Menu CreateNewOLEControl
 Caption = "Create new OLE control"
 End
 End
 Begin VB.Menu Insert
 Caption = "Insert"
 Begin VB.Menu InsertObject
 Caption = "Insert object"
 End

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\918-922.html (1 of 4) [3/14/2001 2:07:12 AM]

 Begin VB.Menu PasteSpecial
 Caption = "Paste special"
 End
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim intTotalOLEControls As Integer
Dim intXOffset, intYOffset As Integer

Private Sub ActivateObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.DoVerb 0
 End If
End Sub

Private Sub Form_Load()
 intTotalOLEControls = 2
End Sub

Private Sub InsertObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.InsertObjDlg
 If ActiveControl.OLEType = None Then
 MsgBox "OLE operation failed."
 End If
 End If
End Sub

Private Sub PasteSpecial_Click()
 If TypeOf ActiveControl Is OLE Then
 If ActiveControl.PasteOK Then
 ActiveControl.PasteSpecialDlg
 End If
 If ActiveControl.OLEType = None Then
 MsgBox "OLE operation failed."
 End If
 End If
End Sub

Private Sub Form_Click()
 Dim intLoopIndex As Integer

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\918-922.html (2 of 4) [3/14/2001 2:07:12 AM]

 For intLoopIndex = 0 To intTotalOLEControls - 1
 OLEControls(intLoopIndex).AppIsRunning = False
 OLEControls(intLoopIndex).Visible = True
 Next intLoopIndex
End Sub

Loading New OLE Controls At Runtime

The olemultiple example we’ve developed in the previous two topics is designed to handle multiple
OLE objects, but so far we only can handle two such objects because there are only two OLE controls
in the program. OLE container programs, however, may be expected to handle more than two OLE
objects, so we’ll take a look at how to load additional OLE controls as required at runtime.

Let’s see an example. We’ll modify the olemultiple example now to let the user load in multiple OLE
controls as required. To do that, add a new menu item, Create New OLE Control, to that program’s File
menu. When the user selects this item, we start by incrementing the total number of OLE controls,
which we’ve stored in the variable intTotalOLEControls:

Private Sub CreateNewOLEControl_Click()
 intTotalOLEControls = intTotalOLEControls + 1
...

Next, we load a new OLE control, adding it to our array of OLE controls, OLEControls:

Private Sub CreateNewOLEControl_Click()
 intTotalOLEControls = intTotalOLEControls + 1
 Load OLEControls(intTotalOLEControls - 1)
...

Now we position the new OLE control at upper left in the program, make it visible, and let the user
insert an OLE object into it with the InsertObjDlg method:

Private Sub CreateNewOLEControl_Click()
 intTotalOLEControls = intTotalOLEControls + 1

 Load OLEControls(intTotalOLEControls - 1)
 OLEControls(intTotalOLEControls - 1).Move 0, 0
 OLEControls(intTotalOLEControls - 1).Visible = True
 OLEControls(intTotalOLEControls - 1).InsertObjDlg
...

Finally, we can check if the object insertion operation was completed successfully and inform the user
if not:

Private Sub CreateNewOLEControl_Click()
 intTotalOLEControls = intTotalOLEControls + 1

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\918-922.html (3 of 4) [3/14/2001 2:07:12 AM]

 Load OLEControls(intTotalOLEControls - 1)
 OLEControls(intTotalOLEControls - 1).Move 0, 0
 OLEControls(intTotalOLEControls - 1).Visible = True
 OLEControls(intTotalOLEControls - 1).InsertObjDlg

 If OLEControls(intTotalOLEControls - 1).OLEType = None Then
 MsgBox "OLE operation failed."
 End If
End Sub

And that’s it—now we let the user add OLE controls as needed, using the Create New OLE Control
menu item, as you can see in Figure 26.13. As you can also see in Figure 26.13, however, the
placement of our new OLE object is less than optimal. Ideally, of course, the user can specify where in
a container program the new OLE object should go, and we’ll take a look at that in the next topic,
where we let the user drag OLE controls in a form.

Figure 26.13 Loading a new OLE control at runtime.

The code for this example, olemultiple.frm version 2, appears in Listing 26.4. (The final version,
version 3—which is located in the olemultiple folder on this book’s accompanying CD-ROM—will let
the user drag and position OLE controls.)

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\918-922.html (4 of 4) [3/14/2001 2:07:12 AM]

javascript:displayWindow('images/26-13.jpg',320,247)
javascript:displayWindow('images/26-13.jpg',320,247)

Listing 26.4 olemultiple.frm version 2

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 3015
 ClientLeft = 165
 ClientTop = 735
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 3015
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.OLE OLEControls
 Height = 1215
 Index = 1
 Left = 840
 SizeMode = 2 'AutoSize
 TabIndex = 1
 Top = 1680
 Width = 3015
 End
 Begin VB.OLE OLEControls
 Height = 1215
 Index = 0
 Left = 840
 SizeMode = 2 'AutoSize
 TabIndex = 0
 Top = 240
 Width = 3015
 End
 Begin VB.Menu File
 Caption = "File"
 Begin VB.Menu ActivateObject
 Caption = "Activate object"
 End
 Begin VB.Menu CreateNewOLEControl
 Caption = "Create new OLE control"
 End
 End
 Begin VB.Menu Insert
 Caption = "Insert"
 Begin VB.Menu InsertObject
 Caption = "Insert object"
 End
 Begin VB.Menu PasteSpecial

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\922-927.html (1 of 5) [3/14/2001 2:07:19 AM]

 Caption = "Paste special"
 End
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim intTotalOLEControls As Integer
Dim intXOffset, intYOffset As Integer

Private Sub ActivateObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.DoVerb 0
 End If
End Sub

Private Sub CreateNewOLEControl_Click()
 intTotalOLEControls = intTotalOLEControls + 1

 Load OLEControls(intTotalOLEControls - 1)
 OLEControls(intTotalOLEControls - 1).Move 0, 0
 OLEControls(intTotalOLEControls - 1).Visible = True
 OLEControls(intTotalOLEControls - 1).InsertObjDlg

 If OLEControls(intTotalOLEControls - 1).OLEType = None Then
 MsgBox "OLE operation failed."
 End If
End Sub

Private Sub Form_Load()
 intTotalOLEControls = 2
End Sub

Private Sub InsertObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.InsertObjDlg
 If ActiveControl.OLEType = None Then
 MsgBox "OLE operation failed."
 End If
 End If
End Sub

Private Sub PasteSpecial_Click()
 If TypeOf ActiveControl Is OLE Then

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\922-927.html (2 of 5) [3/14/2001 2:07:19 AM]

 If ActiveControl.PasteOK Then
 ActiveControl.PasteSpecialDlg
 End If
 If ActiveControl.OLEType = None Then
 MsgBox "OLE operation failed."
 End If
 End If
End Sub

Private Sub Form_Click()
 Dim intLoopIndex As Integer

 For intLoopIndex = 0 To intTotalOLEControls - 1
 OLEControls(intLoopIndex).AppIsRunning = False
 Next intLoopIndex
End Sub

Dragging OLE Objects In A Form

In most OLE container programs, such as Microsoft Word, users can position OLE objects as they like in
order to create a composite document. To let users position OLE objects in a form as they would like, we
can support dragging those controls using their Drag method:

OLEControl.Drag action

Here are the possible values for the action argument:

• vbCancel—Cancels the drag operation.

• vbBeginDrag—Starts the drag operation

• vbEndDrag—Ends the drag operation.

Let’s see an example. We’ll modify the olemultiple example program that we’ve developed in the previous
few topics to let the user drag OLE controls. When the user presses the mouse in an OLE control, we will
start the drag operation, and we do that by recording the location of the mouse in two new form-wide
variables, intXOffset and intYOffset:

Dim intXOffset, intYOffset As Integer

Here’s how we set those variables and begin the drag operation when the user presses the mouse button:

Private Sub OLEControls_MouseDown(Index As Integer, Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 intXOffset = X
 intYOffset = Y
 OLEControls(Index).Drag vbBeginDrag
End Sub

Now when the user drags the control to a new location in the form, we will move the control to that new

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\922-927.html (3 of 5) [3/14/2001 2:07:19 AM]

location using the form’s DragDrop event handler:

Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)
 Source.Move X - intXOffset, Y - intYOffset
End Sub

If the user doesn’t move the control far enough, however, the control itself gets a DragDrop event when
the user drops it, because Visual Basic is assuming the user is dropping the control on top of itself. To
handle that case, we set up a DragDrop event handler for the OLE control itself, convert the coordinates
we are passed in that event handler from coordinates local to the OLE control to coordinates based on the
form’s client area, and move the control to its new location:

Private Sub OLEControls_DragDrop(Index As Integer, Source As Control, _
 X As Single, Y As Single)
 Source.Move X + OLEControls(Index).Left - intXOffset, Y + _
 OLEControls(Index).Top - intYOffset
End Sub

And that’s it—now the user can drag and drop the OLE controls in our olemultiple example, as shown in
Figure 26.14. The final code for this example is located in the olemultiple folder on this book’s
accompanying CD-ROM.

Figure 26.14 Letting the user drag OLE controls to position them.

Deleting OLE Objects

Besides adding OLE objects, OLE container programs should also allow the user to delete those objects.
You can delete an OLE object in an OLE control with the control’s Delete method (this method takes no
parameters). Let’s see an example. Here, we add code to a menu item, Delete Object, to delete an OLE
object in the currently active OLE control. First, we check to see if the type of control that’s currently
active (that is, has the focus) is an OLE control:

Private Sub DeleteObject_Click()
 If TypeOf ActiveControl Is OLE Then
...
 End If
End Sub

If the active control is an OLE control, we delete the OLE object in that control with the control’s Delete
method:

Private Sub DeleteObject_Click()
 If TypeOf ActiveControl Is OLE Then
 ActiveControl.Delete
 End If

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\922-927.html (4 of 5) [3/14/2001 2:07:19 AM]

javascript:displayWindow('images/26-14.jpg',320,247)
javascript:displayWindow('images/26-14.jpg',320,247)

End Sub

This method deletes the OLE object in the control and does not, as the name of this method might make
you think, delete the control itself.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\922-927.html (5 of 5) [3/14/2001 2:07:19 AM]

Copying And Pasting OLE Objects With The Clipboard

You can copy an OLE object to the Clipboard with an OLE control’s Copy method, and you can paste
an OLE object in the Clipboard to an OLE control with that control’s Paste method. Neither of these
methods takes any parameters. Let’s see an example. Here, we can copy the OLE object in the OLE
control OLE1 when the user clicks a command button, Command1, and paste that object into another
OLE control, OLE2, when the user clicks a second command button, Command2.

When the user clicks Command1, then, we just copy the OLE object in OLE1 to the Clipboard (note
that an OLE object should be running when you copy it to the Clipboard):

Private Sub Command1_Click()
 OLE1.Copy
End Sub

When the user clicks Command2, we should paste the OLE object from the Clipboard to OLE2. First,
we check to make sure there is an object in the Clipboard that the OLE2 control will accept, using that
control’s PasteOK method:

Private Sub Command2_Click()
 If OLE2.PasteOK Then
...
 End If

If it’s okay to paste into OLE2, we use that control’s Paste method to paste the OLE object in the
Clipboard into OLE2:

Private Sub Command2_Click()

 If OLE2.PasteOK Then
 OLE2.Paste
 End If
...

Finally, we check to make sure the paste operation was completed successfully:

End SubPrivate Sub Command2_Click()

 If OLE2.PasteOK Then
 OLE2.Paste
 End If
 If OLE2.OLEType = None Then
 MsgBox "OLE operation failed."
 End If

End Sub

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\927-931.html (1 of 4) [3/14/2001 2:07:26 AM]

Zooming OLE Objects

The Testing Department is on the phone again. The OLE control you’re using to show a picture of the
company’s glorious founder is great, but can’t it be larger?

You can zoom (that is, enlarge or shrink) OLE objects using the SizeMode property of OLE controls.
Here are the possible values for the SizeMode property:

• vbOLESizeClip—0 (the default); Clip. The object is displayed in actual size. If the object is
larger than the OLE control, its image is clipped by the control’s borders.

• vbOLESizeStretch—1; Stretch. The object’s image is sized to fill the OLE control. (Note that
the image may not maintain the original proportions of the object.)

• vbOLESizeAutoSize—2; Autosize. The OLE control is resized to display the entire object.

• vbOLESizeZoom—3; Zoom. The object is resized to fill the OLE container control as much
as possible while still maintaining the original proportions of the object.

Let’s see an example. Add a new OLE control to a form, setting its SizeMode property to
VbOLESizeZoom. Next, we add a button, Command1, with the caption Zoom and add this code to
enlarge OLE1 when the user clicks that button:

Private Sub Command1_Click()
 OLE1.Width = 3 * OLE1.Width
 OLE1.Height = 3 * OLE1.Height
End Sub

That’s all it takes. As an example, we’re zooming the Excel spreadsheet you see in Figure 26.15.

Figure 26.15 Zooming an OLE object.

Saving And Retrieving Embedded Object’s Data

Because an embedded OLE object’s data is stored in your program, you are responsible for storing and
retrieving that data if it’s changed. Otherwise, when a form containing an OLE container control is
closed, any changes to the data associated with that control are lost.

To save updated data from an object to a file, you use the OLE container control’s SaveToFile method.
Once the data has been saved to a file, you can open the file and restore the object with the
ReadFromFile method. Let’s see an example. When the user clicks a button, Command1, we can
open a new file, data.ole, for binary output:

Private Sub Command1_Click ()
 Dim intFileNumber as Integer

 intFileNumber = FreeFile

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\927-931.html (2 of 4) [3/14/2001 2:07:26 AM]

javascript:displayWindow('images/26-15.jpg',471,241)
javascript:displayWindow('images/26-15.jpg',471,241)

 Open "data.ole" For Binary As #intFileNumber
...

Now we can save the OLE object in an OLE control, OLE1, to that file this way using SaveToFile:

Private Sub Command1_Click ()
 Dim intFileNumber as Integer

 intFileNumber = FreeFile
 Open "data.ole" For Binary As #intFileNumber
 OLE1.SaveToFile intFileNumber

 Close #intFileNumber
End Sub

WARNING! If you save multiple OLE objects to a file, you should read them from the file in the same
order you wrote them.

Later, we can read the stored OLE object back to OLE1 with the ReadFromFile method when the user
clicks another button, Command2. First, we open the data.ole file:

Private Sub Command2_Click ()
 Dim intFileNumber as Integer

 intFileNumber = FreeFile
 Open "data.ole" For Binary As #intFileNumber
...

Then we read the OLE object back into OLE1 with the ReadFromFile method:

Private Sub Command2_Click ()
 Dim intFileNumber as Integer

 intFileNumber = FreeFile
 Open "data.ole" For Binary As #intFileNumber
 OLE1.ReadFromFile intFileNumber

 Close #intFileNumber
End Sub

And that’s it—now we’ve stored and retrieved an OLE file to and from disk (which is called persisting
the object).

Handling OLE Object Updated Events

You can determine when an OLE object has been updated with the OLE control’s Updated event.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\927-931.html (3 of 4) [3/14/2001 2:07:26 AM]

Your program is passed a variable named code in the Updated event handler to indicate what operation
updated the OLE object’s data:

Sub OLEobject_Updated (code As Integer)

Here are the possible settings for code:

• vbOLEChanged—0; the object’s data was changed.

• vbOLESaved—1; the object’s data was saved by the application that created the object.

• vbOLEClosed—2; the file containing the linked object’s data was closed by the server
application that created the object.

• vbOLERenamed—3; the file containing the linked object’s data was renamed by the server
application that created the object.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\927-931.html (4 of 4) [3/14/2001 2:07:26 AM]

Disabling In-Place Editing

If you don’t want an OLE control to allow its OLE object to open for in-place editing, you can set the
control’s MiscFlags property. Here are the possible values for that property:

• vbOLEMiscFlagMemStorage—1; causes the control to use memory to store the object while
it’s loaded.

• vbOLEMiscFlagDisableInPlace—2; overrides the control’s default behavior of allowing
in-place activation for objects that support it.

Using vbOLEMiscFlagMemStorage makes data storage operations faster than the default operations
(which store data on disk as a temporary file). This setting can, however, use a lot of memory. If an
object supports in-place activation, you can use the vbOLEMiscFlagDisableInPlace setting to make
the object launch its server in a separate window.

Visual Basic 6 Black Book:OLE

http://24.19.55.56:8080/temp/ch26\931-932.html [3/14/2001 2:07:28 AM]

Chapter 27
Creating Code Components (OLE Automation)
If you need an immediate solution to:

Using A Code Component From A Client Application

Creating An Object From A Class

Using A Code Component’s Properties And Methods

Creating A Code Component

Setting A Code Component’s Project Type: In-Process Or Out-Of-Process

Adding A Property To A Code Component

Adding A Get/Let Property To A Code Component

Adding A Method To A Code Component

Passing Arguments To A Code Component Method

Passing Optional Arguments To A Code Component Method

Testing A Code Component With A Second Instance Of Visual Basic

Creating And Registering An In-Process Code Component

Creating And Registering An Out-Of-Process Code Component

Using The Class Initialize Event

Using The Class Terminate Event

Global Objects: Using Code Components Without Creating An Object

Destroying A Code Component Object

Using Forms From Code Components

Creating Dialog Box Libraries In Code Components

Designing Multithreaded In-Process Components

Designing Multithreaded Out-Of-Process Components

In Depth

You can think of a code component—formerly called OLE automation servers—as a library of objects,
ready to be used by other applications (called client applications). For example, you might have a
terrific routine to sort records that you want to use in a dozen different programs. You can put that
routine in a code component, register it with Windows, and then you’re free to use the routine in that
code component in other programs—just as with an ActiveX control, the other programs can call the
code components methods and properties.

A code component is like an ActiveX control or document that doesn’t create a visual display in a host
application. Code components provide access to methods and properties through code, not a direct
graphical user interface (although code components themselves can support a user interface—for
example, you might have a library of dialog boxes that form a code component).

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\933-936.html (1 of 3) [3/14/2001 2:07:32 AM]

In fact, code components are the third part of the standard ActiveX object set (collectively called
ActiveX components) that Visual Basic supports: ActiveX controls, ActiveX documents, and code
components. You build code components as ActiveX EXEs or ActiveX DLLs, much as you do with
ActiveX controls or documents (the difference is that the DLLs are in-process code components, and
the EXEs are out-of-process code components).

Code Components: Classes And Objects

When you create a code component, you add code in class module(s), and when you register the code
component with Windows, you make the class(es) available to client applications. Those applications,
in turn, can add a reference to your code component and create an object of the class they want to use
with the New, CreateObject, or other Visual Basic instruction (we’ll see in detail how to create objects
later in this chapter). When the client application has an object corresponding to one of your classes, it
can use that class’s properties and methods.

That’s how it works—it’s all about reusing your code. You get an object corresponding to a class in a
code component like this, where we’re creating an object, objCalendar, of the class CalendarClass
from the hypothetical code component named PlannerCodeComponent:

Dim objCalendar As Object
Set objCalendar = CreateObject("PlannerCodeComponent.CalendarClass")
...

Then you can use that object’s properties and methods to give you access to the code in the class,
something like this:

Dim objCalendar As Object
Set objCalendar = CreateObject("PlannerCodeComponent.CalendarClass")

objCalendar.Days = 365 'Use a property
intWorkDays = objCalendar.CalculateWorkDays 'Use a method
...

TIP: In fact, code component objects can themselves contain other objects (called dependent objects),
and you create object variables of those types using the code component object’s methods.

If you’ve created your code component as an ActiveX EXE, that code component is an out-of-process
server and runs separately from the client application; if you’ve created your code component as an
ActiveX DLL, that code component is an in-process server, which means it’ll run as part of the client
application’s process.

There’s even a way to use code components without creating an object. To make it easy to create code
components that can be used with desktop tools like the Microsoft Office Suite, Visual Basic allows
you to label objects in a code component as global, which means they’re part of a global object. In
practice, this means that you don’t have to create an object to use the methods and properties of this
code component—you just add a reference to the code component in the client application, and you can

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\933-936.html (2 of 3) [3/14/2001 2:07:32 AM]

use the component’s properties and methods as though they were part of the client application.

A client application and an in-process component share the same memory space, so calls to the
methods of an in-process code component can use the client’s stack to pass arguments. That’s not
possible for an out-of-process component; there, method arguments must be moved across the memory
boundary between the two processes, which is called marshaling.

Code Components And Threads

When you start working with another application, as code components do, you share threads of
execution with that application in a joint process. As a default, the Microsoft Component Object Model
(COM) deals with this situation by serializing thread operations. That is, the operations are queued and
processed, one at a time, until they all have been completed.

That process is safe, and you don’t have to think about it except for performance issues. In a
multithreading operating environment, serialization protects single-threaded objects from overlapping
client operations. However, serializing single-threaded components also means that operations can be
blocked, and can stay blocked for some time, which can be frustrating (especially when short
operations are blocked by long ones).

Visual Basic has two ways to avoiding blocked calls: multithreading and SingleUse objects.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\933-936.html (3 of 3) [3/14/2001 2:07:32 AM]

Multithreading Code Components

You make in-process and out-of-process code components multithreaded by changing their threading
model. Visual Basic uses its apartment-model threading to ensure thread safety when you’re working with
multiple threads. In apartment-model threading, each thread is like an apartment—all objects created on the
thread work in an apartment, and they are not “aware” of the objects in other apartments. This threading
model also eliminates conflicts when accessing global data from multiple threads by giving each apartment
its own copy of that global data. You can use apartment-model threading without having to eliminate visual
elements such as forms and controls, because all such Visual Basic objects are thread-safe.

You can specify the apartment threading model (instead of the single-threaded model) for in-process code
components to make them multithreaded. To make out-of-process code components multithreaded, you
have two options (both use the apartment thread model): thread pooling and the thread-per-object model.
With thread pooling, you can specify how many threads you want available for your code components, and
those threads are used in a round-robin way (that is, the first object is created on the first thread in the pool
and thread allocation keeps going thread by thread, starting over with the first thread when the others in the
pool are used). If you specify the thread-per-object model, each new object is created with its own thread.

SingleUse Code Components

You can also handle serialization conflicts by creating SingleUse code components, in which every new
object of your code component class creates a new instance of the component. You do this by setting the
class’s Instancing property. The Instancing property indicates how you want your class to interact with
client applications, if at all. Here are the possible values of that property:

• Private—Other applications aren’t allowed access to type library information about the class and
cannot create instances of it. Private objects are only for use within your component.

• PublicNotCreatable—Other applications can use objects of this class only if your component
creates the objects first. Other applications cannot use the CreateObject function or the New
operator to create objects from the class.

• MultiUse—Other applications are allowed to create objects from the class. One instance of your
component can provide any number of objects created in this fashion. An out-of-process component
can supply multiple objects to multiple clients; an in-process component can supply multiple objects
to the client and to any other components in its process.

• GlobalMultiUse—Similar to MultiUse, with one addition: properties and methods of the class can
be invoked as if they were simply global functions. It’s not necessary to explicitly create an instance
of the class first, because one will automatically be created.

• SingleUse—Other applications are allowed to create objects from the class, but every object of this
class that a client creates starts a new instance of your component. Not allowed in ActiveX DLL
projects.

• GlobalSingleUse—Similar to SingleUse, except that properties and methods of the class can be
invoked as if they were simply global functions. Not allowed in ActiveX DLL projects.

Overall, then, the reason you use code components is to make it easy to reuse your code in other
applications, and we’ll see how that works now in the Immediate Solutions section.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\936-940.html (1 of 3) [3/14/2001 2:07:35 AM]

Immediate Solutions

Using A Code Component From A Client Application

The Testing Department is on the phone again. Wouldn’t it be great to use Microsoft Excel as part of your
new program? Maybe, you say. It’s easy, they say, just treat Excel as a code component.

You can treat OLE automation servers like Excel as code components, adding them to your program and
using them as you like. To do that, you add a reference to the code component to your program, create an
object from that code component, then use the properties and methods of that object.

Let’s see an example. Here, we’ll use Microsoft Excel 7 in a Visual Basic program to add 2 and 2 and
display the result in a text box. Start by adding a reference to Excel with the Project|References menu item,
selecting the item labeled Microsoft Excel Object Library, and clicking on OK.

After you’ve added a reference to a code component, you can use the Object browser to take a look at the
properties and methods in that component, as in Figure 27.1, where we are examining the Excel code
library.

Figure 27.1 Using the Object browser to examine the Microsoft Excel code library.

Add a button, Command1, with the caption “Add 2 + 2 using Microsoft Excel” to the program now, as
well as a text box, Text1, where we can display the results of the addition. When the user clicks the button,
we start by creating an object, objExcel, from the Excel library (Excel will stay hidden throughout the
program) using the Visual Basic CreateObject function (for other ways to create an object, see the next
topic):

Private Sub Command1_Click()
 Dim objExcel As Object
 Set objExcel = CreateObject("Excel.Sheet")
...

Now that we have our new object, we can use its properties like this, where we place 2 in both cells (1,1)
and (2,1):

Private Sub Command1_Click()
 Dim objExcel As Object
 Set objExcel = CreateObject("Excel.Sheet")

 objExcel.Cells(1, 1).Value = "2"
 objExcel.Cells(2, 1).Value = "2"
...

To add these values together, we place an Excel formula in the cell beneath these two, cell (3,1) to add
those values:

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\936-940.html (2 of 3) [3/14/2001 2:07:35 AM]

javascript:displayWindow('images/27-01.jpg',774,480)
javascript:displayWindow('images/27-01.jpg',774,480)

Private Sub Command1_Click()
 Dim objExcel As Object
 Set objExcel = CreateObject("Excel.Sheet")

 objExcel.Cells(1, 1).Value = "2"
 objExcel.Cells(2, 1).Value = "2"

 objExcel.Cells(3, 1).Formula = "=R1C1 + R2C1"
...

Finally, we display the resulting sum in the text box in our program, Text1, and quit Excel like this:

Private Sub Command1_Click()
 Dim objExcel As Object
 Set objExcel = CreateObject("Excel.Sheet")

 objExcel.Cells(1, 1).Value = "2"
 objExcel.Cells(2, 1).Value = "2"
 objExcel.Cells(3, 1).Formula = "=R1C1 + R2C1"
 Text1.Text = "Microsoft Excel says: 2 + 2 = " & objExcel.Cells(3, 1)

 objExcel.Application.Quit
End Sub

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\936-940.html (3 of 3) [3/14/2001 2:07:35 AM]

The result appears in Figure 27.2, where we learn that 2 plus 2 equals 4. Congratulations, you’ve
created your first code component client application. The code for this example is located in the
codeclient folder on this book’s accompanying CD-ROM.

Figure 27.2 Using Microsoft Excel as a code component.

Creating An Object From A Class

When you want to create an object from a code component, you first add a reference to that code
component using the Visual Basic Project|References menu item (note that the code component must
be registered with Windows, which most applications will do automatically when installed). Next, you
create that object in code, and there are three ways to create objects from code components in Visual
Basic (we’ll use the CreateObject technique in this chapter):

• Declaring the variable using the New keyword (in statements like Dim, Public, or Private),
which means Visual Basic automatically assigns a new object reference the first time you use the
variable (for example, when you refer to one of its methods or properties). This technique only
works with code components that supply type libraries (as the code components created with
Visual Basic do). These type libraries specify what’s in the code component.

• Assigning a reference to a new object in a Set statement by using the New keyword or
CreateObject function.

• Assigning a reference to a new or existing object in a Set statement by using the GetObject
function.

Let’s see some examples. Here, we’ll assume we’ve already added a reference to the code component
containing the classes we’ll work with. If the code component you’re using supplies a type library, as
the ones built with Visual basic do, you can use the New keyword when you declare the object to create
it. As an example, here we’re creating an object named objSorter of the Sorter class:

Dim objSorter As New Sorter
objSorter.Sort

The object is actually only created when you refer to it for the first time.

Whether or not a code component supplies a type library, you can use the CreateObject function in a
Set statement to create a new object and assign an object reference to an object variable. To use
CreateObject, you pass it the name of the class you want to create an object of. For example, here’s
how we created a new object named objExcel from the Microsoft Excel code component library in the
previous topic, using CreateObject:

Dim objExcel As Object
Set objExcel = CreateObject("Excel.Sheet")

Note the way we specify the class name to create the object from—as Excel.Sheet (that is, as
CodeComponent.Class). Because the code components you create with CreateObject don’t need a

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\940-943.html (1 of 3) [3/14/2001 2:07:56 AM]

javascript:displayWindow('images/27-02.jpg',320,240)
javascript:displayWindow('images/27-02.jpg',320,240)

type library, you must refer to the class you want to use as CodeComponent.Class instead of just by
class, as you can with New.

You can also use the GetObject function to assign a reference to a new class, although it’s usually used
to assign a reference to an existing object. Here’s how you use GetObject:

Set objectvariable = GetObject([pathname] [, class])

Here’s what the arguments of this function mean:

• pathname—The path to an existing file or an empty string. This argument can be omitted.

• class—The name of the class you want to create an object of. If pathname is omitted, then
class is required.

Passing an empty string for the first argument makes GetObject work like CreateObject, creating a
new object of the class whose name is in class. For example, here’s how we create an object of the
class ExampleClass in the code component NewClass using GetObject (once again, we refer to the
class we’re using as CodeComponent.Class):

Set objNewClass = GetObject("", "NewClass.ExampleClass")

Using A Code Component’s Properties And Methods

Now that you’ve created an object from a code component, how do you use its properties and methods?
You access them in the same way you would the properties and methods of intrinsic Visual Basic
objects. For example, we created a client application at the beginning of this chapter that created an
object, objExcel, from the Microsoft Excel library, and then we used that object’s properties as you
would any Visual Basic property—with the dot operator:

Private Sub Command1_Click()
 Dim objExcel As Object
 Set objExcel = CreateObject("Excel.Sheet")

 objExcel.Cells(1, 1).Value = "2"
 objExcel.Cells(2, 1).Value = "2"

 objExcel.Cells(3, 1).Formula = "=R1C1 + R2C1"
 MsgBox "Microsoft Excel says: 2 + 2 = " & objExcel.Cells(3, 1)

 objExcel.Application.Quit
End Sub

Creating A Code Component

The Testing Department is on the phone again. The sorting routine you’ve written is great, but how
about making it available to the rest of the company’s programmers? Sure, you say, I’ll print it out
now. Not that way, they say, create a code component.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\940-943.html (2 of 3) [3/14/2001 2:07:56 AM]

How do you create a code component? There are two types of code components: in-process
components and out-of-process components:

• When you create a code component as an ActiveX DLL, it will run as an in-process
component, in the same process as the client application.

• When you create a code component as an ActiveX EXE, it will run as an out-of-process
component, in a different process as the client application.

And, as it turns out, there are two ways to create each type of code component in Visual Basic. From
the New Project window, you can create an ActiveX DLL or ActiveX EXE by selecting the appropriate
icon and clicking on OK, which creates the files you’ll need. Or you can set the project type using the
Project|Properties menu item in a standard project to convert it to an ActiveX DLL or ActiveX EXE
project.

We’ll take a look at the second way here, because that will give us some insight into how code
components are constructed (to use the shorter method, all you have to do is to click the ActiveX DLL
or ActiveX EXE icon in the New Project window). Create a new standard Visual Basic project now,
and select the Project|Properties menu item, opening the Project Properties dialog box you see in Figure
27.3.

Figure 27.3 The Project Properties dialog box.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\940-943.html (3 of 3) [3/14/2001 2:07:56 AM]

javascript:displayWindow('images/27-03.jpg',418,377)
javascript:displayWindow('images/27-03.jpg',418,377)

In this case, we’ll name the new project NewClass, so just enter that name in the Project Name field
now. In addition, you can’t use a form as a startup object in a code component, so select (None) in the
Startup Object box, as shown in Figure 27.3. We’ll make this example an ActiveX EXE project, so
select that type in the Project Type box, as shown in the figure. Now click on OK to close the Project
Properties window.

TIP: You can use Sub Main as the startup object in a code component, adding code to that procedure if
you wish. For example, you may want to display a form when your code component first loads, in which
case you could do that from Sub Main (although doing so is not recommended for ActiveX DLLs).

Even though we don’t have a startup object now, we still have a form, Form1, in our project (which
you won’t have if you create an ActiveX DLL or EXE project directly from the New Project window),
and you can remove that form in your code component projects as you like. We’ll leave it in the
NewClass project to show how to use forms in code components later in this chapter.

At this point, then, we’ve created a new code component. However, this new code component doesn’t
have any classes in it, so we’ll add one now. To add a class to our code component, we add a class
module. To do that, select the Project|Add Class Module menu item, select the Class Module icon in
the Add Class Module dialog box that appears, and click Open.

This creates a new class module and brings us up to exactly where we’d be if we had used the ActiveX
EXE icon in the New Project window instead of creating this project ourselves. When you save the new
class module in a file, the file will have the extension .cls, for class.

Now set the class module’s Name property to the name you want to use for your new class—we’ll use
ExampleClass here. That’s it—we’ve created a new class. However, there’s not much going on in this
class, so we’ll add a property, NewValue, to the class ExampleClass here. To do that, just add this
code to the class module:

Option Explicit

Public NewValue As Single
...

Declaring a variable as Public in a class module makes it available as a property to client applications,
as we’ll see when we discuss properties later in this chapter. To set the value of our new property to,
say, 1, we add code to the class’s Initialize event, which occurs when the code component is first
loaded:

Option Explicit

Public NewValue As Single

Private Sub Class_Initialize()
 NewValue = 1
End Sub

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\943-946.html (1 of 3) [3/14/2001 2:08:09 AM]

And that’s it—we’ve created a new code component and a new class that supports a property. To make
this component available to client applications, just create its EXE file using the Make NewClass.exe
item in the File menu, and run that EXE file to register the code component with Windows. We’ll see
how to put this new code component to work in the following topics in this chapter.

The code for this example, ExampleClass.cls version 1, appears in Listing 27.1. (The final version,
version 4, is located in the ExampleClass folder on this book’s accompanying CD-ROM.)

Listing 27.1 ExampleClass.cls version 1

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
 Persistable = 0 'NotPersistable
 DataBindingBehavior = 0 'vbNone
 DataSourceBehavior = 0 'vbNone
 MTSTransactionMode = 0 'NotAnMTSObject
END
Attribute VB_Name = "ExampleClass"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public NewValue As Single

Private Sub Class_Initialize()
 NewValue = 1
End Sub

Setting A Code Component’s Project Type: In-Process Or Out-Of-Process

There are two types of code components: in-process components and out-of-process components:

• When you create a code component as an ActiveX DLL, it will run as an in-process
component, in the same process as the client application.

• When you create a code component as an ActiveX EXE, it will run as an out-of-process
component, in a different process as the client application.

There are advantages to both types. For example, an in-process component can run faster, but an
out-of-process component can be self-registering (just run the EXE file to register the component with
Windows).

Adding A Property To A Code Component

The Testing Department is on the phone again. Your new code component’s class is great, by why

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\943-946.html (2 of 3) [3/14/2001 2:08:09 AM]

doesn’t it do anything? How about adding a property to it? Hmm, you think, how does that work?

You can add properties to a class in a code component in two ways: by declaring them as Public
variables or by using Let and Get functions. We’ll take a look at the first technique here and the second
technique in the next topic in this chapter.

The first way of creating properties in a class module is very easy: you just declare the property you
want as a Public variable in the class module’s (General) declarations area. Making a variable public in
a class module makes it a property of that module. Besides declaring variables Public in a class
module, you can also declare them as Private, which means they are not available outside the module,
and as Friend. When you declare variables as Friend variables, they are available to the other objects
in your code component, but not to client applications (in other words, Friend works as a sort of local
Public declaration).

Let’s see an example. In “Creating An Object From A Class” earlier in this chapter, we created a class
named ExampleClass and added a property to that class—NewValue—by simply declaring that
property as a public variable:

Option Explicit

Public NewValue As Single
...

In addition, we initialized the value of that property when the class was first loaded with the Initialize
event:

Option Explicit

Public NewValue As Single

Private Sub Class_Initialize()
 NewValue = 1
End Sub

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\943-946.html (3 of 3) [3/14/2001 2:08:09 AM]

That’s one way of adding a property to a class, but note that client applications have full access to this
property—they can read it and set it anytime and any way they wish. If you want to restrict access to
the values a property can be set to (for example, making sure a Date property only holds legal dates),
use the property Get and Let methods covered in the next topic.

TIP: Setting properties for an out-of-process component can be slow. If your client application sets
many properties and then calls a method, it’s probably better to pass those values to the method directly
rather than setting them as properties.

Adding A Get/Let Property To A Code Component

The Testing Department is on the phone again. Why isn’t your new code component safe?
Programmers are setting your DayOfTheMonth property and then having all kinds of trouble. Well,
you say, they shouldn’t set it to values greater than 31. It’s your job to watch for that, they say.

If you want to have control when client applications set or get the properties in your class’s properties,
you use Get and Let methods to let the client application get or set the property. To set up a property
with Get/Let methods in a class module, open the class module’s code window and select the Add
Procedure item in the Tools menu, opening the Add Procedure dialog box you see in Figure 27.4.
Select the Property option button in the Type box and the Public option button in the Scope box, and
click on OK to close the Add Procedure dialog box. This adds the Get/Let procedures for this property,
and it’s up to you to customize them.

Figure 27.4 The Visual Basic Add Procedure dialog box.

Let’s see an example. In this case, we’ll add a new property, SafeValue, to the class named
ExampleClass that we’ve developed in the previous few topics in this chapter. This new property will
be a Single that can only be set to values greater than 0. To add this new property to ExampleClass,
open that class module’s code window and select the Add Procedure item in the Tools menu. Set this
property’s name to SafeValue, as you see in Figure 27.4, select the Property and Public option buttons,
as also shown in that figure, and click on OK. When you click on OK, Visual Basic adds two new
procedures to the class module for this property:

Public Property Get SafeValue() As Variant

End Property

Public Property Let SafeValue(ByVal vNewValue As Variant)

End Property

When client applications want to get the value in the SafeValue property, the SafeValue Get
procedure is called; when they want to set the value in the SafeValue property, the SafeValue Let
procedure is called.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\946-950.html (1 of 4) [3/14/2001 2:08:12 AM]

javascript:displayWindow('images/27-04.jpg',284,227)
javascript:displayWindow('images/27-04.jpg',284,227)

TIP: In addition to Get/Let procedures, you can even have Set procedures, which you use if your
property is itself an object. This is a relatively advanced topic, worth looking into only if you want to set
up properties that are themselves objects with data members and methods.

Visual Basic has given this new property the default type of Variant, which you can change to the
appropriate type for your property. In this case, we’ll make SafeValue a Single value this way:

Public Property Get SafeValue() As Single

End Property

Public Property Let SafeValue(ByVal vNewValue As Single)

End Property

At this point, we’re ready to add code to support the SafeValue property. For example, we can store the
actual value in this property in an internal variable named, say, sngInternalSafeValue:

Option Explicit

Public NewValue As Single
Private sngInternalSafeValue As Single
...

Now when client applications ask for the value in the SafeValue property, we pass back the value in
sngInternalSafeValue:

Public Property Get SafeValue() As Single
 SafeValue = sngInternalSafeValue
End Property

On the other hand, if client applications try to set the value in SafeValue, we’ll check first to make sure
that value is greater than 0 before storing it in sngInternalSafeValue:

Public Property Let SafeValue(ByVal vNewValue As Single)
 If vNewValue > 0 Then
 sngInternalSafeValue = vNewValue
 End If
End Property

In this way, we can control what values are stored in the properties in code components. The code for
this example, ExampleClass.cls version 2, appears in Listing 27.2. (The final version, version 4, of this
code is located in the ExampleClass folder on this book’s accompanying CD-ROM.)

TIP: Setting properties for an out-of-process component can be slow. If your client application sets
many properties and then calls a method, it’s probably better to pass those values to the method directly

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\946-950.html (2 of 4) [3/14/2001 2:08:12 AM]

rather than setting them as properties.

Listing 27.2 ExampleClass.cls version 2

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
 Persistable = 0 'NotPersistable
 DataBindingBehavior = 0 'vbNone
 DataSourceBehavior = 0 'vbNone
 MTSTransactionMode = 0 'NotAnMTSObject
END
Attribute VB_Name = "ExampleClass"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public NewValue As Single
Private sngInternalSafeValue As Single

Private Sub Class_Initialize()
 NewValue = 1
End Sub

Public Property Get SafeValue() As Single
 SafeValue = sngInternalSafeValue
End Property

Public Property Let SafeValue(ByVal vNewValue As Single)
 If vNewValue > 0 Then
 sngInternalSafeValue = vNewValue
 End If
End Property

Adding A Method To A Code Component

You can add a method to a class in a code component as easily as you add a property. Methods can be
either public subroutines or functions, and you can add them to a class module with the Tools menu’s
Add Procedure item.

Besides declaring procedures Public in a class module, you can also declare them as Private, which
means they are not available outside the module, and as Friend. When you declare procedures as
Friend procedures, they are available to the other objects in your code component, but not to client
applications (that is, Friend works as a sort of local Public declaration).

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\946-950.html (3 of 4) [3/14/2001 2:08:12 AM]

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\946-950.html (4 of 4) [3/14/2001 2:08:12 AM]

Let’s see an example. Here, we’ll add a method to the class named ExampleClass that we’ve been developing
in the previous few topics. This new method, ReturnSaveValue, will return the value currently in the class’s
SafeValue property. To add this method, open the ExampleClass’s code window and select the Tools menu’s
Add Procedure dialog box. Using that dialog box, add a new public function named ReturnSafeValue. When
you close the dialog box by clicking on OK, Visual Basic adds this code to the class module:

Public Function ReturnSafeValue()

End Function

As it stands, this function returns a Variant, so we change that to make it return a value of the same type as the
SafeValue property, which is Single:

Public Function ReturnSafeValue() As Single

End Function

Now we’re ready to write the code for this method, which just returns the value in the SafeValue property,
and that value is stored in the sngInternalSafeValue variable:

Public Function ReturnSafeValue() As Single
 ReturnSafeValue = sngInternalSafeValue
End Function

And that’s all it takes—now we’ve added a new method to the class named ExampleClass.

Passing Arguments To A Code Component Method

You can pass arguments to class methods just as you can to other procedures—just specify an argument list in
the method’s declaration.

Because of marshaling, certain method arguments should be declared ByVal for out-of-process components
and ByRef for in-process components. When you’re declaring methods for objects provided by an
out-of-process component, use ByVal to declare arguments that will contain object references. In addition, if
you expect client applications to pass large strings or Variant arrays to a method, and the method does not
modify the data, declare the parameter ByVal for an out-of-process component, but ByRef for an in-process
component.

Let’s see an example. In this case, we’ll add a method named Addem to the class named ExampleClass that
we’ve developed over the previous few topics. This function will take two integer arguments, add them, and
return their sum.

To add this new function, open ExampleClass’s code window, and select Add Procedure in the Tools menu,
adding a public function named Addem:

Public Function Addem()

End Function

Here, we modify the declaration of the function to indicate that it takes two integers and returns another

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\950-954.html (1 of 4) [3/14/2001 2:08:15 AM]

integer:

Public Function Addem(Operand1 As Integer, Operand2 As Integer) As _
 Integer

End Function

Finally, we add the two arguments passed to us in Addem and return the sum:

Public Function Addem(Operand1 As Integer, Operand2 As Integer) As _
 Integer
 Addem = Operand1 + Operand2
End Function

And that’s all it takes—now we’ve added a new method to ExampleClass, which takes two arguments, adds
them, and returns the result. Our arguments example is a success.

The code for this example, ExampleClass.cls version 3, appears in Listing 27.3. (The final version, version 4,
is located in the ExampleClass folder on this book’s accompanying CD-ROM.)

Listing 27.3 ExampleClass.cls version 3

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
 Persistable = 0 'NotPersistable
 DataBindingBehavior = 0 'vbNone
 DataSourceBehavior = 0 'vbNone
 MTSTransactionMode = 0 'NotAnMTSObject
END
Attribute VB_Name = "ExampleClass"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public NewValue As Single
Private sngInternalSafeValue As Single

Private Sub Class_Initialize()
 NewValue = 1
End Sub

Public Property Get SafeValue() As Single
 SafeValue = sngInternalSafeValue
End Property

Public Property Let SafeValue(ByVal vNewValue As Single)

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\950-954.html (2 of 4) [3/14/2001 2:08:15 AM]

 If vNewValue > 0 Then
 sngInternalSafeValue = vNewValue
 End If
End Property

Public Function ReturnSafeValue() As Single
 ReturnSafeValue = sngInternalSafeValue
End Function

Public Function Addem(Operand1 As Integer, Operand2 As Integer) As Integer
 Addem = Operand1 + Operand2
End Function

Passing Optional Arguments To A Code Component Method

You can set up code component methods to accept optional arguments, just as the Windows calls in Chapter
23 did. To make an argument in an argument list optional, you use the Visual Basic Optional keyword when
declaring a subroutine or function (note that if you declare an argument in an argument list Optional, all
following arguments must be Optional as well).

Let’s see an example. Here, we create a hypothetical code component method, a subroutine named DrawRect,
to draw a rectangle. We pass the width and height to that subroutine, as well as an optional argument to set the
rectangle’s color. If the programmer using DrawRect does not specify a color for the rectangle, we’ll make it
black.

To start, we declare the subroutine, making the color argument optional:

Public Sub DrawRect(intWidth As Integer, intHeight as Integer, Optional_
 lngColor As Long)
...

Now we declare a rectangle from some hypothetical type named RectangleType and set its width and height
from the arguments passed to us:

Public Sub DrawRect(intWidth As Integer, intHeight as Integer, Optional_
 lngColor As Long)
 Dim rectangle as New RectangleType

 rectangle.width = intWidth
 rectangle.height = intHeight
...

We can also make use of the optional color argument—if it was passed to us. You can test if an argument was
passed with the IsMissing function, allowing us to set the rectangle’s color this way if we were passed a color:

Public Sub DrawRect(intWidth As Integer, intHeight as Integer, Optional_
 lngColor As Long)
 Dim rectangle as New RectangleType

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\950-954.html (3 of 4) [3/14/2001 2:08:15 AM]

 rectangle.width = intWidth
 rectangle.height = intHeight

 If Not IsMissing(lngColor) Then
 rectangle.color = lngColor
...

On the other hand, if we were not passed a color value for the rectangle, we use black like this for the default
color:

Public Sub DrawRect(intWidth As Integer, intHeight as Integer, Optional_
 lngColor As Long)
 Dim rectangle as New RectangleType

 rectangle.width = intWidth
 rectangle.height = intHeight

 If Not IsMissing(lngColor) Then
 rectangle.color = lngColor
 Else
 rectangle.color = vbBlack
 End If

End Sub

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\950-954.html (4 of 4) [3/14/2001 2:08:15 AM]

In fact, there’s an easier way to specify a default value—you just append “= DefaultValue” to the argument
in the argument list as in this case, where we make vbBlack the default for the lngColor argument:

Public Sub DrawRect(intWidth As Integer, intHeight As Integer, Optional_
 lngColor As Single = vbBlack)
 Dim rectangle As New RectangleType
...
End Sub

That’s it—now we’ve made use of optional arguments in our class methods.

Testing A Code Component With A Second Instance Of Visual Basic

The Testing Department is on the phone again. Didn’t you test your code component before releasing it?
You say, test it?

You can test a code component while developing it by registering it with Windows temporarily and letting
Visual Basic handle all the details. All you have to do is to open the Project|Properties menu item, click the
Debugging tab, make sure the option button labeled Wait For components To Be Created is selected, click
on OK to close the Properties dialog box, and run the program. This registers your code component with
Windows temporarily and makes it available to client applications until you stop the code component
execution.

How do you make use of the code component you’re testing in a client application? One easy way is to
start a second copy of Visual Basic and run the client program there after adding a reference to the code
component you’re testing. Let’s see an example. Here, we’ll test the NewClass code component that we’ve
developed in the previous few topics in a client application. That project supports a class, ExampleClass,
which has properties and methods, and we’ll put them to use in the client application. Load that code
component into Visual Basic, as well as the client application, after setting the debugging options as
indicated in the previous paragraph.

Now start a second instance of Visual Basic and begin the new client application (a standard EXE project),
which we’ll call ExampleClassApp, by adding a reference to our code component, NewClass, using the
Project|References menu item.

Next, we’ll create an object of the ExampleClass class named, say, objExample (make this object a
form-wide variable by declaring it in the (General) area):

Dim objExample As ExampleClass

When the form loads, we create that object using CreateObject this way; note the way we specify the class
name to create the object from—as NewClass.ExampleClass (that is, as CodeComponent.Class)—when
we use CreateObject:

Private Sub Form_Load()
 Set objExample = CreateObject("NewClass.ExampleClass")
...
End Sub

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\954-957.html (1 of 3) [3/14/2001 2:08:17 AM]

You can also take care of any needed initialization in the Form Load event handler, as in this case, where
we set the new object’s SafeValue property to 3:

Private Sub Form_Load()
 Set objExample = CreateObject("NewClass.ExampleClass")
 objExample.SafeValue = 3
End Sub

There are two properties and two methods in ExampleClass, so we add four command buttons to the client
application, as well as a text box, Text1, to show the results of testing these properties and methods. When
the user clicks Command1, we can read and display the value in the objExample’s NewValue property:

Private Sub Command1_Click()
 Text1.Text = "The NewValue property = " objExample.NewValue
End Sub

When the user clicks Command2, we set the objExample’s SafeValue (which is supported with Get and
Let methods) to 5 and then display the new value:

Private Sub Command2_Click()
 objExample.SafeValue = 5
 Text1.Text = "The SafeValue property was set to 5 and returns: " &_
 objExample.SafeValue
End Sub

We’ll test the ReturnSafeValue method when the user clicks Command3. That method takes no
parameters and returns the value in the SafeValue property:

Private Sub Command3_Click()
 Text1.Text = "The ReturnSafeValue method returns: " & _
 objExample.ReturnSafeValue
End Sub

Finally, when the user clicks Command4, we test the Addem method, which adds two numbers, by adding
2 and 2:

Private Sub Command4_Click()
 Text1.Text = "Adding 2 + 2 with Addem yields: " & _
 objExample.Addem(2, 2)
End Sub

That’s all it takes. Now run the client application we’ve just developed, as shown in Figure 27.5. You can
see the client application running in that figure and testing the ExampleClass’s properties and methods;
behind it is the copy of Visual Basic in which we’ve developed the client application, and behind that is the
copy of Visual Basic in which the code component, NewClass (which contains the ExampleClass class), is
running. Our test is a success. The code for the client application is located in the exampleclassapp folder
on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\954-957.html (2 of 3) [3/14/2001 2:08:17 AM]

Figure 27.5 Testing a code component by running a second copy of Visual Basic.

Creating And Registering An In-Process Code Component

In the previous topic, we showed how to test code components using two copies of Visual Basic—but how
do you create and register the real code component for use in actual client applications? There are two ways
to create the actual code component: one if you’re creating an in-process code component (an ActiveX
DLL), and one if you’re creating an out-of-process code component (an ActiveX EXE). We’ll take a look
at in-process code components here and out-of-process code components in the next topic.

To create the in-process server’s DLL file, select the Make ProjectName.dll item in the Visual Basic File
menu. To register that DLL file with Windows, you use a Windows utility like regsvr32.exe like this:

c:\>c:\windows\system\regsvr32 ProjectName.dll

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\954-957.html (3 of 3) [3/14/2001 2:08:17 AM]

javascript:displayWindow('images/27-05.jpg',579,477)
javascript:displayWindow('images/27-05.jpg',579,477)

You can also let the Package and Deployment Wizard (see Chapter 30) register the DLL file when it’s
installed.

Creating And Registering An Out-Of-Process Code Component

How do you create and register the real code component for use in actual client applications? There are
two ways to create the actual code component: one if you’re creating an in-process code component (an
ActiveX DLL), and one if you’re creating an out-of-process code component (an ActiveX EXE). We
took a look at in-process code components in the previous topic, and we’ll look at out-of-process code
components here.

To create the out-of-process code component’s EXE file, select the Make ProjectName.exe item in the
Visual Basic File menu. How do you register that out-of-process code component with Windows? You
just run the EXE file—that’s all it takes. You code component is now ready to use.

Using The Class Initialize Event

The Initialize event occurs when a client application creates an instance of a class, and you can use this
event to initialize the object that’s being created. No arguments are passed to this event’s handler.
Here’s an example. When we created the class ExampleClass in the NewClass code component earlier
in this chapter, we set up a property named NewValue and initialized it to 1 in the Initialize event
handler like this:

Option Explicit

Public NewValue As Single

Private Sub Class_Initialize()
 NewValue = 1
End Sub

Using The Class Terminate Event

An object’s Terminate event occurs when the object goes out of scope, or when you set it to the
Nothing keyword (see “Destroying A Code Component Object” later in this chapter). You can use this
event to clean up after the object, such as releasing allocated memory or resources.

Here’s an example that you can add to the class ExampleClass in the NewClass code component
developed earlier in this chapter. In this case, we’ll use the Terminate event to display a message box
to the users indicating that the ExampleClass object they’ve created is being terminated:

Private Sub Class_Terminate()
 MsgBox "Terminating now!"
End Sub

WARNING! If you use the Visual Basic End statement in a program, the program is stopped
immediately and you won’t get a Terminate event for any of the program’s objects.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\957-960.html (1 of 3) [3/14/2001 2:08:22 AM]

Global Objects: Using Code Components Without Creating An Object

Sometimes it’s difficult to create objects from code components in client applications, because the
client application doesn’t support coding to let you do so. To handle such cases, Visual Basic supports
GlobalMultiUse code components. After adding one of these code components to a client application,
you don’t need to create an object before using its properties and methods.

Properties and methods of a GlobalMultiUse object (or global object) are added to the global name
space of any project that uses the object. In the client application, then, you can add a reference to the
component, and the names of the global object’s properties and methods will be recognized globally.
You make a code component a GlobalMultiUse object with the Instancing property.

The Instancing property indicates how you want your class to interact with client applications, if at all;
here are the possible values of that property:

• Private—Other applications aren’t allowed access to type library information about the class
and cannot create instances of it. Private objects are only for use within your component.

• PublicNotCreatable—Other applications can use objects of this class only if your component
creates the objects first. Other applications cannot use the CreateObject function or the New
operator to create objects from the class.

• MultiUse—Other applications are allowed to create objects from the class. One instance of
your component can provide any number of objects created in this fashion. An out-of-process
component can supply multiple objects to multiple clients; an in-process component can supply
multiple objects to the client and to any other components in its process.

• GlobalMultiUse—Similar to MultiUse, with one addition: properties and methods of the class
can be invoked as if they were simply global functions. It’s not necessary to explicitly create an
instance of the class first, because one will automatically be created.

• SingleUse—Other applications are allowed to create objects from the class, but every object of
this class that a client creates starts a new instance of your component. Not allowed in ActiveX
DLL projects.

• GlobalSingleUse—Similar to SingleUse, except that properties and methods of the class can
be invoked as if they were simply global functions. Not allowed in ActiveX DLL projects.

WARNING! The properties and methods of a global object only become part of the global name
space when the component is used in other projects. Inside the project where you’ve created the
GlobalMultiUse class, objects created from the class are not automatically added to the global
space.

Here’s an example using a hypothetical nonglobal component named Calendar. When you add a
reference to that class, you usually have to create an object from it and then can use the object’s
properties and methods this way:

Dim objCalendar As New Calendar

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\957-960.html (2 of 3) [3/14/2001 2:08:22 AM]

Private Sub cmdCalculateResult_Click()
 Text1.Text = objCalendar.GetDate
End Sub

On the other hand, if Calendar is a GlobalMultiUse component, you just need to add a
reference to it and then you can use its properties and methods without creating an object:

Private Sub cmdCalculateResult_Click()
 Text1.Text = GetDate
End Sub

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\957-960.html (3 of 3) [3/14/2001 2:08:22 AM]

Destroying A Code Component Object

The Testing Department is on the phone again. The objects created with your new code component are
great, but they seem to use up a lot of memory. How can you free that memory?

There are two ways to destroy an object. It’s destroyed automatically when it goes out of scope. If you
don’t want to wait for that to happen, you can just set its variable using the Visual Basic Nothing
keyword, which destroys the object and releases its memory:

Set objBigObject = Nothing

Using Forms From Code Components

You can show forms from code component classes just as you would in a standard Visual Basic
project—you use the Show method:

FormName.Show [style [, ownerform]]

Here are the arguments for Show:

• style—Integer that determines if the form is modal (vbModal = 1) or modeless (vbModeless =
0). (For more on using modeless forms in in-process code components, see the next topic.)

• ownerform—String that specifies the component that owns the form you want to show (for
instance, you can use the keyword Me here).

Forms that you show from code components can support controls in the normal Visual Basic way.
Let’s see an example. When we created the NewClass code component in the beginning of this chapter,
we left the default form, Form1, in the project. To show that form, we just add a new method,
ShowForm, to the ExampleClass class in NewClass, and we show Form1 in that method:

Public Sub ShowForm()
 Form1.Show
End Sub

In addition, we’ll add a label with the caption “Code Component Form” in Form1. Now in the client
application, we can make use of this new method to show Form1 this way:

Private Sub Command5_Click()
 objExample.ShowForm
End Sub

The result appears in Figure 27.6. Now we’re displaying forms from classes in code components. The
final code for this example is located in the ExampleClass folder on this book’s accompanying
CD-ROM.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\960-964.html (1 of 3) [3/14/2001 2:08:35 AM]

javascript:displayWindow('images/27-06.jpg',448,292)

Figure 27.6 Displaying a form from a code component.

Creating Dialog Box Libraries In Code Components

You can use code components to provide libraries of modal and modeless dialog boxes (for more on
creating dialog boxes, see Chapter 4). There is one consideration, however, that we should address. It
turns out that modeless dialog boxes (that is, dialog boxes that can be open at the same time the user is
working in another form) displayed by in-process code components (ActiveX DLLs) cannot work
unless they can communicate with the client application’s internal message loop. This means that
in-process components can only display modeless dialog boxes in client processes that support such
communication. You can test if the client application supports this communication by checking the
Visual Basic App object’s NonModalAllowed property.

Let’s see an example. Here’s some code that might appear in an in-process code component that
displays a dialog box. If the application supports access to its message loop, we can show the dialog
box, Form1, as modeless by passing the constant vbModeless to the Show method:

Public Sub ShowForm()
 If App.NonModalAllowed Then
 Form1.Show vbModeless
...

Otherwise, you should display the dialog box as modal:

Public Sub ShowForm()
 If App.NonModalAllowed Then
 Form1.Show vbModeless
 Else
 Form1.Show vbModal
 End If
End Sub

Designing Multithreaded In-Process Components

At the beginning of this chapter, we discussed some thread serialization concerns for code components;
in particular, we saw that to avoid blocked threads, you can use multithreaded code components. We’ll
see how that works for in-process components in this topic and take a look at out-of-process
components in the next topic.

To make an in-process code component multithreaded, select the Project|Properties menu item and
click the General tab. For ActiveX DLLs, you can select two options in the Threading Model box:
Single Threaded or Apartment Threaded. Selecting Apartment Threaded makes the in-process code
component multithreaded.

TIP: Set the threading model before you add controls to your project. When you change the threading
model for an existing project, errors will occur if the project uses single-threaded ActiveX controls.
Visual Basic doesn’t allow the use of single-threaded controls in apartment-threaded projects.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\960-964.html (2 of 3) [3/14/2001 2:08:35 AM]

javascript:displayWindow('images/27-06.jpg',448,292)

Designing Multithreaded Out-Of-Process Components

At the beginning of this chapter, we discussed some thread serialization concerns for code components;
in particular, we saw that to avoid blocked threads, you can use multithreaded code components. We
saw how that worked for in-process components in the previous topic. In this topic, we’ll take a look at
out-of-process components.

To make an out-of-process code component multithreaded, select the Project|Properties menu item and
click the General tab. For ActiveX EXEs, you can select two options in the Threading Model box:
Thread Per Object or Thread Pool.

To make the project multithreaded, you can specify that each new object is created on a new thread
with the Thread Per Object option, or you can limit your component to a fixed pool of threads by
setting up a thread pool. A thread pool size of 1 makes the out-of-process code component
single-threaded, whereas a larger thread pool makes the project apartment-threaded.

TIP: Set the threading model before you add controls to your project. When you change the threading
model for an existing project, errors will occur if the project uses single-threaded ActiveX controls.
Visual Basic doesn’t allow the use of single-threaded controls in apartment-threaded projects.

Visual Basic 6 Black Book:Creating Code Components (OLE Automation)

http://24.19.55.56:8080/temp/ch27\960-964.html (3 of 3) [3/14/2001 2:08:35 AM]

Chapter 28
Advanced Form, Control, And Windows Registry
Handling
If you need an immediate solution to:

Passing Controls To Procedures

Passing Control Arrays To Procedures

Determining The Active Control

Determining Control Type At Runtime

Creating/Loading New Controls At Runtime

Changing Control Tab Order

Changing Control Stacking Position With Z-Order

Drag/Drop: Dragging Controls

Drag/Drop: Dropping Controls

Handling “Self-Drops” When Dragging And Dropping

Drag/Drop: Handling DragOver Events

OLE Drag/Drop: Dragging Data

OLE Drag/Drop: Dropping Data

OLE Drag/Drop: Reporting The Drag/Drop Outcome

Using The Lightweight Controls

Passing Forms To Procedures

Determining The Active Form

Using The Form Object’s Controls Collection

Using the Forms Collection

Setting A Form’s Startup Position

Keeping A Form’s Icon Out Of The Windows 95 Taskbar

Handling Keystrokes In A Form Before Controls Read Them

Making A Form Immovable

Showing Modal Forms

Saving Values In The Windows Registry

Getting Values From The Windows Registry

Getting All Registry Settings

Deleting A Registry Setting

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0965-0970.html (1 of 4) [3/14/2001 2:08:50 AM]

In Depth

This is our chapter on advanced form and control techniques—and working with the Windows
Registry. We’ll see many new techniques here, including dragging and dropping controls (and even
how to drag and drop the data in controls, using OLE drag and drop). Programmers are often surprised
when an advanced technique doesn’t work in the same way that a basic technique does in Visual Basic.
For example, a programmer might want to pass a control array to a procedure—and immediately run
into problems because that process doesn’t work the same way as passing a normal array to a
procedure. Here’s how you pass a normal array to a procedure; first, you set up the array this way
where we set up an integer array named intArray:

Private Sub Form_Load()
 Dim intArray(4) As Integer
 intArray(0) = 0
 intArray(1) = 1
 intArray(2) = 2
 intArray(3) = 3
 intArray(4) = 4
...

Then you pass the array to a procedure named, say, ShowValues, by specifying the name of the array
with empty parentheses:

Private Sub Form_Load()
 Dim intArray(4) As Integer
 intArray(0) = 0
 intArray(1) = 1
 intArray(2) = 2
 intArray(3) = 3
 intArray(4) = 4
 ShowValues intArray()
End Sub

In the procedure, you can work with the passed array as a normal array like this:

Private Sub ShowValues(TargetArray() As Integer)
 For Each intValue In TargetArray
 MsgBox intValue
 Next
End Sub

TIP: You can even pass variable-length arrays of parameters to procedures using the ParamArray
keyword.

Extrapolating the preceding technique to control arrays, you might think that you’d pass a control array

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0965-0970.html (2 of 4) [3/14/2001 2:08:50 AM]

to a procedure in the same way. For example, if you had an array of command buttons named
CommandArray, you might think you can pass it to a procedure, SetCaption, like this:

Private Sub Form_Load()
 SetCaption CommandArray()
End Sub

In the SetCaption procedure, you’d want to work with the control array as with a normal array, as in
this case where we change the caption of each button to “Button”:

Private Sub SetCaption(TargetControl() As Control)
 For Each ButtonObject In TargetControl
 ButtonObject.Caption = "Button"
 Next
End Sub

However, it doesn’t work like that—in many ways, control arrays are really treated in Visual Basic like
objects, not normal arrays. What that means here is that you have to pass the control array as an object
(without the parentheses), like this:

Private Sub Form_Load()
 SetCaption CommandArray
End Sub

Then in the procedure, you declare the control array as an Object, not as an array of type Control.
However, you can treat it as an array like this:

Private Sub SetCaption(TargetControl As Object)
 For Each ButtonObject In TargetControl
 ButtonObject.Caption = "Button"
 Next
End Sub

This is the kind of technique we’ll take a look at in this chapter—programming topics that might cause
trouble unless you know the ins and outs of the situation. In addition, we’ll take a look at two other
broad programming areas: dragging and dropping controls, and working with the Windows Registry.

Drag And Drop And OLE Drag And Drop

One of the techniques we’ll take a look at is dragging and dropping controls. We’ve seen this
technique in a few places in the book already, but we’ll make our examination of this topic systematic
in this chapter. We’ll see how to let the user drag and drop controls using the mouse. Users have only
to press the mouse button over a control to start the process, and they can drag and drop controls in our
applications as they like. This ability allows them to customize those applications.

Besides dragging and dropping controls in an application, it’s recently become popular to be able to
drag data between applications. We’ll see how to do that here with OLE drag operations, which will let

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0965-0970.html (3 of 4) [3/14/2001 2:08:50 AM]

us drag data between the controls in our application, or to another application entirely; for example,
we’ll see how to let the user drag text directly from a text box in our program to another text box—or to
a word processor like Microsoft Word.

The Windows Registry

Another popular aspect of Windows programming these days is the Windows Registry, a built-in part
of Windows that provides long-term storage for program settings. For example, you can save the file
names the user has most recently opened in a Most Recently Used (MRU) list at the bottom of the File
menu. You can also store other settings for the program, such as window size and location, and use
them when the program starts again.

That’s it for the overview of what’s in this chapter—now it’s time to turn to the Immediate Solutions
section for advanced form, control, and Windows Registry handling.

Immediate Solutions

Passing Controls To Procedures

One easy way to handle a large number of controls is to set up a procedure that handles the controls in a
generic way and pass the controls to that procedure. How do you pass a control to a procedure? You
just declare it as type Control in the argument list of the procedure you’re passing it to.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0965-0970.html (4 of 4) [3/14/2001 2:08:50 AM]

Let’s see an example. Here, we’ll pass a command button, Command1, to a procedure, SetCaption, to
set that button’s caption to “Button” when the form containing the button first loads:

Private Sub Form_Load()
 SetCaption Command1
End Sub

In the SetCaption procedure, you declare the passed button as type Control:

Private Sub SetCaption(TargetControl As Control)
 TargetControl.Caption = "Button"
End Sub

And that’s it—now we’re passing controls to procedures.

Passing Control Arrays To Procedures

It’s reasonable to think that control arrays are really arrays, but in fact, you sometimes have to treat
them as objects, not arrays (which is why you can create event handlers for control arrays—something
you certainly couldn’t do if they were just Visual Basic arrays). For example, when you want to pass a
control array to a procedure, you pass it as an Object, not an array of type Control.

Let’s see an example. Here, we pass a control array of buttons, CommandArray, to a procedure,
SetCaption (note that you omit the empty parentheses after CommandArray, which you would
include if that array were a normal array and not a control array):

Private Sub Form_Load()
 SetCaption CommandArray
End Sub

Now in SetCaption, we declare the passed array as type Object:

Private Sub SetCaption(TargetControl As Object)

End Sub

Then we can use the passed control array as we would any control array; here we set the caption of
each command button in the array to “Button”:

Private Sub SetCaption(TargetControl As Object)
 For Each ButtonObject In TargetControl
 ButtonObject.Caption = "Button"
 Next
End Sub

That’s it—now we can pass control arrays to procedures.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0970-0974.html (1 of 4) [3/14/2001 2:08:53 AM]

Determining The Active Control

The Testing Department is on the phone again. How about letting the user customize your program by
clicking a control and then selecting a menu item to, say, set the control’s background color? Well, you
say, how do I know which control the user has clicked before using the menu item? Use the
ActiveControl property, they say.

The ActiveControl property of forms indicates which control on the form is currently active. Using
this property, you can determine which control currently has the focus.

TIP: Besides forms, the Screen object also has an ActiveControl property, so if you have a number of
forms, you can determine the active control with the Screen object’s ActiveControl property.

Let’s see an example. In this case, when the user clicks the form, we’ll set the active control’s Caption
property to “Active Control”:

Private Sub Form_Click()
 ActiveControl.Caption = "Active Control"
End Sub

The result of this code appears in Figure 28.1, where we indicate the active control when the user clicks
the form.

Figure 28.1 Indicating the active control in a form.

There’s a problem with this code, however—the form might contain all kinds of controls, some of
which (like text boxes) don’t even have a Caption property. If the user clicks the form when one of
those controls is the active control, an error will result. To fix this potential problem, we can check the
type of the active control before working with it, and we’ll see how to do that in the next topic.

Determining Control Type At Runtime

In the previous topic, we set the caption of the currently active control (that is, the control with the
focus) to “Active Control” when the user clicked the form, but realized there was a problem if the
active control was one that didn’t have a Caption property.

To determine what type of control you’re working with at runtime, you can use TypeOf keyword,
which you can use to determine the type of any object. At first, it seems odd that you might not know
what kind of control you’re working with, but cases like the current one—where we’re using the
control now stored in the form’s ActiveControl property—are very common in Visual Basic
programming.

In the previous topic, we set the caption of the active control when the user clicked the form like this:

Private Sub Form_Click()

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0970-0974.html (2 of 4) [3/14/2001 2:08:53 AM]

javascript:displayWindow('images/28-01.jpg',320,240)
javascript:displayWindow('images/28-01.jpg',320,240)

 ActiveControl.Caption = "Active Control"
End Sub

Now we can add code to check the active control’s type (possible types for Visual Basic controls
include CommandButton, CheckBox, ListBox, OptionButton, HScrollBar, VScrollBar,
ComboBox, Frame, PictureBox, Label, TextBox, and so on) this way, making sure the active control
is a command button before changing its caption:

Private Sub Form_Click()
 If TypeOf ActiveControl Is CommandButton Then
 ActiveControl.Caption = "Active Control"
 End If
End Sub

Creating/Loading New Controls At Runtime

The Testing Department is on the phone again. Your program, SuperDuperDataCrunch, just doesn’t
have enough buttons to please some users. You ask, how’s that again? Let’s add some way to let the
user create new buttons at runtime, they say.

To load new controls at runtime, you must have a control array. This makes a lot of sense, actually,
because you can set up event handlers for the controls in a control array, and a new control just
represents a new index in such an event handler. If you didn’t have a control array, you’d need to set up
an event handler for the new control that named the new control by name—before it existed—which
the Visual Basic compiler couldn’t do.

When you have a control array, you just use the Load statement:

Load object

In this case, object is the new control in the control array. Let’s see an example. Here, we’ll place four
buttons in a form and add a fifth when the user clicks the form. When the user does click the form, we
should add a new button, and we start that process by calculating the index for the new control in the
control array. That new control’s index, which we’ll call intNextIndex, is the index after the current
end of the control array, and we determine that with the Ubound property:

Private Sub Form_Click()
 Dim intNextIndex As Integer

 intNextIndex = CommandArray.UBound + 1
...

Then we use the Load statement to create this new control:

Private Sub Form_Click()
 Dim intNextIndex As Integer

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0970-0974.html (3 of 4) [3/14/2001 2:08:53 AM]

 intNextIndex = CommandArray.UBound + 1
 Load CommandArray(intNextIndex)
...

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0970-0974.html (4 of 4) [3/14/2001 2:08:53 AM]

Controls are originally loaded as invisible (in case you want to work with it off screen first), so we make our new
button visible by setting its Visible property to True:

Private Sub Form_Click()
 Dim intNextIndex As Integer

 intNextIndex = CommandArray.UBound + 1
 Load CommandArray(intNextIndex)
 CommandArray(intNextIndex).Visible = True
...

Now we can treat this new button as any other button; here, we set its caption to “New button” and place it in the
center of the form this way:

Private Sub Form_Click()
 Dim intNextIndex As Integer

 intNextIndex = CommandArray.UBound + 1
 Load CommandArray(intNextIndex)
 CommandArray(intNextIndex).Visible = True
 CommandArray(intNextIndex).Caption = "New button"
 CommandArray(intNextIndex).Move ScaleWidth / 2 - _
 CommandArray(intNextIndex).Width / 2, ScaleHeight / 2 - _
 CommandArray(intNextIndex).Height / 2
End Sub

In addition, we can handle events from the new button in the event handler for the whole button array, because
the index of the control that caused the event is passed to us in that event handler:

Private Sub CommandArray_Click(Index As Integer)
 MsgBox "You clicked button " & Index
End Sub

The result of this code appears in Figure 28.2, where we’ve added a new button by just clicking the form. The
code for this example is located in the loadcontrols folder on this book’s accompanying CD-ROM.

Figure 28.2 Adding a new control to a form at runtime.

Changing Control Tab Order

The Testing Department is calling again. About the keyboard interface you’ve set up for your program,
SuperDuperDataCrunch—can’t you let the user customize the tab order for the controls? Sure, you say, what’s
tab order? They explain, that’s the order in which the focus moves from control to control when the user presses
the Tab button.

Each control that can accept the focus has a TabIndex property, and when the user presses the Tab key, the focus
moves from control to control, following the tab order as set by the control’s TabIndex properties. (The first
control in the tab order has TabIndex = 0.) You can change the tab order at runtime by changing the value in

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0974-0977.html (1 of 3) [3/14/2001 2:09:08 AM]

javascript:displayWindow('images/28-02.jpg',320,240)
javascript:displayWindow('images/28-02.jpg',320,240)

your controls’ TabIndex properties.

Let’s see an example. Here, we add three buttons to a form, Command1, Command2, and Command3, which,
by default, have the TabIndex properties 0, 1, and 2, respectively. To change that tab order when the user clicks
the form, we can use buttons’ TabIndex properties like this, where we reverse the tab order:

Private Sub Form_Click()
 Command1.TabIndex = 2
 Command2.TabIndex = 1
 Command3.TabIndex = 0
End Sub

Changing Control Stacking Position With Z-Order

The Aesthetic Design Department is on the phone. It takes an awfully long time to load and change pictures of
the company’s founders in that large picture box you have in your program: isn’t there a better way?

There is. Instead of loading the images into a picture box when needed, you can place a number of picture boxes
on top of each other and display them one at a time by setting the picture boxes’ Z-order. Z-order is the stacking
order for controls, and you can set controls’ Z-orders with the ZOrder method:

Control.ZOrder position

The position argument is an integer that indicates the position of the control relative to other controls of the same
type. If position is 0 or omitted, Control is placed at the front of the Z-order, on top of the other controls. If
position is 1, Control is placed at the back of the Z-order.

Let’s see an example. Here, we place two picture boxes, Picture1 and Picture2, in a form, with Picture2 on top
of Picture1. When the user clicks the form, we can move Picture1 to the top with the ZOrder method:

Private Sub Form_Click()
 Picture1.ZOrder 0
End Sub

Drag/Drop: Dragging Controls

The Aesthetic Design Department is on the phone again. There are still some customization issues with your
program, SuperDuperDataCrunch. Can’t you let the users drag all the controls and place them where they want?
Hmm, you say, how does that work?

To enable a control for drag operations, make sure its DragMode property is set to Manual (= 0, the default), not
Automatic (= 1); when DragMode is manual, we can handle drag operations from code. When the user presses
the mouse in a control, you can start a drag operation with the Drag method:

Control.Drag action

Here, the action argument can take these values:

• vbCancel—0; cancels the drag operation.

• vbBeginDrag—1; begins dragging the control.

• vbEndDrag—2; ends the drag operation.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0974-0977.html (2 of 3) [3/14/2001 2:09:08 AM]

The user can then drag the control to a new position on the form and release it, causing a DragDrop event in the
form, and you can move the control in that event. Here, the control that’s been dropped is passed in the Source
argument, and the position of the mouse is passed as (X, Y):

Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

Let’s see an example. In this case, we’ll add six text boxes to a form in a control array named Textboxes, and
when the form first loads, we display the text “Drag me” in each text box:

Private Sub Form_Load()
 For Each objText In Textboxes
 objText.Text = "Drag me"
 Next
End Sub

We also add a MouseDown event handler to the text box control array so we can start the dragging operation
when the user presses the mouse button in the control:

Private Sub Textboxes_MouseDown(Index As Integer, Button As Integer, Shift _
 As Integer, X As Single, Y As Single)

End Sub

When the user drops the control, we’ll be given the location of the mouse in the form, but to position the control
correctly, we also need the original position of the mouse in the control. That is, if the user pressed the mouse
button in the middle of the control, we need to move the middle of the control (not the control’s origin, the
upper-left corner) to the new mouse location. Therefore, we need to save the mouse’s original location in the
control when the user presses the mouse button. We’ll save the mouse’s original location in two integers,
intXOffset and intYOffset, making these form-wide variables:

Dim intXOffset, intYOffset As Integer

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0974-0977.html (3 of 3) [3/14/2001 2:09:08 AM]

Here’s how we save those integers and start the drag operation with the Drag method:

Private Sub Textboxes_MouseDown(Index As Integer, Button As Integer, Shift _
 As Integer, X As Single, Y As Single)
 intXOffset = X
 intYOffset = Y
 Textboxes(Index).Drag vbBeginDrag
End Sub

Now the user is dragging the control—and we’ll see how to let the user drop it in the next topic.

Drag/Drop: Dropping Controls

When the user drops a control on a form, you get a DragDrop event:

Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

Here, the control that’s been dropped is passed in the Source argument, and the position of the mouse is passed
as (X, Y). You can use the control’s Move method to move the control to the new position.

Let’s see an example. In the previous topic, we let users drag a text box in a form. When they drop it, we’ll get a
DragDrop event in the form and can move the text box to the new location—after taking into account the
original mouse position in the control with the x and y offsets, intXOffset and intYOffset:

Dim intXOffset, intYOffset As Integer

Private Sub Form_Load()
 For Each objText In Textboxes
 objText.Text = "Drag me"
 Next
End Sub

Private Sub Textboxes_MouseDown(Index As Integer, Button As Integer, Shift _
 As Integer, X As Single, Y As Single)
 intXOffset = X
 intYOffset = Y
 Textboxes(Index).Drag vbBeginDrag
End Sub

Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)
 Source.Move X - intXOffset, Y - intYOffset
End Sub

And that’s all it takes—now you can drag and drop controls in a form, as shown in Figure 28.3.

Figure 28.3 Dragging and dropping controls in a form.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0977-0982.html (1 of 4) [3/14/2001 2:09:13 AM]

javascript:displayWindow('images/28-03.jpg',320,240)
javascript:displayWindow('images/28-03.jpg',320,240)

However, there’s a problem here. When you move a text box to an entirely new location in the form, the
drag/drop operation goes smoothly. However, if you drag the text box just a short distance, that text box jumps
back to its original position when you release it—what’s going on?

Here’s what’s happening: if you drag the text box just a short distance and drop it, Visual Basic thinks you’re
dropping it on itself, and instead of triggering a form DragDrop event, it triggers a DragDrop event for the text
box itself. To complete our drag/drop example, we’ll take care of this “self-drop” problem in the next topic.

The code for this example, dragcontrols.frm version 1, appears in Listing 28.1. (Version 2, which is located in the
dragcontrols folder on this book’s accompanying CD-ROM, will take care of the “self-drop” problem.)

Listing 28.1 dragcontrols.frm version 1

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 3195
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 3195
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.TextBox Textboxes
 Height = 495
 Index = 5
 Left = 1920
 TabIndex = 5
 Top = 1920
 Width = 1215
 End
 Begin VB.TextBox Textboxes
 Height = 495
 Index = 4
 Left = 1920
 TabIndex = 4
 Top = 1200
 Width = 1215
 End
 Begin VB.TextBox Textboxes
 Height = 495
 Index = 3
 Left = 1920
 TabIndex = 3
 Top = 240
 Width = 1215
 End
 Begin VB.TextBox Textboxes
 Height = 495

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0977-0982.html (2 of 4) [3/14/2001 2:09:13 AM]

 Index = 2
 Left = 360
 TabIndex = 2
 Top = 1920
 Width = 1215
 End
 Begin VB.TextBox Textboxes
 Height = 495
 Index = 1
 Left = 360
 TabIndex = 1
 Top = 1080
 Width = 1215
 End
 Begin VB.TextBox Textboxes
 Height = 495
 Index = 0
 Left = 360
 TabIndex = 0
 Top = 240
 Width = 1215
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Dim intXOffset, intYOffset As Integer

Private Sub Form_Load()
 For Each objText In Textboxes
 objText.Text = "Drag me"
 Next
End Sub

Private Sub Textboxes_MouseDown(Index As Integer, Button As Integer,_
 Shift As Integer, X As Single, Y As Single)
 intXOffset = X
 intYOffset = Y
 Textboxes(Index).Drag vbBeginDrag
End Sub

Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)
 Source.Move X - intXOffset, Y - intYOffset
End Sub

Handling “Self-Drops” When Dragging And Dropping

In the previous two topics, we handled drag/drop operations for controls in a form, but there was a problem. If the

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0977-0982.html (3 of 4) [3/14/2001 2:09:13 AM]

user doesn’t move a control very far, we get a DragDrop event for the control itself, because Visual Basic acts as
though the user is dropping the control on itself, not on the form. We can handle this case by adding a DragDrop
event handler to the control itself.

Let’s see how this works in an example. We’ll add a DragDrop event handler for the text boxes in the previous
example, the dragcontrols project:

Dim intXOffset, intYOffset As Integer
...
Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)
 Source.Move X - intXOffset, Y - intYOffset
End Sub

Private Sub TextBoxes_DragDrop(Index As Integer, Source As Control, X As_
 Single, Y As Single)
...
End Sub

Now when the user drags a control a little way and drops it on top of itself, we can move the control to its new
position. Note that we are passed mouse coordinates local to the control in the DragDrop event and have to
translate them to form-based coordinates to use the Move method:

Dim intXOffset, intYOffset As Integer
...
Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)
 Source.Move X - intXOffset, Y - intYOffset
End Sub

Private Sub TextBoxes_DragDrop(Index As Integer, Source As Control, X As_
 Single, Y As Single)
 Source.Move X + Textboxes(Index).Left - intXOffset, Y + _
 Textboxes(Index).Top - intYOffset
End Sub

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0977-0982.html (4 of 4) [3/14/2001 2:09:13 AM]

That’s all it takes—now users can move the text boxes in the dragcontrols example around as they like. The
code for this example is located in the dragcontrols folder on this book’s accompanying CD-ROM.

Drag/Drop: Handling DragOver Events

When the user drags a control over a form or control, a DragOver event is triggered like this:

Sub Form_DragOver(source As Control, x As Single, y As Single, state As_
 Integer)

Here are the arguments this event handler is passed:

• source—The control being dragged.

• x, y—Position of the mouse in the target form or control. These coordinates are set in terms of the
target’s coordinate system (as set by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties).

• state—The transition state of the control being dragged in relation to a target form or control: Enter =
0, source control is being dragged into the target; Leave = 1, source control is being dragged out of the
target; Over = 2, source control has moved in the target.

Let’s see an example. Here, we’ll turn the text boxes in the dragcontrols example that we’ve developed in the
previous few topics blue as the user drags a control over them. To do that, we add a DragOver event to the
text boxes in the Textboxes control array:

Private Sub Textboxes_DragOver(Index As Integer, Source As Control, X As _
 Single, Y As Single, State As Integer)

End Sub

Here, we simply add code to turn the text box blue when we drag another control over it:

Private Sub Textboxes_DragOver(Index As Integer, Source As Control, X As _
 Single, Y As Single, State As Integer)
 Textboxes(Index).BackColor = RGB(0, 0, 255)
End Sub

And that’s it—now we’re handling DragOver events, as shown in Figure 28.4.

Figure 28.4 Handling DragOver events.

OLE Drag/Drop: Dragging Data

The Testing Department is on the phone again. A lot of new word processors are allowing users to drag data
from application to application—how about your new SuperDuperTextPro program? It’s not possible, you
say. Yes it is, they say, use OLE drag/drop.

In OLE drag/drop operations, you can let the user drag data between controls, and even between programs.
Here’s how it works: when the user presses the mouse button, you start the OLE drag operation with the

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0982-0986.html (1 of 3) [3/14/2001 2:09:18 AM]

javascript:displayWindow('images/28-04.jpg',320,240)
javascript:displayWindow('images/28-04.jpg',320,240)

OLEDrag method (this method has no parameters). This causes an OLEStartDrag event, and you are passed
an object of type DataObject in that event’s handler. You use that object’s SetData method to set the data you
want the user to drag:

DataObject.SetData [data], [format]

Here, data is a variant that holds the data you want the user to drag, and format indicates the data format,
which can be one of these values:

• vbCFText—1; text (TXT) files

• vbCFBitmap—2; bitmap (BMP) files

• vbCFMetafile—3; Windows metafile (WMF) files

• vbCFEMetafile—14; enhanced metafile (EMF) files

• vbCFDIB—8; device-independent bitmap (DIB)

• vbCFPalette—9; color palette

• vbCFFiles—15; list of files

• vbCFRTF—-16639; Rich Text Format (RTF) files

You’re also passed a parameter named AllowedEffects in the OLEStartDrag event’s handler, and you need
to set that parameter to one of the following values:

• vbDropEffectNone—0; drop target cannot accept the data.

• vbDropEffectCopy—1; drop results in a copy of data from the source to the target. (Note that the
original data is unaltered by the drag operation.)

• vbDropEffectMove—2; drop results in data being moved from drag source to drop source. (Note that
the drag source should remove the data from itself after the move.)

When the user drops the data onto an appropriate target, which is a form or control with its OLEDropMode
property set to Manual (= 1), an OLEDragDrop event occurs, and you are passed a DataObject in that
event’s handler. To get the dragged data, you use the DataObject’s GetData method:

DataObject.GetData (format)

The format parameter here may be set to the same values as the format parameter for SetData. Let’s see an
example. In this case, we’ll add two text boxes, Text1 and Text2, to a form, and let the user drag the text from
Text1 to Text2. We start at design time by placing the text “OLE Drag!” into Text1 so the user will have
something to drag when the program runs.

TIP: The user will also be able to drag the text from Text1 to any OLE-drag-enabled word processor, like
Microsoft Word.

When the user presses the mouse button in Text1, then, we start the OLE drag/drop operation with the
OLEDrag method:

Private Sub Text1_MouseDown(Button As Integer, Shift As Integer, X As _
 Single, Y As Single)

 Text1.OLEDrag

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0982-0986.html (2 of 3) [3/14/2001 2:09:18 AM]

End Sub

This triggers an OLEStartDrag event for Text1:

Private Sub Text1_OLEStartDrag(Data As DataObject, AllowedEffects As Long)

End Sub

Here, we’ll let the user drag the text from the text box Text1, and we do that by placing that text into the data
object passed to us in the OLEStartDrag event handler:

Private Sub Text1_OLEStartDrag(Data As DataObject, AllowedEffects As Long)

 Data.SetData Text1.Text, vbCFText
...
End Sub

We also must set the AllowedEffects parameter to the OLE drag/drop operations we’ll allow:

Private Sub Text1_OLEStartDrag(Data As DataObject, AllowedEffects As Long)

 Data.SetData Text1.Text, vbCFText
 AllowedEffects = vbDropEffectMove

End Sub

And that’s it—now users can drag the text from the text box. To let them drop that text in the other text box,
Text2, we’ll enable that text box for OLE drops in the next topic.

OLE Drag/Drop: Dropping Data

The testing department is on the phone again. It’s fine that you’ve allowed users to drag data from controls in
your program, but how about letting them drop that data as well? Coming right up, you say.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0982-0986.html (3 of 3) [3/14/2001 2:09:18 AM]

To let users drop OLE data, you use the OLEDragDrop event (this event occurs only if the object’s
OLEDropMode property is set to Manual = 1):

Sub object_OLEDragDrop(data As DataObject, effect As Long, _
 button As Integer, shift As Integer, x As Single, y As Single)

Here are the parameters passed to this event handler:

• data—A DataObject object containing data in formats that the source will provide.

• effect—A Long integer set by the target component identifying the action that has been performed, if
any. This allows the source to take appropriate action if the component was moved. See the next list for
the possible settings.

• button—An integer that gives the mouse button state. If the left mouse button is down, button will be
1; if the right button is down, button will be 2; and if the middle button is down, button will be 4. These
values add if more than one button is down.

• shift—An integer that gives the state of the Shift, Ctrl, and Alt keys when they are depressed. If the
Shift key is pressed, shift will be 1; for the Ctrl key, shift will be 2; and for the Alt key, shift will be 4.
These values add if more than one key is down.

• x, y—The current location of the mouse pointer. The x and y values are in terms of the coordinate
system set by the object (in other words, using the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties).

Here are the possible values for the effect parameter:

• vbDropEffectNone—0; drop target cannot accept the data.

• vbDropEffectCopy—1; drop results in a copy of data from the source to the target. (Note that the
original data is unaltered by the drag operation.)

• vbDropEffectMove—2; drop results in data being moved from drag source to drop source. (Note that
the drag source should remove the data from itself after the move.)

To get the dragged data in the OLEDragDrop event, you use the DataObject’s GetData method, which
returns the data stored in the format you’ve selected, if there is any:

DataObject.GetData (format)

The format parameter here indicates the data format and may be set to one of these values:

• vbCFText—1; text (TXT) files

• vbCFBitmap—2; bitmap (BMP) files

• vbCFMetafile—3; Windows metafile (WMF) files

• vbCFEMetafile—14; enhanced metafile (EMF) files

• vbCFDIB—8; device-independent bitmap (DIB)

• vbCFPalette—9; color palette

• vbCFFiles—15; list of files

• vbCFRTF—-16639; Rich Text Format (RTF) files

Let’s see an example. In the previous topic, we’ve allowed the user to drag the text from a text box, Text1, to
another text box, Text2, whose OLEDropMode property is set to Manual = 1. To place the dropped data into

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0986-0990.html (1 of 4) [3/14/2001 2:09:20 AM]

Text2, we just add a call to GetData to that text box’s OLEDragDrop event handler:

Private Sub Text1_MouseDown(Button As Integer, Shift As Integer, X As _
 Single, Y As Single)

 Text1.OLEDrag

End Sub

Private Sub Text1_OLECompleteDrag(Effect As Long)
 MsgBox "Returned OLE effect: " & Effect
End Sub

Private Sub Text1_OLEStartDrag(Data As DataObject, AllowedEffects As Long)

 Data.SetData Text1.Text, vbCFText
 AllowedEffects = vbDropEffectMove

End Sub

Private Sub Text2_OLEDragDrop(Data As DataObject, Effect As Long, _
 Button As Integer, Shift As Integer, X As Single, Y As Single)
 Text2.Text = Data.GetData(vbCFText)
End Sub

And that’s it—now run the program, as shown in Figure 28.5. When you do, you can drag the text from the
text box on the left, Text1, to the text box on the right, Text2, as shown in that figure. Our OLE drag/drop
example is a success.

Figure 28.5 Dragging text data from one text box to another using OLE drag/drop.

The code for this example, oledrag.frm version 1, appears in Listing 28.2 (version 2, which is located on in the
oledrag folder on this book’s accompanying CD-ROM, will report back to Text1 what happened when Text2
accepted the data).

Listing 28.2 oledrag.frm version 1

VERSION 6.00
Begin VB.Form Form1
 Caption = "Form1"
 ClientHeight = 3195
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4680
 LinkTopic = "Form1"
 ScaleHeight = 3195

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0986-0990.html (2 of 4) [3/14/2001 2:09:20 AM]

javascript:displayWindow('images/28-05.jpg',320,240)
javascript:displayWindow('images/28-05.jpg',320,240)

 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.TextBox Text2
 Height = 495
 Left = 2760
 OLEDropMode = 1 'Manual
 TabIndex = 1
 Top = 1200
 Width = 1215
 End
 Begin VB.TextBox Text1
 Height = 495
 Left = 480
 OLEDropMode = 1 'Manual
 TabIndex = 0
 Text = "OLE Drag!"
 Top = 1200
 Width = 1215
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub Text1_MouseDown(Button As Integer, Shift As Integer, X As _
 Single, Y As Single)
 Text1.OLEDrag

End Sub

Private Sub Text1_OLEStartDrag(Data As DataObject, AllowedEffects As Long)
 Data.SetData Text1.Text, vbCFText
 AllowedEffects = vbDropEffectMove
End Sub

Private Sub Text2_OLEDragDrop(Data As DataObject, Effect As Long, _
 Button As Integer, Shift As Integer, X As Single, Y As Single)
 Text2.Text = Data.GetData(vbCFText)
End Sub

OLE Drag/Drop: Reporting The Drag/Drop Outcome

When the user drops data into a target component during an OLE drag/drop operation, you can make sure the
source component is informed of that fact with the OLECompleteDrag event:

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0986-0990.html (3 of 4) [3/14/2001 2:09:20 AM]

Sub object_CompleteDrag([effect As Long])

Here, the effect parameter can take these values:

• vbDropEffectNone—0; drop target cannot accept the data.

• vbDropEffectCopy—1; drop results in a copy of data from the source to the target. (Note that the
original data is unaltered by the drag operation.)

• vbDropEffectMove—2; drop results in data being moved from drag source to drop source. (Note that
the drag source should remove the data from itself after the move.)

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0986-0990.html (4 of 4) [3/14/2001 2:09:20 AM]

http://24.19.55.56:8080/temp/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Let’s see an example. Here, we’ll add code to our oledrag example that we’ve developed in the
previous few examples to report what happened when users drop the data they’ve dragged from Text1
into Text2 using Text1’s OLECompleteDrag event:

Private Sub Text1_OLECompleteDrag(Effect As Long)
 MsgBox "Returned OLE effect: " & Effect
End Sub

Now the program displays the OLE effect value when the user drops the OLE data, as shown in Figure
28.6. The code for this example is located in the oledrag folder on this book’s accompanying
CD-ROM.

Figure 28.6 Reporting the results of an OLE drag/drop operation.

Using The Lightweight Controls

The Testing Department is on the phone again. Your program, SuperDuperDataCrunch, sure is using
up a lot of memory. Can’t you do something about it? You ask, any suggestions? They say, how about
using lightweight controls to replace the 200 command buttons in the program?

To save memory, you can use the Microsoft lightweight controls, also called the windowless controls
because they don’t include all the internal machinery needed to support a window and window
procedure. The lightweight controls come in the ActiveX control group named MSWLess.ocx.

You add them to a project with the Project[vbar]Components menu item, clicking the Controls tab and
selecting the Microsoft Windowless Controls entry in the Component’s dialog box.

TIP: If that entry does not appear in the Components dialog box, you must register MSWLess.ocx with
Windows using the utility regsvr32.exe that comes with Windows and Visual Basic.

You can add the lightweight controls to a program, as shown in Figure 28.7, where you see the
complete set of lightweight controls.

Figure 28.7 The windowless lightweight controls.

From the Visual Basic programmer’s point of view, there are really only two differences between the
standard Visual Basic controls and the lightweight controls: the lightweight controls do not have a
hWnd property, and they do not support Dynamic Data Exchange (DDE). Besides those two
differences, using a lightweight control is just like using a standard control; for example, you can add
items to the WLlist1 list box this way when the form loads:

Private Sub Form_Load()

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0990-0995.html (1 of 4) [3/14/2001 2:09:35 AM]

javascript:displayWindow('images/28-06.jpg',338,275)
javascript:displayWindow('images/28-06.jpg',338,275)
javascript:displayWindow('images/28-07.jpg',301,240)
javascript:displayWindow('images/28-07.jpg',301,240)

 WLList1.AddItem "WLlist1"
End Sub

Or you can have the computer beep using the Visual Basic Beep statement when the user clicks the
command button WLCommand1:

Private Sub WLCommand1_Click()
 Beep
End Sub

Passing Forms To Procedures

Can you pass forms to procedures in Visual Basic? You certainly can—just declare them with the
keywords As Form in the argument list.

Let’s see an example. Here, we set up a subroutine named SetColor that will set the background color
of forms you pass to that subroutine, and we pass the current form to SetColor when that form loads:

Private Sub Form_Load()
 SetColor Me
End Sub

In the SetColor subroutine, we declare the passed form this way, giving it the name TargetForm:

Public Sub SetColor(TargetForm As Form)

End Sub

Now we’re free to use the passed form as we would any form:

Public Sub SetColor(TargetForm As Form)
 TargetForm.BackColor = RGB(0, 0, 255)
End Sub

Determining The Active Form

You’ve got a multiform program and need to work with the controls on the currently active form (that
is, the form with the focus)—but how do you determine which form is the active form?

You can use the Visual Basic Screen object’s ActiveForm property to determine which form is active.
For example, say we had a clock program with two forms, Form1 and Form2, each with a label control,
Label1, in which we can display the current time using a timer, Timer1. However, we’ll only update
the time in the active form, which the user can switch simply by clicking the forms with the mouse.

To display the time, we add the timer, Timer1, to Form1, and set its Interval property to 1000 (as
measured in milliseconds). Now we can use the Label1 control in the currently active form in the
timer’s Timer event this way:

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0990-0995.html (2 of 4) [3/14/2001 2:09:35 AM]

Private Sub Timer1_Timer()
 Screen.ActiveForm.Label1.Caption = Format(Now, "hh:mm:ss")
End Sub

We also make sure the second form, Form2, is shown when the program loads with Form1’s Load
event:

Private Sub Form_Load()
 Form2.Show
End Sub

You can see the result of this code in Figure 28.8. When you click one of the two forms, that form
displays and updates the time, until you click the other form, which makes that other form take over.

Figure 28.8 Determining the active form.

The code for this example is located in the twoclocks folder on this book’s accompanying CD-ROM.
(This is the form with the name Form1 in our example; Form2 in this program is just a standard form
with a label control, Label1, in it.)

Using The Form Object’s Controls Collection

If you want to work with all the controls in a form indexed in an array, use the form’s Controls
collection. You can loop over all controls in a form using this collection. Let’s see an example. Here,
we fill a form with command buttons and then set the caption of each control to “Button” when the user
clicks the form:

Private Sub Form_Click()
 For Each ButtonControl In Form1.Controls
 ButtonControl.Caption = "Button"
 Next
End Sub

That’s all the code we need. Now the user can click the form to set the captions of all the buttons at
once, as shown in Figure 28.9.

Figure 28.9 Using the Controls collection to set captions

Using the Forms Collection

In the previous topic, we saw that you can loop over all the controls in a form using the form’s
Controls collection. You can also loop over all the forms in an application using the Visual Basic

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0990-0995.html (3 of 4) [3/14/2001 2:09:35 AM]

javascript:displayWindow('images/28-08.jpg',436,361)
javascript:displayWindow('images/28-08.jpg',436,361)
javascript:displayWindow('images/28-09.jpg',320,240)
javascript:displayWindow('images/28-09.jpg',320,240)

Global object’s Forms collection.

Let’s see an example. Here, we’ll display three forms, Form1, Form2, and Form3, displaying Form2
and Form3 when Form1 loads:

Private Sub Form_Load()
 Form2.Show
 Form3.Show
End Sub

Now when the user clicks a button in Form1 named, say, CloseAll, we can hide all open forms this way
using the Forms collection:

Private Sub CloseAll_Click()
 For Each Form In Forms
 Form.Hide
 Next Form
End Sub

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0990-0995.html (4 of 4) [3/14/2001 2:09:35 AM]

Setting A Form’s Startup Position

You can set the position of a form when it is first displayed by positioning it in the Visual Basic IDE’s
forms window, or by setting the StartUpPosition property at design time (this property is not available
at runtime):

• vbStartUpManual—0; no initial setting specified

• vbStartUpOwner—1; center on the item to which the form belongs

• vbStartUpScreen—2; center form in the whole screen

• vbStartUpWindowsDefault—3 (the default); position in the upper-left corner of the screen

Note, of course, that you can also position a form in the form’s Load event handler by setting its Left
and Top properties.

Keeping A Form’s Icon Out Of The Windows 95 Taskbar

The Aesthetic Design Department is on the phone again. The dialog boxes in your program,
SuperDuperTextPro, are fine, but there’s one little problem: when you display a dialog box, its icon
appears in the Windows 95 taskbar, and according to company specs, dialog boxes should not add an
icon to the taskbar, even when they’re displayed. Oh, you say.

It’s easy to keep a dialog box’s icon—or other form’s icon—out of the Windows 95 taskbar; just set
that form’s ShowInTaskbar property to False at design time (this property is read-only at runtime). In
fact, that’s the most common use for this property—to keep dialog box icons out of the taskbar.

Handling Keystrokes In A Form Before Controls Read Them

There’s a subtle war for possession of the focus between forms and controls in Visual Basic. If you
click a form, giving the focus to that form, what really happens is that a control in that form (if there are
any) gets the focus. But what if you really wanted to give the focus to the form as a whole to use the
form’s keystroke events?

It turns out that you can indeed make sure the form gets keystrokes even before the control with the
focus gets them by setting the form’s KeyPreview property to True (the default is False). You can set
this property at runtime or design time.

Let’s see an example. Here, we add a text box, Text1, to a form. When the users click the form, we’ll
start intercepting keystrokes before they go to the text box. Following the Christmas example
developed earlier in this book, we’ll remove all occurrences of the letter “L” when the user types that
letter (making the text box a No-“L” text box).

Here’s how we start intercepting keystrokes when the user clicks the form:

Private Sub Form_Click()
 KeyPreview = True
End Sub

Now we’ll get the keystrokes first, as the user presses them, no matter what control has the focus. We

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0995-0998.html (1 of 3) [3/14/2001 2:09:42 AM]

can remove the letter “L” before it’s passed on to the text box in our example this way:

Private Sub Form_KeyPress(KeyAscii As Integer)
 If KeyAscii = Asc("L") Then
 KeyAscii = 0
 End If
End Sub

Making A Form Immovable

The Aesthetic Design Department is calling. They like the screen position they’ve set for the windows
in your program—is there any way to make sure the user can’t move them?

There is. You can set the form’s Moveable property to False. Note, however, that you can only set this
property at design time.

Showing Modal Forms

The Testing Department is on the phone again. When you show that form full of options, you shouldn’t
let users go back to the main form until they’ve chosen the options they want. Hmm, you think, how
does that work?

You can make a form modal, which means that the user has to dismiss it from the screen before
working with the other forms in your application. You usually make only dialog boxes modal, but you
can make any form modal if you wish. To make a form modal, pass the constant vbModal to the Show
method:

Private Sub Command1_Click()
 Form2.Show vbModal
End Sub

Saving Values In The Windows Registry

Placing data in the Windows Registry saves that data for the next time your program runs, and the kind
of data you save there usually represents settings for your program, such as window size and location.
You can use the Windows Registry directly from Visual Basic. To save a setting in the Windows
Registry, you use the SaveSetting statement:

SaveSetting appname, section, key, setting

Here are the arguments for SaveSetting:

• appname—String containing the name of the application to which the setting applies.

• section—String containing the name of the section where the key setting should be saved.

• key—String containing the name of the key setting being saved.

• setting—Expression containing the value to set the key to.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0995-0998.html (2 of 3) [3/14/2001 2:09:42 AM]

Here’s how it works: to save a setting in the Windows Registry, you pass your application’s name, a
section name, a key name, and the setting for that key. Using section names allows you to break up an
application’s set of keys into different groups, which can be handy in terms of organization. Those keys
are the actual variables that you save settings to. We’ll see an example showing how to get and save
settings with the Windows Registry in the next topic.

Getting Values From The Windows Registry

You can get settings that you’ve placed in the Windows Registry with the GetSetting function, which
returns the value of that setting, or the default value as specified in the list that follows:

GetSetting(appname, section, key[, default])

Here are the arguments passed to this function:

• appname—String containing the name of the application or project whose key setting is
requested.

• section—String containing the name of the section where the key setting is found.

• key—String containing the name of the key setting to return.

• default—Expression containing the value to return if no value is set in the key setting. (If
omitted, default is assumed to be a null string, “”.)

Let’s see an example. In Chapter 5, we developed the MRU application, which supports a Most
Recently Used (MRU) menu item in the File menu. This item displayed the most recently opened file’s
name using data stored in the Registry.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0995-0998.html (3 of 3) [3/14/2001 2:09:42 AM]

We stored the MRU file name in a Registry section named “Settings” and gave that file name the key
“Doc1”. When the program’s form first loads, then, we got the file name last stored there, if there was
one, with GetSetting this way:

Private Sub Form_Load()
 Dim FileName As String
 FileName = GetSetting(App.Title, "Settings", "Doc1")

 If FileName <> "" Then
 Load mnuMRU(1)
 mnuMRU(1).Caption = FileName
 mnuMRU(1).Visible = True
 End If
End Sub

On the other hand, when the user opens a file, we store that file’s name in the Windows Registry this
way so we can add it to the MRU menu item later:

Private Sub mnuOpen_Click()
 With dlgCommonDialog
 .DialogTitle = "Open"
 .CancelError = False
 .Filter = "All Files (*.*)[vbar]*.*"
 .ShowOpen
 If Len(.FileName) = 0 Then
 Exit Sub
 End If

 If GetSetting(App.Title, "Settings", "Doc1") = "" Then
 Load mnuMRU(1)
 End If
 mnuMRU(1).Caption = .FileName
 mnuMRU(1).Visible = True
 SaveSetting App.Title, "Settings", "Doc1", .FileName
 End With
End Sub

And that’s all there is to it—using SaveSetting and GetSetting, you can access the Windows Registry
directly in a simple way.

Getting All Registry Settings

You can use the GetAllSettings to get a list of key settings and their values from a section in the
Windows Registry. Here’s how you use GetAllSettings:

GetAllSettings(appname, section)

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0998-1000.html (1 of 2) [3/14/2001 2:09:43 AM]

Here are the arguments for GetAllSettings:

• appname—String containing the name of the application whose key settings you want.

• section—String containing the name of the section whose key settings you want.

The GetAllSettings function returns a variant whose content is a two-dimensional array of strings, and
these strings contain all the key settings in the indicated section and their values.

Deleting A Registry Setting

You can delete Registry settings with the DeleteSetting statement:

DeleteSetting appname, section[, key]

Here are the arguments for DeleteSetting:

• appname—String expression containing the name of the application you want to work with.

• section—String expression containing the name of the section where the key you are deleting
is stored. (If only appname and section are provided, the specified section is deleted along with
all related key settings.)

• key—String expression containing the name of the key setting being deleted.

Visual Basic 6 Black Book:Advanced Form, Control, And Windows Registry Handling

http://24.19.55.56:8080/temp/ch28\0998-1000.html (2 of 2) [3/14/2001 2:09:43 AM]

Chapter 29
Error Handling And Debugging
If you need an immediate solution to:

Writing Error Handlers

Using On Error GoTo Label

Using On Error GoTo line#

Using On Error Resume Next
Using On Error GoTo 0
Using Resume In Error Handlers

Using Resume Label In Error Handlers

Using Resume line# In Error Handlers

Using Resume Next In Error Handlers

Getting An Error’s Error Code

Getting An Error’s Description

Determining An Error’s Source Object

Handling Errors In DLLs: The LastDLLError Property

Creating An Intentional (User-Defined) Error

Nested Error Handling

Creating An Error Object Directly In Visual Basic

Trappable Cancel Errors In Common Dialogs

Debugging In Visual Basic

Setting Debugging Breakpoints

Single-Stepping While Debugging

Examining Variables And Expressions

Adding Debug Watch Windows

Using The Immediate Window While Debugging

Clearing All Debugging Breakpoints

Executing Code Up To The Cursor While Debugging

Skipping Over Statements While Debugging

In Depth

This is our chapter on runtime errors and bugs. With a process called trapping, Visual Basic lets you
catch many runtime errors, and we’ll see how to do that here. And when we catch a runtime error, we’ll
see how to recover from that error without crashing the program. Just about every Visual Basic
programmer is familiar with bugs—they’re those annoying logic errors that occur when what the
computer does doesn’t appear to be the same as what you asked it to do. We’ll ferret out bugs in this

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1001-1007.html (1 of 5) [3/14/2001 2:09:48 AM]

chapter with the Visual Basic debugger.

We’ll also see how to get and interpret error codes—including translating them to English, how to
write error handlers, how to use the Resume statement to continue program execution, and quite a few
other powerful topics. Handling runtime errors is usually a part of any commercially released Visual
Basic program because Visual Basic handles runtime errors by displaying information only useful to
the programmer. Visual Basic lets you handle runtime errors by trapping them with special code, and
these errors are referred to as trappable errors. You’ll find a list of the Visual Basic trappable errors in
Table 29.1.

Table 29.1 The Visual Basic trappable error codes and messages.

Code Message

3 Return without GoSub

5 Invalid procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

16 Expression too complex

17 Can’t perform requested operation

18 User interrupt occurred

20 Resume without error

28 Out of stack space

35 Sub, Function, or Property not defined

47 Too many code resource or DLL application clients

48 Error in loading code resource or DLL

49 Bad code resource or DLL calling convention

51 Internal error

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

59 Bad record length

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1001-1007.html (2 of 5) [3/14/2001 2:09:48 AM]

61 Disk full

62 Input past end of file

63 Bad record number

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can’t rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

92 For loop not initialized

93 Invalid pattern string

94 Invalid use of Null

97 Can’t call Friend procedure on an object that is not an instance of the defining class

98 A property or method call cannot include a reference to a private object, either as an
argument or as a return value

298 System resource or DLL could not be loaded

320 Can’t use character device names in specified file names

321 Invalid file format

322 Can’t create necessary temporary file

325 Invalid format in resource file

327 Data value named not found

328 Illegal parameter; can’t write arrays

335 Could not access system registry

336 ActiveX Component not correctly registered

337 ActiveX Component not found

338 ActiveX Component did not run correctly

360 Object already loaded

361 Can’t load or unload this object

363 ActiveX Control specified not found

364 Object was unloaded

365 Unable to unload within this context

368 The specified file is out of date. This program requires a later version

371 The specified object can’t be used as an owner form for Show

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1001-1007.html (3 of 5) [3/14/2001 2:09:48 AM]

380 Invalid property value

381 Invalid property-array index

382 Property Set can’t be executed at runtime

383 Property Set can’t be used with a read-only property

385 Need property-array index

387 Property Set not permitted

393 Property Get can’t be executed at runtime

394 Property Get can’t be executed on write-only property

400 Form already displayed; can’t show modally

402 Code must close topmost modal form first

419 Permission to use object denied

422 Property not found

423 Property or method not found

424 Object required

425 Invalid object use

429 ActiveX Component can’t create object or return reference to this object

430 Class doesn’t support Automation

432 File name or class name not found during Automation operation

438 Object doesn’t support this property or method

440 Automation error

442 Connection to type library or object library for remote process has been lost

443 Automation object doesn’t have a default value

445 Object doesn’t support this action

446 Object doesn’t support named arguments

447 Object doesn’t support current locale setting

448 Named argument not found

449 Argument not optional or invalid property assignment

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

452 Invalid ordinal

453 Specified DLL function code resource not found

454 Code resource not found

455 Code resource lock error

457 This key is already associated with an element of this collection

458 Variable uses a type not supported in Visual Basic

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1001-1007.html (4 of 5) [3/14/2001 2:09:48 AM]

459 This component doesn’t support the set of events

460 Invalid Clipboard format

461 Specified format doesn’t match format of data

480 Can’t create AutoRedraw image

481 Invalid picture

482 Printer error

483 Printer driver does not support specified property

484 Problem getting printer information from the system. Make sure the printer is set up
correctly

485 Invalid picture type

486 Can’t print form image to this type of printer

520 Can’t empty Clipboard

521 Can’t open Clipboard

735 Can’t save file to TEMP directory

744 Search text not found

746 Replacements too long

31001 Out of memory

31004 No object

31018 Class is not set

31027 Unable to activate object

31032 Unable to create embedded object

31036 Error saving to file

31037 Error loading from file

TIP: Getting “out of memory” errors has driven more than one programmer to distraction, How can I be
out of memory? I have 512MB of RAM! In fact, Microsoft sometimes treats this error as a generic error,
and programs can issue this error when the actual error cause is unknown.

With regard to debugging, Visual Basic provides programmers with a set of tools that is hard to beat.
You can debug your programs interactively, working through your code line by line as the program
runs. This powerful technique lets you work behind the scenes in a way that is invaluable to finding out
what’s going wrong. You can also specify where to begin debugging a program with breakpoints,
which are lines of code that you tag to make the program halt and debugging start.

In this chapter, we’ll see how to set and use breakpoints, execute code line by line, execute code up to a
specified line, watch variables as they’re changing, and more. Taking care of your program’s bugs
before you release it is important—the user might be able to handle runtime errors with the aid of our
error handlers, but not errors in program logic.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1001-1007.html (5 of 5) [3/14/2001 2:09:48 AM]

Testing Your Programs

Before you release your programs for others to use, you’ll probably want to test them first. This can
involve a large investment of time—one that programmers are reluctant to make. It helps if you’re
smart in the way you go about testing your programs. For example, if your program operates on
numeric data, you should test the bounds of variable ranges—it’s easy to forget that the limits of Visual
Basic integers, which are only 2-byte variables, are –32,768 to 32,767. Entering values like those, or
values outside that range, can help test possible danger points. There is a bounds check you can
perform for every crucial variable in your program. (Of course, you should check mid-range values as
well, because a certain combination of values might give you unexpected errors.)

In addition, file operations are notorious for generating errors. What if the disk is full and you try to
write to it? What if the file the user wants to read in doesn’t exist? What if the output file turns out to
be read-only? You should address and check all these considerations.

Besides the inherent programming checks, determining the logic danger-points of a program is also
very important. For example, if your program has an array of data and you let the user average sections
of that data by entering the number of cells to average over, what would happen if the user entered a
value of 0? Or –100? Besides testing the software yourself, releasing beta versions of the software to be
tested by other programmers or potential users is often a good idea.

If you do a lot of programming, you’ll start to feel, sooner or later, that inevitably some user is going to
come up with exactly the bad data set or operation that will crash your program. You might even start
dreading the letters forwarded on to you from the Customer Relations Department. It’s far better to
catch all that before the program goes out the door, which is what beta testing your software is all
about. The longer you test your program under usual—and unusual—operating circumstances, the
more confidence you’ll have that things are going as they should.

That’s it for the overview of what’s in this chapter—now it’s time to turn to the Immediate Solutions
section.

Immediate Solutions

Writing Error Handlers

Visual Basic has specific built-in ways to handle runtime errors, called trappable errors. When such an
error occurs, you can direct the execution of your program to an error handler, which is a section of
code written specifically to deal with errors.

Let’s see an example to make this clearer. One area of programming very susceptible to runtime errors
is file handling; we’ll write our example here to open a file and display its contents in a text box—as
well as to handle file errors. When the user clicks a button, Command1, we can show an Open dialog
box using a Common Dialog control, CommonDialog1:

Private Sub Command1_Click()
 With CommonDialog1

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1007-1012.html (1 of 4) [3/14/2001 2:09:52 AM]

 .ShowOpen
...
 End With
End Sub

The user enters the name of the file to open in that dialog box. We open the file, read the text in the file,
and display it a multiline text box with scroll bars, Text1 (with its Multiline property set to True and
its Scrollbars property set to Both); then we close the file:

Private Sub Command1_Click()
 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With
End Sub

Errors can occur here for a number of reasons—for example, the user may have typed in the name of a
nonexistent file. To handle errors like that, we add an On Error GoTo statement like this, where we
indicate that our error handler code will start at the label FileError:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

Next, we add that label, FileError, and indicate with a message box that a file error occurred:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1007-1012.html (2 of 4) [3/14/2001 2:09:52 AM]

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

FileError:
 MsgBox "File Error"
End Sub

We also have to prevent execution of the normal code continuing into the error handler, so we add an
Exit Sub statement to the code before that error handler:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

 Exit Sub

FileError:
 MsgBox "File Error"
End Sub

So far, we’ve used very rudimentary code in our error handler, but error handlers get much more
complex. As we’ll see in this chapter, you can get the actual error code of the trappable error (as listed
in Table 29.1) using the Visual Basic Err object’s Number property. You can make that number the
basis of a Select Case statement to take the appropriate action depending on which error occurred.

For example, here we handle two types of errors specifically—the case where the user clicked the
Cancel button in the Common Dialog (you must set the Common Dialog control’s CancelError
property to True for the Common Dialog control to generate an error when the user clicks the Cancel
button) and the File Not Found error:

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1007-1012.html (3 of 4) [3/14/2001 2:09:52 AM]

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

 Exit Sub

FileError:
 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

We’ll see how to write error handlers like this one—and see what statements like Resume do—in this
chapter. The code for this example is located in the errors folder on this book’s accompanying
CD-ROM.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1007-1012.html (4 of 4) [3/14/2001 2:09:52 AM]

Using On Error GoTo Label

The Visual Basic On Error GoTo statement is the foundation of handling trappable errors. When you
execute an On Error GoTo Label statement in your code, execution is transferred to the code starting
at Label if a trappable error has occurred. The code following that label is your error handler.

Let’s see an example to make this clear. In the previous topic, we executed a statement indicating that
our error handler code starts at the label FileError this way:

Private Sub Command1_Click()

 On Error GoTo FileError
...

Now if an error occurs, we’ll transfer program execution to the code that follows the label FileError.
That means that for all this code, error trapping is enabled:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1
 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

 Exit Sub
...

The actual error-handling code itself follows the label FileError like this:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1012-1016.html (1 of 4) [3/14/2001 2:09:55 AM]

 End With

 Exit Sub

FileError:
 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

TIP: Note that if you want to turn off error trapping at some point in your code, you can execute the
statement On Error GoTo 0 (see “Using On Error GoTo 0” coming up later in this chapter). You can
also redirect error trapping to a new error handler by executing a new On Error GoTo Label statement.

Using On Error GoTo line#

Besides using a label to start an error handler (see the previous topic), you can refer to an error handler
by line number in Visual Basic, using the On Error GoTo line# statement. Numbering code lines is
part of Visual Basic history all the way back to the original days of the Basic language, and, in fact,
many programmers don’t know that you can number the lines of code in Visual Basic. For example,
here’s how we set up an error handler that starts at line 16 in our code (you can enter the line numbers
directly in the code as shown in the following code), using the On Error GoTo line# statement:

Private Sub Command1_Click()
1
2 On Error GoTo 16
3
4 With CommonDialog1
5
6 .ShowOpen
7 Open .FileName For Input As #1
8 Text1.Text = Input$(LOF(1), #1)
9
10 Close #1
11
12 End With
13

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1012-1016.html (2 of 4) [3/14/2001 2:09:55 AM]

14 Exit Sub
15
16
17 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

Now when there’s a trappable error, program execution jumps to line 16 to execute our error handler.
Note that numbering lines has long been obsolete in Visual Basic; for most purposes, it’s better to stick
with On Error GoTo Label.

Using On Error Resume Next

The On Error Resume Next statement provides an easy way to disregard errors, if you want to do so.
Once you execute this statement, execution continues with the next line of code if the current line
generates an error, and the error is disregarded.

Let’s see an example. Here we set the Text, Caption, Min, and Max properties of the currently active
control on a form when the user clicks that form. Because no one control has all those properties, this
code would generate an error in a message box to the user:

Private Sub Form_Click()
 ActiveControl.Text = "Active control"
 ActiveControl.Caption = "Active Control"
 ActiveControl.Min = 0
 ActiveControl.Max = 100
End Sub

However, we can place an On Error Resume Next statement in the code to suppress all the trappable
errors:

Private Sub Form_Click()
 On Error Resume Next
 ActiveControl.Text = "Active control"
 ActiveControl.Caption = "Active Control"
 ActiveControl.Min = 0
 ActiveControl.Max = 100
End Sub

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1012-1016.html (3 of 4) [3/14/2001 2:09:55 AM]

The result here is that whichever of these four properties the active control does have is set, without any
errors.

WARNING! Note, however, that code like this is not good programming form, of course; it’s better to
check what the type of the active control is before setting its properties instead of simply disregarding
errors.

Using On Error GoTo 0

To turn off error trapping, you can use the On Error GoTo 0 statement. For example, here we turn on
error trapping to catch the case where the user clicks the Cancel button in a Common Dialog control’s
Font dialog box, but we then turn error trapping off if the user did not press Cancel (to make the Cancel
button generate a trappable error, set the Common Dialog control’s CancelError property to True; this
is the standard way of catching the Cancel button when working with Common Dialogs):

Private Sub Command1_Click()
 On Error GoTo Cancel
 CommonDialog1.Flags = cdlCFBoth Or cdlCFEffects
 CommonDialog1.ShowFont
 On Error GoTo 0

 Text1.FontName = CommonDialog1.FontName
 Text1.FontBold = CommonDialog1.FontBold
 Text1.FontItalic = CommonDialog1.FontItalic
 Text1.FontUnderline = CommonDialog1.FontUnderline
 Text1.FontSize = CommonDialog1.FontSize
 Text1.FontName = CommonDialog1.FontName
Cancel:
End Sub

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1012-1016.html (4 of 4) [3/14/2001 2:09:55 AM]

Using Resume In Error Handlers

When you’re writing code for an error handler, you can return control to the main body of the
procedure using the Resume statement. Program execution starts again with the line that caused the
error, and this can be very valuable if you’re able to fix the error in the error handler.

Let’s see an example. In this example, we open a file that the user has selected with an Open Common
Dialog. If the user clicked the Cancel button instead, we can insist that the user select a file by
displaying a message box with the text “Please select a file” and use the Resume statement to display
the Open dialog box once again. We do that by trapping the error generated when the user clicks the
Cancel button in the Open dialog box (set the Common Dialog control’s CancelError property to True
to make sure a trappable error is generated when the user clicks the Cancel button):

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

 Exit Sub

FileError:

 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

Using Resume Label In Error Handlers

When you’re writing code for an error handler, you can return control to a particular line in the main

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1016-1020.html (1 of 4) [3/14/2001 2:09:57 AM]

body of the procedure using the Resume Label statement. To label a line, you just place the label’s text
directly into the code, followed by a colon.

Let’s see an example. Here, we use the Resume Label statement to retry a File Open operation if the
user clicked the Cancel button in the Open dialog box. We do this by using the label TryAgain (to
make the Open Common Dialog return a trappable error if the user clicks the Cancel button, set the
Common Dialog control’s CancelError property to True):

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1
TryAgain:
 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)
 Close #1

 End With

 Exit Sub

FileError:

 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume TryAgain
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

Using Resume Label is useful if you’re able to fix a trappable error in an error handler and want to
resume execution at some specific line in the code (not necessarily the next line in the code).

Using Resume line# In Error Handlers

You can use the Resume statement (see the previous two topics) with an actual line number in Visual
Basic. For example, here’s how we’d write the example from the previous topic using line numbers
instead of a Resume Label statement:

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1016-1020.html (2 of 4) [3/14/2001 2:09:57 AM]

Private Sub Command1_Click()
1
2 On Error GoTo 16
3
4 With CommonDialog1
5
6 .ShowOpen
7 Open .FileName For Input As #1
8 Text1.Text = Input$(LOF(1), #1)
9
10 Close #1
11
12 End With
13
14 Exit Sub
15
16
17
18 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume 6
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

In this case, we’re specifying that execution should continue starting at line 6 after we’ve indicated to
the users that they should select a file to open instead of just clicking the Cancel button.

Using Resume Next In Error Handlers

Besides Resume, Resume Label, and Resume line#, you can also use the Resume Next statement in
an error handler. This statement resumes program execution in the line after the one that caused the
error.

Let’s see an example. Here we set the Text, Caption, Min, and Max properties of the currently active
control on a form when the user clicks that form. Because no one control has all those properties, this
code would generate an error in a message box to the user:

Private Sub Form_Click()

 ActiveControl.Text = "Active control"

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1016-1020.html (3 of 4) [3/14/2001 2:09:57 AM]

 ActiveControl.Caption = "Active Control"
 ActiveControl.Min = 0
 ActiveControl.Max = 100
End Sub

We can handle and suppress these errors with an error handler, which we start at the label SetError:

Private Sub Form_Click()
 On Error GoTo SetError
 ActiveControl.Text = "Active control"
 ActiveControl.Caption = "Active Control"
 ActiveControl.Min = 0
 ActiveControl.Max = 100

 Exit Sub

SetError:
...

In this case, we handle the error by moving on to the next line of code like this with Resume Next:

Private Sub Form_Click()
 On Error GoTo SetError
 ActiveControl.Text = “Active control”
 ActiveControl.Caption = “Active Control”
 ActiveControl.Min = 0
 ActiveControl.Max = 100

 Exit Sub

SetError:
 Resume Next
End Sub

The result here is that whichever of these four properties the active control does have is set, without any
errors.

WARNING! Note, however, that code like this is not good programming form, of course; it’s better to
check what the type of the active control is before setting its properties instead of simply disregarding
errors.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1016-1020.html (4 of 4) [3/14/2001 2:09:57 AM]

Getting An Error’s Error Code

To determine what trappable error has occurred, you can use the Visual Basic Err object’s Number
property, which holds the error code; see Table 29.1 at the beginning of this chapter for a list of trappable
errors and their numeric codes.

Let’s see an example. Here, we use the Err object’s Number property to set up a Select Case statement,
handling trappable errors in different ways. If the error occurred because the users clicked the Cancel
button in the Open dialog box, we indicate to the users that they should select a file and retry the
operation. If the error occurred because the users entered the name of a file that was subsequently not
found (trappable error 53), we indicate that to them. Otherwise, we just display the generic message “File
error” in a message box:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

 Exit Sub

FileError:
 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox "File Error"
 End Select

End Sub

TIP: These days, it’s considered bad programming practice to simply display an error number to the
user—the user might not know, for example, that error 31001 means “out of memory.” To translate an error
code into an error description, you can pass that code to the Visual Basic Error function, which returns the
text error message for that error, and you can display that. You can also use the Err object’s Description
property, as we’ll see in the next topic.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1020-1024.html (1 of 4) [3/14/2001 2:10:01 AM]

Getting An Error’s Description

To let the user know what kind of trappable error has occurred, you can use the Visual Basic Err object’s
Description property. Let’s see an example. In this code, we’ll trap errors and handle two of them
expressly: the case where the user has clicked the Cancel button in the Open Common Dialog, and the
case where a “File Not Found” error occurs. Otherwise, we’ll just display the Visual Basic error message
in the Default case of a Select Case statement:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)
 Close #1

 End With

 Exit Sub

FileError:

 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox Err.Description
 End Select

End Sub

Using Err.Description, you can inform the user that an error occurred—and indicate what error occurred
with readable text.

Determining An Error’s Source Object

You can determine the object that caused the error using the Visual Basic Err object’s Source property.
This property holds the name of the object or application that caused the error. For example, if you
connect to Microsoft Excel and it generates an error, Excel sets Err.Number to its error code for that
error, and it sets Err.Source to Excel.Application.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1020-1024.html (2 of 4) [3/14/2001 2:10:01 AM]

Handling Errors In DLLs: The LastDLLError Property

Errors during calls to Windows dynamic link libraries (DLLs) do not create trappable errors and so cannot
be trapped with Visual Basic error trapping. In practice, this means that when you call a DLL procedure,
you should check each return value for success or failure. In the event of a failure, check the value in the
Err object’s LastDLLError property.

Creating An Intentional (User-Defined) Error

There are cases in programs where you might want to create an error; although no Visual Basic trappable
error has occurred, some situation may have occurred that’s incompatible with your program’s logic. You
can create an error intentionally, called raising an error, with the Visual Basic Err object’s Raise method:

Err.Raise number, [source [, description [, helpfile [, helpcontext]]]]

Here are the arguments for the Raise method:

• number—Long integer that identifies the nature of the error (see the paragraphs that follows for
more details).

• source—String expression naming the object or application that generated the error; use the form
project.class. (If the source is not specified, the name of the current Visual Basic project is used.)

• description—String expression describing the error.

• helpfile—The path to the Help file in which help on this error can be found.

• helpcontext—The context ID identifying a topic within helpfile that provides help for the error.

When setting the error number for the error, bear in mind that Visual Basic errors are in the range 0 to
65535. The range 0 to 512 is reserved for system errors, but the range 513 to 65535 is available for
user-defined errors.

Let’s see an example. Here, we’ll generate an error, error number 2000, when the user clicks a command
button, Command1, and then indicate the error has occurred with a message box. First, we raise error
2000:

Private Sub Command1_Click()
 On Error GoTo CaptionError

 Err.Raise 2000
...

Then we display the error in a message box in an error handler:

Private Sub Command1_Click()
 On Error GoTo CaptionError

 Err.Raise 2000

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1020-1024.html (3 of 4) [3/14/2001 2:10:01 AM]

 Exit Sub

CaptionError:

 MsgBox "Error number " & Err.Number

End Sub

The result appears in Figure 29.1. Now we’re raising errors intentionally in Visual Basic.

Figure 29.1 Generating an error on purpose.

TIP: You can also use the Visual Basic Error statement to raise an error like this: Error errnumber.
However, the Error function is considered obsolete now, replaced by the Raise method of the Err object.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1020-1024.html (4 of 4) [3/14/2001 2:10:01 AM]

javascript:displayWindow('images/29-01.jpg',384,268)
javascript:displayWindow('images/29-01.jpg',384,268)

Nested Error Handling

If a trappable error occurs in a procedure, you can handle that error in an error handler. But what if you
call another procedure, and an error occurs before control returns from that procedure? If the called
procedure has an error handler, the code in that error handler will be executed. However, if the called
procedure does not have an error handler, control will return to the error handler in the calling
procedure. In this way, control moves back up the calling chain to the closest error handler.

Let’s see an example. Here, we set up an error handler in a subroutine and then call another subroutine,
LoadText, to load text from a file the user specifies into a text box, Text1:

Private Sub Command1_Click()

 On Error GoTo FileError

 LoadText

 Exit Sub

FileError:

 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case 53
 MsgBox "File not found"
 Case Default
 MsgBox Err.Description
 End Select

End Sub

Here’s the LoadText subroutine, which uses an Open Common Dialog to get the name of the file to
open, opens the file, and loads the file’s text into Text1:

Public Sub LoadText()
 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)
 Close #1

 End With
End Sub

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1024-1029.html (1 of 4) [3/14/2001 2:10:07 AM]

If an error occurs in LoadText, which has no error handler itself, control returns back to the calling
subroutine, and the code in the error handler there is executed. In this way, you don’t have to worry
about calling procedures without error handlers when you’re trying to trap errors.

Creating An Error Object Directly In Visual Basic

You can create an error object directly and use it as a return value from your procedures. To create that
object, you use the Visual Basic CVErr function, passing it the error code for the error you want to
create.

Let’s see an example. Here, we’ll set up a function, MakePositiveNumber, which takes a string
representing an integer (for example, 25) and returns the integer represented by that string (for
example, 25). If you pass MakePositiveNumber a string representing a negative integer (for example,
–25), the function will return an error object (actually a Variant of subtype Error).

We start by declaring MakePositiveNumber, indicating that it will accept a string and return a variant
(that variant can be either a number or an error object):

Public Function MakePositiveNumber(strData As String) As Variant
...

Next, we use the Visual Basic Val function to create an integer from the string passed to us (to keep
this example short, we’re assuming the string passed to MakePositiveNumber does indeed represent a
valid positive or negative integer):

Public Function MakePositiveNumber(strData As String) As Variant
 Dim intValue As Integer

 intValue = Val(strData)
...

If the integer is less than 0, we return an error with the error code 5 (which in Visual Basic means
“Invalid procedure call”) using CVErr this way:

Public Function MakePositiveNumber(strData As String) As Variant
 Dim intValue As Integer

 intValue = Val(strData)
 If intValue < 0 Then
 MakePositiveNumber = CVErr(5)
...

Otherwise, we return the positive integer this way:

Public Function MakePositiveNumber(strData As String) As Variant
 Dim intValue As Integer

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1024-1029.html (2 of 4) [3/14/2001 2:10:07 AM]

 intValue = Val(strData)
 If intValue < 0 Then
 MakePositiveNumber = CVErr(5)
 Else
 MakePositiveNumber = intValue
 End If
End Function

Now we’ll put MakePositiveNumber to work. When the user clicks a command button, Command1,
we can take the string in a text box, Text1, use MakePositiveNumber to convert it to a number, and
display the result in another text box, Text2:

Private Sub Command1_Click()
 Dim varNumber As Variant

 varNumber = MakePositiveNumber(Text1.Text)

 Text2.Text = Str(varNumber)
End Sub

We can check for error return values with the Visual Basic IsError function, which returns True if you
pass it an error object. If MakePositiveNumber did return an error, we convert that error into a number
with the Visual Basic CInt function, and if that error is 5, indicating that the passed string represented a
negative number, we display a message box informing the user that the number to convert must be
positive:

Private Sub Command1_Click()
 Dim varNumber As Variant

 varNumber = MakePositiveNumber(Text1.Text)

 If IsError(varNumber) Then
 If CInt(varNumber) = 5 Then
 MsgBox "Number must be positive"
 End If
 Else
 Text2.Text = Str(varNumber)
 End If
End Sub

And that’s it—we’ve created and used our own error objects. When you run the program and try to
convert a negative value, as shown in Figure 29.2, the program displays an error. The code for this
example is located in the errobject folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1024-1029.html (3 of 4) [3/14/2001 2:10:07 AM]

Figure 29.2 Using a user-defined error object in Visual Basic.

Trappable Cancel Errors In Common Dialogs

The usual way to work with the Cancel button in Common Dialogs is to use trappable errors. You set
the Common Dialog control’s CancelError property to True, and the Common Dialog control will
generate an error when the user clicks the Cancel button.

Let’s see an example. Here, we’ll use a Common Dialog to open a text file the user has selected and
display it in a text box, Text1. If the user has clicked the Cancel button, the trappable error cdlCancel
is generated, and we display a message box asking the user to select a file and try the operation again
by showing the Open dialog box again:

Private Sub Command1_Click()

 On Error GoTo FileError

 With CommonDialog1

 .ShowOpen
 Open .FileName For Input As #1
 Text1.Text = Input$(LOF(1), #1)

 Close #1

 End With

 Exit Sub
FileError:
 Select Case Err.Number
 Case cdlCancel
 MsgBox "Please select a file."
 Resume
 Case Default
 MsgBox "File Error"
 End Select

End Sub

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1024-1029.html (4 of 4) [3/14/2001 2:10:07 AM]

javascript:displayWindow('images/29-02.jpg',366,316)
javascript:displayWindow('images/29-02.jpg',366,316)

Debugging In Visual Basic

Visual Basic offers a powerful suite of debugging options—notably the ability to single-step through
your code as it’s executing. The standard way to debug is to place a breakpoint at a particular line in
your code, and when execution reaches that line, it will halt and Visual Basic will enter the Debug
state, giving you access to your code and variables. You can examine the contents of those variables
and work through your code line by line, watching program execution behind the scenes.

For example, we might write the following code, which is meant to increment the value in a text box,
Text1, each time you click a button:

Private Sub Command1_Click()
 Dim intCounter As Integer

 intCounter = intCounter + 1
 Text1.Text = intCounter

End Sub

What actually happens is that the value 1 appears in the text box each time you click the button—it’s
time to debug. To start that process, we place a breakpoint at this line in our code:

Private Sub Command1_Click()
 Dim intCounter As Integer

 intCounter = intCounter + 1
 Text1.Text = intCounter
End Sub

You place a breakpoint in code by moving the text insertion caret to that line and either selecting
Toggle Breakpoint in the Debug menu or pressing F9. (Breakpoints toggle, so to remove the
breakpoint, select Toggle Breakpoint in the Debug menu or press F9 again.)

Now when you run the program and press the button, execution halts at the breakpoint, and the code
window appears. You can examine the contents of variables by selecting them on the screen with the
mouse and clicking the Quick Watch item in the Debug menu (besides individual variables, you can
select an entire expression). This opens a window displaying the current value of the variable or
expression you’ve selected.

To move through your program step-by-step, you can select these stepping options in the Debug menu:

• Step Into—Single-step through the code, entering called procedures if encountered.

• Step Over—Single-step through the code, stepping over procedure calls.

• Step Out—Step out of the current procedure.

Examining the contents of the intCounter variable shows that it’s being reset to 0 each time the code
runs, and we realize that we should declare that variable as static this way:

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1029-1034.html (1 of 3) [3/14/2001 2:10:23 AM]

Private Sub Command1_Click()
 Static intCounter As Integer

 intCounter = intCounter + 1
 Text1.Text = intCounter

End Sub

That’s the process in overview—we’ve debugged the code. For more details on the debugging process,
and to examine other debugging processes like selected code execution, see the following topics in this
chapter.

TIP: Want to save a little time debugging? Often the crucial aspect of debugging is watching the values
in your variables change as your program executes, and sometimes doing that without the debugger is
easy enough: just add some temporary text boxes or message boxes to your program and use them to
display the values you want to watch. This is an expedient shortcut for simple bugs—but if it doesn’t fit
the bill for you, turn to the debugger.

Setting Debugging Breakpoints

Breakpoints are the foundation of Visual Basic debugging. When you set breakpoints in a program and
run that program, program execution continues until one of the breakpoints is encountered and program
execution stops, making Visual Basic enter the Debug state. You place a breakpoint in code by moving
the text insertion caret to that line and either selecting Toggle Breakpoint in the Debug menu or
pressing F9. (Breakpoints toggle, so to remove the breakpoint, select Toggle Breakpoint in the Debug
menu or press F9 again.) When you place a breakpoint in code, it appears at design time in red, as
shown in Figure 29.3.

Figure 29.3 Setting a breakpoint in code at design time.

When you run the program and reach the breakpoint, execution stops and Visual Basic appears in the
Debug state, as shown in Figure 29.4. You can see the breakpoint highlighted in Visual Basic in that
figure, and the arrow in the left margin of the code window points to the current line of execution.

Figure 29.4 A breakpoint in Visual Basic’s Debug state.

You can execute the lines following a breakpoint by single stepping, and we’ll take a look at that
process in the next topic.

Single-Stepping While Debugging

When you’ve stopped a program at a breakpoint, you get an inside look at what’s going on. When the

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1029-1034.html (2 of 3) [3/14/2001 2:10:23 AM]

javascript:displayWindow('images/29-03.jpg',695,450)
javascript:displayWindow('images/29-03.jpg',695,450)
javascript:displayWindow('images/29-04.jpg',695,450)
javascript:displayWindow('images/29-04.jpg',695,450)

code is stopped at a breakpoint, you can move through the code with the single-stepping options in the
Debug menu:

• Step Into—Single-step through the code, entering the code in called procedures if procedure
calls are encountered (shortcut: press F8).

• Step Over—Single-step through the code, stepping over procedure calls (shortcut: press
Shift+F8).

• Step Out—Step out of the current procedure (shortcut: press Ctrl+Shift+F8).

For example, take a look at Figure 29.4. There, we are stopped at a breakpoint, but we can single-step
to the next line, as shown in Figure 29.5. As you can see in that figure, the arrow at left in the code
window has moved to the next line, and we’ve executed the previous line of code. Single stepping in
this way, you can move through your code to debug it.

Figure 29.5 Single-stepping in Debug mode.

Examining Variables And Expressions

Just single-stepping through a program when debugging it wouldn’t be of that much use—we should be
able to examine the value in the various program variables as well. You can do that with a “quick
watch” window.

To examine the value in a variable or expression in the code window when stopped at a breakpoint,
select the variable or expression you want to examine with the mouse and select the Quick Watch item
in the Debug menu, or press Shift+F9. This opens the Quick Watch window you see in Figure 29.6.
You can see the value in the variable named intCounter in that window.

Figure 29.6 Examining a variable with a Quick Watch window.

Besides quick watches, you can open a whole watch window, as we’ll see in the next topic.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1029-1034.html (3 of 3) [3/14/2001 2:10:23 AM]

javascript:displayWindow('images/29-05.jpg',695,450)
javascript:displayWindow('images/29-05.jpg',695,450)
javascript:displayWindow('images/29-06.jpg',580,456)
javascript:displayWindow('images/29-06.jpg',580,456)

Adding Debug Watch Windows

You can add a watch window to your debugging session and display the values of selected variables or
expressions in that window continuously as you execute your program line by line.

To add a watch window, select the variable or expression you want to watch with the mouse and click
the Add Watch item in the Debug menu. This opens the Add Watch dialog box; make sure the variable
or expression you want to watch is entered in the Expression box and click on OK. When you do,
Visual Basic adds a watch window to the debug session, as you can see at bottom in Figure 29.7, where
we’re watching the value in the variable intCounter.

Figure 29.7 A debug watch window.

Being able to continuously watch the values in your program’s variables as the program executes can
be a great asset in debugging, because you can see unexpected values as they appear.

Using The Immediate Window While Debugging

When debugging, you can use the Immediate window to examine expressions or variables immediately,
just by typing them in. The Immediate window appears at lower left when Visual Basic is in its Debug
state, as shown in Figure 29.8.

Figure 29.8 The Immediate debugging window.

You can enter an expression to evaluate in the Immediate window if you precede it with a question
mark and then press the Enter key. For example, here’s how we check the value in a variable named
intCounter:

?intCounter

And here’s how we check the value of the expression intCounter + 1:

?intCounter + 1

Visual Basic displays the values of the expressions you’re examining in the Immediate window (on the
line after your query), as shown in Figure 29.8, where we see that intCounter holds a value of 1.

Clearing All Debugging Breakpoints

If you have a large number of breakpoints in a program, you might be relieved to learn that you can
clear them all at once with the Clear All Breakpoints menu item in the Debug menu. The shortcut for
this menu item is Ctrl+Shift+F9.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1034-1036.html (1 of 2) [3/14/2001 2:10:30 AM]

javascript:displayWindow('images/29-07.jpg',566,447)
javascript:displayWindow('images/29-07.jpg',566,447)
javascript:displayWindow('images/29-08.jpg',566,448)
javascript:displayWindow('images/29-08.jpg',566,448)

Executing Code Up To The Cursor While Debugging

It can be tedious to single-step through a great deal of code. There is another option, however—you can
click a line of code to place the blinking text insertion caret at that line and select the Run To Cursor
item in the Debug menu, or press Ctrl+F8. When you do, execution continues to the line you’ve
selected.

Skipping Over Statements While Debugging

You can skip over lines of code when debugging a program. To do that, just click the line of code you
want execution to start with (after having skipped the lines you don’t want to execute) and select the
Set Next Statement item in the Debug menu, or press Ctrl+F9.

Visual Basic 6 Black Book:Error Handling And Debugging

http://24.19.55.56:8080/temp/ch29\1034-1036.html (2 of 2) [3/14/2001 2:10:30 AM]

Chapter 30
Deploying Your Program: Creating Setup
Programs, Help Files, And Online Registration
If you need an immediate solution to:

Creating Your Application’s EXE File

Using The Package And Deployment Wizard

Step 1: Package Type

Step 2: Build Folder

Step 3: Files

Step 4: Distribution Type

Step 5: Installation Title

Step 6: Icons

Step 7: Install Locations

Step 8: Shared Files

Step 9: Finished!

Creating Help Files With The Microsoft Help Workshop

Creating A Help Project’s RTF File

Entering Text In A Help File

Creating A Help Hotspot

Creating A Help Hotspot Target

Titling A Help Page

Adding Help Topics To The Help Index

Creating Help Pop-Up Links

Creating Help “Tool Tips” Targets

Compiling Help Files With The Help Workshop

Displaying A Help File From Visual Basic

Building Online Help Into Your Application

Creating Online User Registration

Uploading Online Registration Information To An FTP Server

Concluding The FTP Transfer Of The Online Registration Information

In Depth

You’ve created your application, and it’s a doozy. It runs fine—on your computer. But what’s next?
How do you get your application out the door and onto other people’s computers?

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1037-1040.html (1 of 3) [3/14/2001 2:10:42 AM]

That’s what this chapter is all about. Here, we’re going to reap the benefits of all our work by
deploying applications to users. We’ll see how to create setup programs, Help files, and even online
registration.

Application deployment is a topic many books skip, but it’s of vital interest to many programmers.
After all, the EXE files you create might run fine on your computer, which has a full installation of
Visual Basic on it, but what about other computers? You can’t just copy the EXE files to another
computer and expect them to run: Visual Basic applications require a great deal of support in terms of
dynamic link libraries and possibly other components like ActiveX controls you may have used. How
do you install all that? We’ll see how that works in this chapter.

Setup Programs

You use setup programs to install your application on other computers, and Visual Basic has a good
tool that will help us here: the Package And Deployment Wizard. Using this wizard, you can create
setup files that you can distribute on CDs, multiple disks, or even across the Internet.

TIP: It’s important to make sure that you don’t distribute licensed material or components without
permission, of course. Check with the manufacturer of the DLL or OCX files you want to distribute first,
making sure its policy allows distribution.

In this chapter, we’ll see how easy it is to create setup programs with the Package And Deployment
Wizard. Once you’ve created your application’s EXE file, you’re all set—the Package And
Deployment Wizard will analyze what files your application needs and include them in the data file for
your setup program. The data itself is stored in a cabinet file, with the extension .cab, and the setup.exe
program will unpack and deploy the contents of that file as needed.

Help Files

Help files are an asset to any application, and just about all serious applications come with a Help
system of some sort. In this chapter, we’ll see how to create Windows Help files of the kind you can
display on the user’s computer with standard Windows calls.

To create a Windows Help file, you use the Windows Help Workshop, which creates a Help project.
You place the actual Help text in a rich text (RTF) file, and add that file to the Help project. Why rich
text? The Help Workshop uses RTF files so that you can embed jumps, called hotspots, that work like
hyperlinks, and commands directly into your Help file, encoding those items with rich text footnotes,
hidden text, and so forth. We’ll see how this works in this chapter. When you’re done with your RTF
file, you use the Help Workshop to compile it into an HLP file.

Now that you have an HLP file, how do you open it from Visual Basic? Here, we’ll use the Windows
API WinHelp function, which allows you a great deal of flexibility when opening Help files. You can
even make the Package And Deployment Wizard include your Help files and data files in the setup
program, as we’ll see in this chapter.

Online Registration

Keeping in touch with an application’s users is important for many programmers, which is why online

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1037-1040.html (2 of 3) [3/14/2001 2:10:42 AM]

registration has become so popular. Using online registration, the user has only to select a menu item to
register the application with you.

In this chapter, we’ll use the FTP protocol to let users connect and register their applications in a few
easy steps. Using FTP is probably the most common method for handling online registration and
provides us with a better and more robust alternative to using another alternative, email, because the
Visual Basic email support relies on the Microsoft MAPI system, which the user may not have enabled.

When users decide to register online, the program will display an information dialog box, asking them
to enter their name and email address. When they click a button labeled Register, the program will
establish an FTP connection to your server (connecting to the Internet, if necessary, first) and upload
the information the users provided, along with the date and time. In this way, you can keep track of
your application’s users.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1037-1040.html (3 of 3) [3/14/2001 2:10:42 AM]

The “Designed For Microsoft Windows” Logo

If you’re serious about your application and want to release it commercially, you might want to fulfill
the requirements for the Microsoft “Designed for Microsoft Windows” logo. To add this logo to your
application, that application must pass a fairly rigorous set of tests (you submit the application on a CD
for testing).

Even if you are not trying to get the logo, it’s worth taking a look at some of the requirements an
application must fill to get that logo, because they provide some insight into what Microsoft considers
good programming practice. For example, your application must:

• Be a 32-bit multitasking program, stable and functional on all current versions of Windows
and Windows NT.

• Digitally sign ActiveX controls that it provides and support Authenticode signing of all its
downloadable code.

• Provide an OLE container or object server, and allow users to drag objects to any container.
Object servers and OLE containers must pass tests of basic functionality, and an Object
command must be placed on a container’s Insert menu.

• Use new Microsoft installer technology, which makes it easy to meet the other install/uninstall
requirements.

• Provide a graphical 32-bit setup program that detects software versions, creates shortcuts,
supports CD-ROM AutoPlay, supports Add/Remove Programs, and checks operations in
advance.

• Support the Universal Naming Convention, long file names, and hard drives larger than 2GB.

• Support users who upgrade their computers from one version of Windows to another by
providing a migration DLL (when necessary).

• Provide keyboard access to all features and provide some kind of notification of the keyboard
focus location.

• Provide and register a fully automated uninstaller that appears in Add/Remove Programs and
that when run, removes all application files, references in the Start menu, and Registry entries.

• Not install executables or DLLs in the root directory, but must use the \Program Files directory
instead.

• Separate user data from application code and query the Registry for the names of suitable
directories in which to save user data.

• Not overwrite core components when installing, or decrement or remove core components
when uninstalling. It must register all shared components during installation.

• Register native data types and support informational keys in the Registry. It must not add any
entries to the Win.ini or System.ini files.

That’s just a partial list—you can get more information directly from Microsoft.

That’s it for the overview of what’s in this chapter. Now it’s time to turn to the Immediate Solutions
section.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1041-1044.html (1 of 3) [3/14/2001 2:10:44 AM]

Immediate Solutions

Creating Your Application’s EXE File

The first step in deploying your application is to create its EXE (or DLL or OCX) file. You probably
already know how to create your project’s EXE file, but for the record, you just select the Make
projectname.exe (or .dll or .ocx) item in the File menu.

TIP: The Package And Deployment Wizard will actually create your application’s executable file for
you if that file doesn’t exist (it first asks whether you want it to).

After your application’s executable file is created, you’re ready to create a setup program to deploy it
with.

Using The Package And Deployment Wizard

The Visual Basic Package And Deployment Wizard is an add-in that lets you deploy your application.
If you don’t see it in the Visual Basic Add-Ins menu, use the Add-In Manager (which appears in the
Add-Ins menu) to insert it in that menu.

TIP: It’s important to make sure that you don’t distribute licensed material or components without
permission, of course. Check with the manufacturer of the DLL or OCX files you want to distribute first,
making sure their policy allows distribution.

Open the application you want to distribute in Visual Basic now, and open the Package And
Deployment Wizard, as shown in Figure 30.1. As you can see in that figure, there are several options
here: you can create a new setup program, deploy a setup package to a distribution site, or manage the
scripts you can use with this wizard.

Figure 30.1 The Package And Deployment Wizard.

We’ll create a setup program for our alarm clock application, the alarm project, which we developed in
Chapter 13, in the next few topics in this chapter, progressing step-by-step through the Package And
Deployment Wizard. Select the top button in the Package And Deployment Wizard now to create a
setup program for the Alarm application.

Step 1: Package Type

In the first step of the Package And Deployment Wizard, you select the package type you want to
create. In this case, make sure the Standard Setup Package item is selected in the Package Type box.

Selecting this item means that we will create a deployment package that can be installed using a
setup.exe file. After you’ve selected the Standard Setup Package item, click the Next button to move on
to Step 2 in the Package And Deployment Wizard.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1041-1044.html (2 of 3) [3/14/2001 2:10:44 AM]

javascript:displayWindow('images/30-01.jpg',450,379)
javascript:displayWindow('images/30-01.jpg',450,379)

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1041-1044.html (3 of 3) [3/14/2001 2:10:44 AM]

Step 2: Build Folder

In Step 2 of the Package And Deployment Wizard, you select the folder in which your deployment
package will be created. By default, this folder is named Package and Package And Deployment is added
to your Visual Basic project’s folder. For example, in the alarm project, which is in the C:\vbbb\alarm
folder, the deployment package will be created in the folder C:\vbbb\alarm\Package. If you want to build
the deployment package in another folder, select that folder now.

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 3: Files

In Step 3 of the Package And Deployment Wizard, you can select what files will be included for
distribution. This includes your application’s executable file and all the needed support files—the
Package And Deployment Wizard determines what support files your application needs and adds them
automatically.

The Package And Deployment Wizard presents a list of files it will include in your deployment package
in this step, and you can deselect ones you don’t want to include. You can also include additional files in
your deployment package, such as Help or application-specific data files, by clicking the Add button and
specifying those files.

TIP: If you’re going to install your application on a computer that already has Visual Basic installed, you
can deselect the standard DLL and OCX files that come with Visual Basic because you won’t have to
deploy them. Doing so will avoid annoying questions about replacing those files when you install your
application.

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 4: Distribution Type

In Step 4 of the Package And Deployment Wizard, you specify how you want to distribute your
application—as one single cabinet (.cab) file, or over multiple disks—as shown in Figure 30.2. If you
select deployment with multiple disks, you can specify the capacity of each disk, from 360K to 2.88MB,
and the Package And Deployment Wizard will create a CAB file for each disk and let you know how
many disks you need. Here, we’ll select the single cab option for the alarm clock application we’re
working with.

Figure 30.2 Selecting the distribution type in the Package And Deployment Wizard.

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 5: Installation Title

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1044-1049.html (1 of 3) [3/14/2001 2:11:02 AM]

javascript:displayWindow('images/30-02.jpg',491,359)
javascript:displayWindow('images/30-02.jpg',491,359)

In Step 5 of the Package And Deployment Wizard, you enter the installation title for your application, as
shown in Figure 30.3. This title will appear on the setup program’s “wash” screen (which covers the
whole screen) when the user installs the application.

Figure 30.3 Selecting a deployment package’s installation title.

Here, we’ll use the title “Alarm”, as shown in Figure 30.3, while creating the deployment package for
our alarm clock application, but you may also want to include your company’s name in the title, if
applicable.

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 6: Icons

In Step 6 of the Package And Deployment Wizard, you indicate what new program group(s) you want to
add to Windows and the icons to use. In this case, where we’re building a deployment package for our
alarm application, we’re only going to add one program group, Alarm, and use the icon from the
alarm.exe file, as shown in Figure 30.4 (these are the defaults the Package And Deployment Wizard has
selected for us).

Figure 30.4 Selecting program groups and icons to install in the Package And Deployment Wizard.

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 7: Install Locations

In Step 7 of the Package And Deployment Wizard, you indicate where you want the parts of your
application installed on the target computer. By default, your application is placed into the directory the
user specifies, which is represented in the Package And Deployment Wizard with the macro $(AppPath),
and the other files, like DLL files, are installed where your application expects to find them (such as the
windows\system directory).

You can change the default installation location of your applications files in this step; for example, if you
want your Help files to go into the installation folder’s Help subfolder, specify that they should be
installed in the $(AppPath)\Help folder.

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 8: Shared Files

In Step 8 of the Package And Deployment Wizard, you can indicate which files you want to register as

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1044-1049.html (2 of 3) [3/14/2001 2:11:02 AM]

javascript:displayWindow('images/30-03.jpg',491,359)
javascript:displayWindow('images/30-03.jpg',491,359)
javascript:displayWindow('images/30-04.jpg',491,359)
javascript:displayWindow('images/30-04.jpg',491,359)

shared files. These files may be used by several applications in the target computer and will be
uninstalled only if all applications that use them are uninstalled. If in doubt, it’s better to register files as
shared—especially common DLLs and OCXs. (And if really in doubt, don’t forget to test your
application’s setup program.)

When you’re ready, click the Next button to move on to the next step in the Package And Deployment
Wizard.

Step 9: Finished!

Step 9 in the Package And Deployment Wizard is the last step in creating your application’s deployment
package. Just click the Finish button to create the CAB file(s), the setup.exe program itself, and the
setup.lst file, which holds a list of the files to install and where they go (setup.exe reads setup.lst to know
what to install where).

When you click Finish, the Package And Deployment Wizard also displays a packaging report indicating
that the alarm.cab file has been created (click Close to close the packaging report dialog box and click
Close again to close the Package And Deployment Wizard).

And that’s all it takes—now the user can run the setup.exe program to install your application, as shown
in Figure 30.5. When the setup program runs, it handles all the details of checking for adequate disk
space, asking the user where to install the application, and installs the necessary files for you, using the
CAB file and the setup.lst file. It’s that simple.

Figure 30.5 Installing the alarm application.

You’ve completed the process: using the Package And Deployment Wizard, you can now create setup
programs to distribute your application.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1044-1049.html (3 of 3) [3/14/2001 2:11:02 AM]

javascript:displayWindow('images/30-05.jpg',513,374)
javascript:displayWindow('images/30-05.jpg',513,374)

Creating Help Files With The Microsoft Help Workshop

The Testing Department is calling again. Your new program, SuperDuperGraphics4U, is really fine, but no one
seems to be able to use it. But, you say, it’s so intuitive and simple: just use Alt+F8 to draw a line,
Ctlr+Shift+Esc to draw a circle, and…. Add a Help file, they say.

You can create Help files with the Microsoft Help Workshop, hcw.exe, which comes with Visual Basic, and
appears in Figure 30.6. To see how the Help Workshop works, we’ll create a basic Help file for an application
named “Helper” over the next few topics in this chapter.

Figure 30.6 The Microsoft Help Workshop.

TIP: You can create more advanced Help files than the one we’ll create in this chapter, complete with tabs and
clickable tree views of Help topics, by creating a Help contents file (extension .cnt) with the Help Workshop, setting
up a hierarchy of Help topics and headers as you want.

To create the Help file, helper.hlp, for the helper application, we will create a Help project, helper.hpj, in the
Help Workshop. This project keeps track of the files in our Help system, and in this example, we’ll just have one
such file: helper.rtf, which will hold the data for our Help file. In that RTF file, we’ll set up the Help topics to
display to the user, along with the hotspots in the Help file that will connect those topics.

After adding helper.rtf in the helper.prj file, you can compile that RTF file to create helper.hlp. And to open the
helper.hlp Help file, you can use the Windows API function WinHelp as follows:

Private Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVal hwnd _
 As Long, ByVal lpHelpFile As String, ByVal wCommand As Long, ByVal _
 dwData As Long) As Long

To create a new Help project, select the New item in the Help Workshop’s File menu now, select the Help
Project item in the New dialog box that opens, and click on OK. Using the Save As menu item in the Help
Workshop, save the new Help project as helper.hpj. The new Help project appears in the Help Workshop in
Figure 30.7.

Figure 30.7 Creating a Help project in the Microsoft Help Workshop.

Now that we’ve created a new Help project, we’ll add the actual Help text to that project, and we do that by
creating an RTF file, as we’ll see in the next topic.

Creating A Help Project’s RTF File

The real work of creating a Help file takes place in the Help file’s RTF file. This rich text file holds not only the
text for your Help files but also holds the commands used in your Help file.

For example, you use Help file RTF commands to create Help hotspots, which work like hyperlinks, and pop-up
links, which work like tool tips. As we’ll see in the following topics, you use rich text format codes to support
these and other Help features. For example, here are some rich text format codes and what they do as far as the
Help workshop is concerned:

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1049-1053.html (1 of 2) [3/14/2001 2:11:29 AM]

javascript:displayWindow('images/30-06.jpg',600,411)
javascript:displayWindow('images/30-06.jpg',600,411)
javascript:displayWindow('images/30-07.jpg',600,411)
javascript:displayWindow('images/30-07.jpg',600,411)

• \footnote—Footnote; handles special topic commands

• \page—Page break; ends the current topic

• \strike—Strikethrough; indicates a hotspot

• \ul—Underline; indicates a link to a pop-up topic

• \uldb—Double underline; indicates a hotspot

• \v—Hidden test; indicates the topic ID to jump to

We’ll see how these format codes are used in the following topics. In fact, we’ll build our Help file’s RTF file,
helper.rtf, with Microsoft Word, and we won’t have to deal with these codes directly.

Using Microsoft Word, we create the file helper.rtf now (save the file in RTF format). Next, we add it to our Help
project in the Help Workshop by clicking the Files button in the Help Workshop, clicking the Add button in the
Topic Files dialog box that appears, selecting helper.rtf, and clicking on OK. This adds helper.rtf to our Help
project, as you see in the Help Workshop in Figure 30.8.

Figure 30.8 Adding helper.rtf to the helper.hpj Help project.

In the following topics in this chapter, we’ll see how to create the text in the helper.rtf file to build our Help file.
The actual RTF file we create is located in the helper folder on this book’s accompanying CD-ROM (note that
the RTF codes in that listing will not be visible in Microsoft Word, which interprets and formats the text with
those codes).

Entering Text In A Help File

The text in a Help file is divided into pages, and only one page is displayed at a time. To divide your text into
pages in Microsoft Word, you enter a page break with the Insert[vbar]Break menu item or by pressing
Ctrl+Enter. The first page in the RTF file is the first page displayed when your Help file is opened.

Let’s see an example. Here, we will make the first page of the helper.hlp file we’re creating a welcome page by
entering this text directly into helper.rtf and following it with a page break:

Contents

Welcome to helper example application. This help file gives you help on the
menu items in helper.

Now this text will greet the user when the helper.hlp file is first opened, as shown in Figure 30.9.

Figure 30.9 The opening text in our Help file.

Actually, this text is not really enough by itself—we should allow users some way to jump to the Help pages they
want to look at, and we’ll do that in the next topic.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1049-1053.html (2 of 2) [3/14/2001 2:11:29 AM]

javascript:displayWindow('images/30-08.jpg',600,411)
javascript:displayWindow('images/30-08.jpg',600,411)
javascript:displayWindow('images/30-09.jpg',359,170)
javascript:displayWindow('images/30-09.jpg',359,170)

Creating A Help Hotspot

To let the user move around in a Help file, you use Help hotspots, which act much like hyperlinks. Help
hotspots appear underlined in Help files, and when the user clicks a hotspot, the Help system jumps to the target
of that hotspot and opens the associated Help page.

To see how hotspots work, we’ll add two hotspots to the opening Help page we developed in the last topic.
Here, we’ll let the user jump to two new pages, as shown in Figure 30.10—a Help page giving help about the
application’s File menu items, and another page giving help about the application’s Help menu.

Figure 30.10 Adding two Help hotspots to a Help file.

To add those hotspots to the helper.rtf file, we add this text:

Contents

Welcome to helper example application. This help file gives you help on
the menu items in helper.

To get help for the menu you are interested in, click a topic:

File Menu Items
Help Menu Items

To make the “File Menu Items” and “Help Menu Items” into Help hotspots, we give them a double underline,
using the Microsoft Word Format menu:

Contents

Welcome to helper example application. This help file gives you help on
the menu items in helper.

To get help for the menu you are interested in, click a topic:

File Menu Items
===============
Help Menu Items
===============

Now that we’ve created two Help hotspots, we will connect a label, called a jump tag, to the hotspots to indicate
where we want to jump to when the user clicks the hotspots. In this case, we add the jump tags
FILE_MENU_ITEMS and HELP_MENU_ITEMS to our hotspots this way, marking them as hidden text
with the Word Format menu (hidden text appears in a Word document with a dotted underline):

Contents

Welcome to helper example application. This help file gives you help on

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1053-1058.html (1 of 4) [3/14/2001 2:11:44 AM]

javascript:displayWindow('images/30-10.jpg',568,276)
javascript:displayWindow('images/30-10.jpg',568,276)

the menu items in helper.

To get help for the menu you are interested in, click a topic:

File Menu ItemsFILE_MENU_ITEMS
===============...............
Help Menu ItemsHELP_MENU_ITEMS
===============...............

The text for our helper.rtf file so far appears in Microsoft Word in Figure 30.11.

Figure 30.11 Creating help jumps and their targets in Microsoft Word.

Because we’ve made the new jump tags hidden text, they will not appear visually in the Help file; however,
when the user clicks a Help hotspot, the Help system will look for the page that has the same tag as the hotspot
that the user clicked. How do you give a Help page a tag? We’ll look at that topic next.

Creating A Help Hotspot Target

To connect a Help hotspot with a page in a Help file, you place the blinking insertion caret in Word at the very
beginning of the target page in the Help file’s RTF file, and select Word’s Insert[vbar]Footnote menu item to
insert a new footnote.

In the Footnote And Endnote dialog box that appears, click Custom Mark in the Numbering box, enter the
special footnote character “#” (that is, type that character # into the Custom Mark box), and click on OK. This
inserts a new footnote in the document and opens a window showing the document’s footnotes at the bottom of
the window. To connect a Help hotspot to the current page, you simply enter the hotspot’s tag as the footnote
text.

Let’s see an example. In the previous topic, we created two Help hotspots, and in this topic, we’ll create the
target the Help system will jump to when the user clicks the File Menu Items hotspot; the tag for this hotspot is
FILE_MENU_ITEMS.

To create the page to jump to when the user clicks the File Menu Items hotspot, we insert a page break to start a
new page and add the title “File Menu Items” to that page:

Contents

Welcome to helper example application. This help file gives you help on the
menu items in helper.

To get help for the menu you are interested in, click a topic:

File Menu ItemsFILE_MENU_ITEMS
===============...............
Help Menu ItemsHELP_MENU_ITEMS
===============...............
----------------------------------Page Break----------------------------

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1053-1058.html (2 of 4) [3/14/2001 2:11:44 AM]

javascript:displayWindow('images/30-11.jpg',737,356)
javascript:displayWindow('images/30-11.jpg',737,356)

File Menu Items
...

On this new page, we can list the menu items in the application’s File menu, each with a hotspot to a new page,
like this:

Contents

Welcome to helper example application. This help file gives you help on the
menu items in helper.

To get help for the menu you are interested in, click a topic:

File Menu ItemsFILE_MENU_ITEMS
===============...............
Help Menu ItemsHELP_MENU_ITEMS
===============...............
----------------------------------Page Break----------------------------
File Menu Items

Select the menu item you want to get help on:

 NewNEW
 ===...
 OpenOPEN
 ====....
 CloseCLOSE
 =====.....

To connect the FILE_MENU_ITEMS jump tag with the new page, then, place the insertion caret at the
beginning of that page, select the Insert[vbar]Footnote menu item, and give the footnote the custom mark # and
the text FILE_MENU_ITEMS, as shown in Figure 30.12.

Figure 30.12 Setting up a Help hotspot target.

Now we’ve connected the File Menu Items hotspot to the next Help page we’ve just created; when the user
clicks the File Menu Items hotspot, shown in Figure 30.10, we’ll jump to this new page, shown in Figure 30.13.

Figure 30.13 Jumping to a Help target page.

Using footnotes, you can do more than just create Help hotspots; you can title a Help page, and we’ll see how to
do that in the next topic.

Titling A Help Page

You can add a title to a Help page. To do that, you add a footnote to a Help page, giving it the custom mark “$”,

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1053-1058.html (3 of 4) [3/14/2001 2:11:44 AM]

javascript:displayWindow('images/30-12.jpg',737,556)
javascript:displayWindow('images/30-12.jpg',737,556)
javascript:displayWindow('images/30-13.jpg',568,276)
javascript:displayWindow('images/30-13.jpg',568,276)

and give the footnote the text you want to use as the page’s title.

Let’s see an example. In this case, we will add the title “File Menu Items” to the appropriate page in the
helper.rtf file that we’ve been developing for the previous few topics. To do that, position the insertion caret at
the beginning of the File Menu Items page, add a footnote with the custom mark “$”, and give that footnote the
text “File Menu Items”, as shown in Figure 30.12.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1053-1058.html (4 of 4) [3/14/2001 2:11:44 AM]

Adding Help Topics To The Help Index

You can add a Help topic to the Help index by inserting a footnote with the custom mark “K”, giving that
footnote the text you want to appear in the index. For example, we add the item File Menu Items to the
Help index in Figure 30.12, by adding a footnote, “K”, to the appropriate Help page in helper.rtf. Now
when the user uses the Help file’s index, the items we’ve added, such as File Menu Items and Help Menu
Items, appear in that index, as shown in Figure 30.14. When the user clicks them, the Help system jumps to
the matching page.

Figure 30.14 Adding items to the Help system’s index.

Creating Help Pop-Up Links

You can create Help pop-ups, which work much like tool tips in a Visual Basic program. As an example,
we’ve added the pop-up you see in Figure 30.15, which explains the term “file” with a pop-up. Pop-ups
appear in Help files with a dotted underline; when the user clicks that pop-up, the associated text is
displayed in a tool-tip-like window.

Figure 30.15 Adding a Help pop-up.

Adding a pop-up is just like adding a Help hotspot, but instead of double-underlining the hotspot, you just
use a single underline. Let’s see an example. Here, we’ll create the pop-up you see at work in Figure 30.15.
To do that, just underline the term you want to create a pop-up for, using the Visual Basic Format menu,
and add the hidden text jump tag. We’ll use FILE_POPUP for the jump tag here, like this:

Open
 Opens a fileFILE_POPUP.
 ----..........

Because we’ve used a single underline instead of a double one, the Help system will display the text that
has the tag FILE_POPUP instead of actually jumping to that page. We’ll see how to create that page in the
next topic.

Creating Help “Tool Tips” Targets

To create a target page for a Help pop-up, you use footnotes with the custom mark “#”, just as you would
for any Help hotspot. To complete the example we started in the previous topic, we add a new page to our
helper example’s RTF file with the footnote “#” and the footnote text FILE_POPUP, as shown in Figure
30.16.

Figure 30.16 Adding a Help pop-up to an RTF file.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1058-1063.html (1 of 4) [3/14/2001 2:12:13 AM]

javascript:displayWindow('images/30-14.jpg',434,428)
javascript:displayWindow('images/30-14.jpg',434,428)
javascript:displayWindow('images/30-15.jpg',540,440)
javascript:displayWindow('images/30-15.jpg',540,440)
javascript:displayWindow('images/30-16.jpg',737,423)
javascript:displayWindow('images/30-16.jpg',737,423)

Finally, we place the text we want to display when the pop-up appears into the new page, as also shown in
Figure 30.16. Now when the user clicks the underlined item in the Help system, the pop-up will appear, as
shown in Figure 30.15.

Compiling Help Files With The Help Workshop

Now that you’ve created your RTF file with the Help text and hotspots you want to use, along with your
Help project in the Help Workshop, how do you create the actual HLP file? You use the Help Workshop’s
Compile item in the File menu. That menu item brings up the Compile A Help File dialog box you see in
Figure 30.17; click Compile to create the Help file, which in the case of the example we’ve developed over
the previous few topics is helper.hlp.

Figure 30.17 The Compile A Help File dialog box in the Help Workshop.

Congratulations—you’ve created a new Help file. But how do you launch it from Visual Basic? We’ll look
at that next.

Displaying A Help File From Visual Basic

The Testing Department is calling. Your new Help file is very helpful, but now you’ve got to display it
from your Visual Basic application. Makes sense, you think, but how do you do that?

To display a Help file from a Visual Basic program, you can use the Windows API function WinHelp:

Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVal_
 hwnd As Long, ByVal lpHelpFile As String, ByVal wCommand As Long,_
 ByVal dwData As Long) As Long

Here’s what the arguments to this function mean:

• hwnd—Handle of the window opening the Help file

• lpHelpFile—Name of the Help file to open

• wCommand—Open command; see the list that follows

• dwData—Additional data as required for the Help file opening operation

Here are the possible values you can use for the wCommand argument:

• HELP_CONTEXT = &H1

• HELP_QUIT = &H2

• HELP_INDEX = &H3

• HELP_CONTENTS = &H3&

• HELP_HELPONHELP = &H4

• HELP_SETINDEX = &H5

• HELP_SETCONTENTS = &H5&

• HELP_CONTEXTPOPUP = &H8&

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1058-1063.html (2 of 4) [3/14/2001 2:12:13 AM]

javascript:displayWindow('images/30-17.jpg',345,264)
javascript:displayWindow('images/30-17.jpg',345,264)

• HELP_FORCEFILE = &H9&

• HELP_KEY = &H101

• HELP_COMMAND = &H102&

• HELP_PARTIALKEY = &H105&

• HELP_MULTIKEY = &H201&

• HELP_SETWINPOS = &H203&

Let’s see an example. Here, we’ll open the helper.hlp Help file in an application named “helper” when the
user selects the Help item in the application’s Help menu. To start, we declare WinHelp and the constants
it can use:

Const HELP_CONTEXT = &H1
Const HELP_QUIT = &H2
Const HELP_INDEX = &H3
Const HELP_CONTENTS = &H3&
Const HELP_HELPONHELP = &H4
Const HELP_SETINDEX = &H5
Const HELP_SETCONTENTS = &H5&
Const HELP_CONTEXTPOPUP = &H8&
Const HELP_FORCEFILE = &H9&
Const HELP_KEY = &H101
Const HELP_COMMAND = &H102&
Const HELP_PARTIALKEY = &H105&
Const HELP_MULTIKEY = &H201&
Const HELP_SETWINPOS = &H203&

Private Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVal_
 hwnd As Long, ByVal lpHelpFile As String, ByVal wCommand As Long,_
 ByVal dwData As Long) As Long

Then, when the user selects the appropriate menu item, we display the helper.hlp file with WinHelp this
way:

Private Sub mnuHelp_Click()
 retVal = WinHelp(Form1.hwnd, "c:\vbbb\helper\helper.hlp",_
 HELP_INDEX, CLng(0))
End Sub

And that’s it—now the user can open the helper.hlp file from the Visual Basic helper application, as shown
in Figure 30.18.

Figure 30.18 Opening a customized Windows Help file from a Visual Basic program.

Now we’re supporting Help files in our Visual Basic applications. The code for this example is located in

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1058-1063.html (3 of 4) [3/14/2001 2:12:13 AM]

javascript:displayWindow('images/30-18.jpg',444,331)
javascript:displayWindow('images/30-18.jpg',444,331)

the helper folder on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1058-1063.html (4 of 4) [3/14/2001 2:12:13 AM]

Building Online Help Into Your Application

The Testing Department is calling again. The company’s software is changing too fast to keep up with
creating new Help files and sending them out to users all the time—what can we do? You suggest, how
about some online Help files?

You can build support for online Help files into Visual Basic applications easily by using the Web
browser control. Using that control, you can connect the users directly to the company Web site and let
them view Help files in HTML format.

Let’s see an example. Using the Visual Basic Application Wizard, create a new project named
“onlinehelp”. When the Application Wizard asks about Internet connectivity, as shown in Figure 30.19,
click the Yes option button and enter the Help Web page you want to display to the user as the startup
page for the program’s built-in Web browser, as also shown in that figure. Then complete building the
application with the Application Wizard by clicking the Finish button.

Figure 30.19 Adding an online Help page to a Visual Basic application.

To make the application’s Web browser look less like a browser and more like online Help, use the
Visual Basic menu editor to move the Web Browser menu item from the View menu to the Help menu
and change its caption to Online Help. In addition, remove all the controls from the frmBrowser form
except for the Web browser control, brwWebBrowser. Finally, take all code out of the frmBrowser
form except for this code, which displays the starting page when the user opens the browser:

Public StartingAddress As String

Private Sub Form_Load()
 Me.Show

 If Len(StartingAddress) > 0 Then
 brwWebBrowser.Navigate StartingAddress
 End If

End Sub

And that’s it—now when the user selects the Online Help item in the Help menu, the Web browser
appears and connects to the Help page you’ve selected online, as shown in Figure 30.20.
Congratulations—now you’re supporting online Help in your application. The code for this example is
located in the FrmBrowser folder on this book’s accompanying CD-ROM.

Figure 30.20 Supporting online Help in a Visual Basic application.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1063-1066.html (1 of 3) [3/14/2001 2:12:32 AM]

javascript:displayWindow('images/30-19.jpg',486,356)
javascript:displayWindow('images/30-19.jpg',486,356)
javascript:displayWindow('images/30-20.jpg',501,463)
javascript:displayWindow('images/30-20.jpg',501,463)

Creating Online User Registration

The Testing Department has sent an email. Isn’t there some way to keep track of your application’s
users? How about adding online registration to your application? Hmm, you think, how does that
work?

To let your application’s users register their new purchase easily, you can add online registration to
your program. When users click the Online Registration menu item in the Help menu, a dialog box
appears asking them to enter their name and email address. When they do and click a button marked
Register, the application connects to the Internet and sends the recorded information to you.

We’ll see how this works in the next few topics in this chapter, where we use the FTP protocol to
upload user registrations directly to an FTP site. This example, the onlinereg application, lets the user
select a menu item, Register Online, in the Help menu, and displays an online registration form, Form2,
as shown in Figure 30.21. When users enter their name and email address in the registration form and
click the button labeled Register, the program sends the data in that form to an FTP server.

Figure 30.21 The onlinereg application’s online registration form.

We’ll write the code for the registration form, Form2, now. When users enter their name and email
address and click the Register button, we start by writing that information out to a temporary file, along
with the name of the application the users are registering, as well as the time and date:

Private Sub Command1_Click()
 Open "c:\temp.dat" For Output As #1
 Print #1, "Registering SuperDuperDataCrunch" & vbCrLf
 Print #1, "Name: " & Text1.Text & vbCrLf
 Print #1, "email: " & Text2.Text & vbCrLf
 Print #1, "Time: " & Format(Now)
 Close #1
...
End Sub

This code stores the user information to the temp.dat file, like this:

Registering SuperDuperDataCrunch

Name: steve

email: steve@steveco.com

Time: 5/5/99 10:02:23 AM

This is the data that we will upload to the FTP server in the next topic.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1063-1066.html (2 of 3) [3/14/2001 2:12:32 AM]

javascript:displayWindow('images/30-21.jpg',406,316)
javascript:displayWindow('images/30-21.jpg',406,316)

TIP: Note that the file name here, temp.dat, may well conflict with an existing file. To make sure that
does not happen, you can use the Visual Basic GetTempName method to get a name for the temporary
file in which to store the user’s registration data.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1063-1066.html (3 of 3) [3/14/2001 2:12:32 AM]

Uploading Online Registration Information To An FTP Server

In the previous topic, we’ve stored the registration information we want to upload to the FTP server in a file,
temp.dat. To upload the user registration data, we add an Internet transfer control, Inet1, to the onlinereg
application’s registration form, Form2 (see Chapter 21 for more details on the Internet transfer control).

After writing the registration form to disk, we connect to the FTP server to upload the data to by using the
Internet transfer control like this, where we set the control’s URL property to the address of the FTP server
and set the UserName and Password properties as required:

Private Sub Command1_Click()
 Open "c:\temp.dat" For Output As #1
 Print #1, "Registering SuperDuperDataCrunch" & vbCrLf
 Print #1, "Name: " & Text1.Text & vbCrLf
 Print #1, "email: " & Text2.Text & vbCrLf
 Print #1, "Time: " & Format(Now)
 Close #1

 Inet1.URL = "ftp://ftp.server.com"
 Inet1.UserName = "steve"
 Inet1.Password = "secret"
...

Here we are using the connection protocol used by many FTP servers, which sets the current FTP directory
based on the username you log in with. If you need to set the current directory yourself, use the FTP CD
command, using the Internet transfer control’s Execute method.

TIP: You may want to encode any password that you embed in your code for security purposes.

To actually upload the file temp.dat, we use the Internet transfer control’s Execute method to execute the
FTP Put command like this, where we name the file reg.dat when uploaded to the server:

Private Sub Command1_Click()
 Open "c:\temp.dat" For Output As #1
 Print #1, "Registering SuperDuperDataCrunch" & vbCrLf
 Print #1, "Name: " & Text1.Text & vbCrLf
 Print #1, "email: " & Text2.Text & vbCrLf
 Print #1, "Time: " & Format(Now)
 Close #1

 Inet1.URL = "ftp://ftp.server.com"
 Inet1.UserName = "steve"
 Inet1.Password = "secret"
 Inet1.Execute , "PUT c:\temp.dat reg.dat"
End Sub

This uploads the file with the user registration information to the FTP site you’ve selected:

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1066-1068.html (1 of 2) [3/14/2001 2:12:36 AM]

ftp://ftp.server.com/

Registering SuperDuperDataCrunch

Name: steve

email: steve@steveco.com

Time: 5/5/99 10:02:23 AM

TIP: Note that we’ve uploaded the file and named it reg.dat on the FTP server; using that name for all uploads
will cause a conflict. You should use a unique file name for each separate file; for example, you can incorporate
the date and time of day in the file name.

Now that we’ve uploaded the registration data, we need to terminate the FTP connection and delete the
temporary file, and we’ll do that in the next topic.

Concluding The FTP Transfer Of The Online Registration Information

In the previous few topics, we’ve sent user registration data to an FTP site in the onlinereg application. Now
that the upload operation is complete, we will close the FTP connection in the Internet transfer control’s
StateChanged event handler:

Private Sub Inet1_StateChanged(ByVal State As Integer)

 If State = icResponseCompleted Then
 Inet1.Execute , "Close"
...

In addition, we delete the temporary file we’ve created and hide the registration form this way:

Private Sub Inet1_StateChanged(ByVal State As Integer)

 If State = icResponseCompleted Then
 Inet1.Execute , "Close"

 Dim FileSystemObject As Object
 Set FileSystemObject = CreateObject("Scripting.FileSystemObject")
 FileSystemObject.DeleteFile "c:\temp.dat"

 Form2.Hide
 End If
End Sub

And that’s it—we’ve uploaded the user registration data to the specified FTP site. Congratulations, now
you’re supporting online registration. The code for this example is located in the onlinereg folder, and the
code that displays that form is located in the Form1 folder, both on this book’s accompanying CD-ROM.

Visual Basic 6 Black Book:Deploying Your Program: Creating Setup Programs, Help Files, And Online Registration

http://24.19.55.56:8080/temp/ch30\1066-1068.html (2 of 2) [3/14/2001 2:12:36 AM]

Index
Special Characters

& (ampersand)

& operator, use of, 37

access characters, 168�171, 235

* (asterisk), 101

$(AppPath) macro, 1047

32-bit MAPI DLLs, installing, 718

+ operator, 37

| (pipe symbol), 356

2D, 3D area charts, 385�387

2D, 3D bar charts, 387

2D, 3D combination charts, 390�392

2D, 3D line charts, 384�385

2D, 3D step charts, 388�390

_ (underscore), 38

A

Abs function, 113

Access characters, 155, 168�171, 235, 447

Action property, 346, 720, 897

Activating OLE objects, 912�914

Active control, determining, 971�972

Active form, determining, 992�993

ActiveControl property, 608, 915, 971�972

ActiveForm property, 608, 992�993

ActiveX components, 650, 652. See also ActiveX controls; ActiveX documents; Code

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (1 of 138) [3/14/2001 2:14:17 AM]

components.

ActiveX Control Interface Wizard, 669, 675, 680

ActiveX controls, 650�651, 652

adding to DHTML pages, 713�715

adding to projects, 66�67

adding to toolbox, 664

constituent controls, 651, 659�661

creating, 653�658

embedding in Web pages, 657

event handlers, 659

events

adding, 678�680

Initialize event, 672

Paint event, 657

ReadProperties event, 671�672

Terminate event, 672

WriteProperties event, 671�672

files created for, 651

graphics, 655, 657

methods

adding, 674�678

Initialize method, 655

RaiseEvent method, 679

properties

adding at design time, 666�670

Ambient property, 666

AutoRedraw property, 657

displaying, 47

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (2 of 138) [3/14/2001 2:14:18 AM]

Extender property, 666

Let and Get procedures, 667�668, 669

making properties persistent, 671�674

property pages, 680�681

PropertyBag objects, 671, 693�694

referenced in VBP files, 25

registering with Windows, 67, 656, 664

testing, 655�656, 661�664

ActiveX Data Objects. See ADO (ActiveX Data Objects).

ActiveX Designers, 77

ActiveX DLLs, 935, 945

methods, passing arguments to, 951�953

registering, 957

threading models, 936, 963

ActiveX Document Migration Wizard, 683

ActiveX documents, 651, 652. See also DHTML pages; Web pages.

constituent controls, 684�689, 689

converting Visual Basic projects to, 683

creating, 682�683

DLLs vs. EXE files, 652, 684

DOB files, 686, 690�691

events

ReadProperties event, 693�694

WriteProperties event, 693�694

files created for, 651

integrating Web browsers into, 691�692

opening from Internet, 691�692

properties, 693�694

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (3 of 138) [3/14/2001 2:14:18 AM]

testing, 683, 690�691

VBD files, 686, 690�691

ActiveX EXEs, 935, 945

creating, 943�945

methods, passing arguments to, 951�953

properties, setting, 947

registering, 958

threading models, 936, 963

ActiveX MAPI controls, 697

Add Field dialog box, Visual Data Manager, 832

Add Form dialog box, 58�59, 178

Add-In Manager, 66

Add-Ins menu, IDE, 43, 66

Add method

Buttons collection, 482�484

collections, 110

ListImages collection, 507

ListItems collection, 520�521

ListSubItems collection, 527�528

Nodes collection, 512, 513

Panels collection, 485

Tabs collection, 533

Add Procedure dialog box, 667, 674�680, 947�949, 950

AddItem method, 254�255, 265

AddNew method, 844, 867�868

AddressCaption property, 720

AddressEditFieldCount property, 720

AddressLabel property, 720

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (4 of 138) [3/14/2001 2:14:18 AM]

AddressModifiableproperty, 720

ADO (ActiveX Data Objects), 827�828, 854. See also ADO data control; DAO (Data
Access Objects); RDO (Remote Data Objects).

adding records, 844, 888

adocode example project, 883�894

collections, 827

creating record sets, 885�887

data-bound controls, 840�841, 847�848, 887

data environment, 824

deleting records, 844�845, 892�893

navigating data, 845�847, 890�892

opening connections to databases, 884�885

opening databases, 839�840

refreshing data, 845, 888�889

Remote Data Service (RDS), 828

SQL commands, executing, 893�894

transactions, 854

updating data, 845, 889�890

ADO data-bound controls, 848�849

ADO data control, 828. See also ADO (ActiveX Data Objects).

methods

AddNew method, 844

Delete method, 844�845

MoveFirst method, 846

MoveLast method, 846�847

MoveNext method, 845�846

MovePrevious method, 846

Refresh method, 845

UpdateRecord method, 845

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (5 of 138) [3/14/2001 2:14:18 AM]

properties

ConnectionString property, 828, 840

DataSource property, 840

Provider property, 828, 840

Recordset property, 844, 845, 846

RecordSource property, 828, 840

Adocode example project, 883�894

Advanced Optimizations dialog box, 64, 65. See also Compiler options; Optimization.

Advapi32.dll, 774

Alarm clock example program, 417�419

Alias clause, DLL procedure declarations, 776

Align item, Format menu, 52

Align property, 470, 494

Aligning controls, 51�52, 53�54, 442, 453

Aligning coolbars, 494

Aligning picture boxes, 317

Aligning status bars, 485

Aligning text, 200�201, 216�217, 446

Alignment property, 488

Allocating memory, 805�806, 807

AllowAddNew property, 849

AllowCustomize property, 482

AllowDelete property, 849

AllowUpdate property, 849

Ambient properties, 666

Ambient property, 666

Animation

Animation control, 742�743

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (6 of 138) [3/14/2001 2:14:18 AM]

arrays of Picture objects, 623, 634�635

Move method, 132

multimedia MCI control, 769

picture boxes, 320�321

in status bar panels, 489

timer control, 419�421

Animation control, 742�743

ANSI character set, limiting fonts to, 360

Apartment-model threading, 936

API Viewer add-in tool, Visual Basic, 779

App object, 962

AppActivate function, 112

Appearance property, 439

AppIsRunning property, 908

Application deployment, 1044�1048

Application Wizard

adding status bars to forms, 484

adding toolbars to forms, 123�125

designing menus, 157

integrating Web browsers into projects, 691�692

online help system, 1063�1064

profiles, 23

projects, creating, 22�28

Applications (Windows applications). See Windows applications.

Arcs, drawing, 460, 597�599

Area charts, 385�387

Arguments, passing, 679, 776, 951�953, 953�954

Arithmetic operators, precedence of, 103

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (7 of 138) [3/14/2001 2:14:18 AM]

Arrange method, 141

Arranging MDI child windows, 140�141

Array function, 95, 96

Arrays. See also Control arrays.animation sequences, 623, 634�635

array bounds checking, 63�65

Array function, 95

dynamic arrays, 94�95

looping over elements, 108

lower bound, 94

Option Base statement, 94

passing to procedures, 967�968

standard arrays, 93�94

Arrows property, 295�296

As Form keywords, 992

As keyword, variable type, specifying, 11

Asc function, 90, 101

Atn function, 113

Attachment& properties, MAPIMessages control, 720

Auto List Members feature, IDE, 70, 72

AutoActivate property, 912

AutoPlay property, 743

AutoRedraw bitmap, 648

AutoRedraw property

ActiveX controls, 657

controls, 584

drawing graphics from Load event, 588

forms, 129, 584

layering graphics, 611�612

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (8 of 138) [3/14/2001 2:14:18 AM]

picture boxes, 328

printing graphics, 610

AutoSize property, 317, 445, 488, 619

AutoVerbMenu property, 912�913

Available disk space, determining, 813�814

AVI files, playing, 742�743, 759�761

Axis titles in charts, 382

B

B argument, Line method, 593

Back button, Web browsers, 704

Back command, multimedia MCI control, 748, 769

BackColor property, 230, 585, 617

Background color. See BackColor property.

Bands, coolbar, 467, 494�495

�Bang� menus, 175�176

Bar charts, 2D and 3D, 387

BAS files (module files), 22

Best coding practices, 36�38

Bevel property, 488

Binary data, 425, 732�733

Binary files, 543, 554, 561�563

Binary raster operation mode (ROP2), 788�789

BitBlt Windows API function, 190, 793�794

Bitmaps, 190�192, 793�794

Blackness pen setting, 604

Blurring images, 646�647

BOF property, 871�872

Bold property, 590

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (9 of 138) [3/14/2001 2:14:18 AM]

Bolding text in RTF boxes, 209�211

Bookmarks, 78�79

Boolean variable type, 89

Border property, 903

BorderColor property, 585

Borders. See BorderStyle property; BorderWidth property.

BorderStyle property

flex grid control, 400

forms, 123

image controls, 618

line control, 456

picture boxes, 619

shape control, 452

BorderWidth property, 452, 456

Bound controls. See Data-bound controls.

BoundColumn property, 849

Bounds (array bounds)

bounds checking, 63�65

lower bound, 94

Boxes, drawing, 593�594

Break state, entering, 116

Breakpoints, 1031, 1036

Browser forms, customizing, 692. See also Web browsers.

BuddyControl property, 307

Bulleted text, RTF boxes, 214�215

Button groups, toolbars, 478

ButtonClick event, toolbars, 471�472

Buttons. See Checkboxes; Command buttons; Option buttons; Toolbars.

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (10 of 138) [3/14/2001 2:14:18 AM]

Buttons collection, toolbars, 482�484

ByRef keyword, 97, 98, 776, 951�953

Byte variable type, 89

ByVal keyword, 97, 98, 776, 951�953

C

C/C++ code

C/C++ data types, 776�778

linking programs to, 816�818

CAB files, 1045�1046

Calculator (ActiveX control example), 660�661

Call keyword, 775

Cancel button, Common Dialog controls, 347�348, 1028�1029

Cancel property, 244�245

CancelError property, 347�348, 1028�1029

CanStep property, 769

Caption property

buttons, 229, 235

data control (DAO), 834

forms, 121

frame control, 439

label control, 443

menus, 166

tab strip tabs, 533

Capturing images from screen, 794�799

Case statement. See Select Case statement.

Casting. See Converting data between variable types.

CBool function, 90

CByte function, 90

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (11 of 138) [3/14/2001 2:14:18 AM]

CCur function, 90

CD (FTP command), 730

CDate function, 90

CDbl function, 90

CDec function, 90

CDs (music), playing, 753�755

CDUP (FTP command), 730

CellFont& properties, flex grid control, 401

Cells. See Flex grid control.

Change event

combo boxes, 253, 267

DateTimePicker control, 430

directory list box control, 568

drive list box control, 567�568

list boxes, 253

scroll bars, 289�290

slider controls, 301

text boxes, 145, 207

updown controls, 308�309

Characters

restricting input characters, 206�207

Windows or ANSI character sets, limiting fonts to, 360

Chart control, 372�373, 375

adding data to, 376�379

adding to forms, 375

area charts, 385�387

bar charts, 387

colors, setting, 382

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (12 of 138) [3/14/2001 2:14:18 AM]

combination charts, 390�392

data series, 379�381

line charts, 381, 384�385

pie charts, 382�383

properties

ChartData property, 376�377

ChartType property, 375

Column property, 377�378

ColumnCount property, 377�378

Data property, 377�378

DataGrid property, 379

Row property, 377�378

RowCount property, 377�378

RowLabel property, 378

SetData methods, 379

step charts, 381, 388�390

titles, 382

ChartData property, 376�377

ChDir command, 816

ChDir statement, 572

ChDrive command, 816

Check buttons in toolbars, 477

Checkboxes, 227

adding and removing at runtime, 242

background color, 229�230

binding to data controls, 847

button releases, 244

caption, 229

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (13 of 138) [3/14/2001 2:14:18 AM]

combining with option buttons, 249�250

in control arrays, 233�234, 242

disabling, 236�237

displaying images in, 237, 239�240, 241, 616

events

Click event, 232�233

GotFocus event, 235

Key& events, 244

LostFocus event, 235

Mouse& events, 244

focus, 234, 236

graphical checkboxes, 248

keyboard access, 235

methods

Move method, 239

SetFocus method, 234

moving, 239

passing to procedures, 243

properties

BackColor property, 230

Caption property, 229, 235

Default property, 234, 236

DisabledPicture property, 237

DownPicture property, 241, 248

Enabled property, 237

Font property, 231�232

ForeColor property, 231

Height property, 239

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (14 of 138) [3/14/2001 2:14:18 AM]

Index property, 233�234

Left property, 239

Name property, 233�234

Picture property, 239�240, 248

Style property, 230, 237, 239�240, 241, 616

TabIndex property, 236

TabStop property, 236

ToolTipText property, 238

Top property, 239

Value property, 245�246

Visible property, 237�238

Width property, 239

resizing, 239

responding to button clicks, 232�233

showing and hiding, 237�238

state of checkbox, 245�246

tab order, 236

text attributes, 230�232

tool tips, 238

Checked property, 179

Checkmarks, 178�179, 264

Child property, 495�496

Choose function, 106

Chr function, 90, 101

CInt function, 90

Circle method

drawing arcs, 460, 597�599

drawing ellipses, 460, 596�597

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (15 of 138) [3/14/2001 2:14:18 AM]

forms and picture boxes, 324, 459, 594�595

printing graphics, 610�611

Circles, drawing, 324�325, 450, 459, 594�595

Class modules, 128, 934, 946. See also Classes, code components; Modules.

Class property, 904

Classes, code components, 934�935

adding to components, 944

creating objects, 940�942

Initialize event, 958

Instancing property, 936�937, 959�960

Terminate event, 958�959

Clear method, 264, 272

Clearing combo box items, 272

Clearing drawing area, 585

Clearing images, 621

Clearing list box items, 264�265

Clearing slider control selections, 306

ClearSel method, 306

Click event

buttons, 232�233

combo boxes, 253, 267�268

coolbar controls, 496�497

label control, 446

list boxes, 253, 256�257

multiselect list boxes, 261

picture boxes, 318

tab strips, 536

Web browser navigation, 701

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (16 of 138) [3/14/2001 2:14:18 AM]

Client area, 119

ClientToScreen Windows API function, 790, 800�802

Clip property, 626

Clipboard, 204�205, 332�333, 609, 610, 927

Clipboard object

methods

GetData method, 332

GetText method, 205

SetData method, 332

SetText method, 205

password controls, security of, 206

ClipControls property, 611�612

ClipHeight, ClipWidth properties, 626

ClipX, ClipY properties, 626

CLng function, 90

Clock example program, 415�416

Close command, multimedia MCI control, 748, 753

Close method, 578�579, 898, 908

Close statement, 564

Cls method, 330, 585, 621, 648

Code components, 651, 652, 934

classes, 934�935, 944, 958�959

creating, 942�945

dialog box libraries, 962

forms, showing, 961

global objects, 935, 959�960

in-process servers (ActiveX DLLs), 935, 936, 945, 951�953, 957, 963

methods, 942, 950, 951�953

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (17 of 138) [3/14/2001 2:14:18 AM]

objects, 934�935, 940�942, 960�961

out-of-process servers (ActiveX EXEs), 935, 936, 943�945, 947, 951�953, 958, 963

properties, 942, 946, 947�949

references to, adding, 938

SingleUse code components, 936�937

testing, 954�956

threading models, 936, 963

type libraries, 940, 941

using in projects, 938�940

Code windows, 6, 49

Col property, 393

Collapse event, 517

Collection ADO object, 827

Collections, 110. See also names of specific collections.

looping over elements in, 108

methods

Add method, 110

Item method, 110

Remove method, 110

Color constants, Visual Basic, 586�587

Color dialog box, 348�350

Color property, 358

Colors

Color dialog box, 348�350

color-related properties, 585

converting images to grayscale, 637�640

custom colors, allowing definition of, 350

drawing pen, 604�606

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (18 of 138) [3/14/2001 2:14:18 AM]

fill color, 453, 585, 601�602

four-byte integer color specifications, 588

IDE, customizing, 50�51

of points, retrieving, 604

propagating color values among pixels, 645

QBColor function, 586

RGB function, 586

system color constants, 587�588

Visual Basic color constants, 586�587

ColPosition property, 402

Cols property, 393

Column property, 377�378

ColumnClick event, 529

ColumnCount property, 377�378

Columns

flex grid control, 402�403

list views, 525�528

Columns property, 263, 629

Combination charts, 2D and 3D, 390�392

Combo boxes, 252�253

adding items, 266

adding to toolbars, 479�481

binding to data controls, 847

clearing items, 272

events

Change event, 253, 267

Click event, 253, 267�268

DblClick event, 253

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (19 of 138) [3/14/2001 2:14:19 AM]

DblClick events, 268

image combo boxes, 277�279

index of new items, 276�277

ItemData array, 275�276

locking, 272�273

methods

AddItem method, 265

Clear method, 272

RemoveItem method, 269

number of items, 273�274

numeric data, connecting to list items, 275�276

properties

Enabled property, 273

List property, 265

ListCount property, 273�274

ListIndex property, 267�268, 270

Locked property, 272

NewIndex property, 276�277

Sorted property, 271

Style property, 265, 273

Text property, 265, 267, 270�271

TopIndex property, 274�275

Visible property, 273

removing items, 269

restricting user input, 271, 272�273

selected items, 267�268, 270�271, 275

sorting, 271�272

topmost item, 274�275

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (20 of 138) [3/14/2001 2:14:19 AM]

types of, 265

Web browser navigation, 700�701

Comdlg32.dll, 774

ComEvent& errors, 426�427

Command ADO object, 827

Command buttons, 227

adding and removing at runtime, 242

background color, 229�230

button releases, 244

in control arrays, 233�234, 242

disabling, 236�237

displaying images, 237, 239�240, 241, 616

events

Click event, 232�233

GotFocus event, 235

Key& events, 244

LostFocus event, 235

Mouse& events, 244

focus, 234, 236

keyboard access, 235

methods

Move method, 239

SetFocus method, 234

moving, 239

passing to procedures, 243

properties

BackColor property, 230

Cancel property, 244�245

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (21 of 138) [3/14/2001 2:14:19 AM]

Caption property, 229, 235

Default property, 234, 236

DisabledPicture property, 237

DownPicture property, 241

Enabled property, 237

Font property, 231�232

ForeColor property, 231

Height property, 239

Index property, 233�234

Left property, 239

Name property, 233�234

Picture property, 239�240

Style property, 230, 237, 239�240, 241, 616

TabIndex property, 236

TabStop property, 236

ToolTipText property, 238

Top property, 239

Visible property, 237�238

Width property, 239

resizing, 239

responding to button clicks, 232�233

setting caption, 229

showing and hiding, 237�238

tab order, 236

text attributes, 230�232

tool tips, 238

using as Cancel buttons, 244�245

Command property, 741

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (22 of 138) [3/14/2001 2:14:19 AM]

Command strings, sending to modem, 423�424

Commands. See also Menu items.

FTP commands, 730, 735

multimedia MCI control commands, 748�749

OLE primary verbs, executing, 914

SQL commands, executing, 874�875, 883, 893�894

in text boxes and RTF boxes, 198�199

Commenting conventions, 33�34

CommEvent property, 409, 422, 424, 426�427

Common Controls, Windows. See Windows Common Controls.

Common Dialog controls, 342�343

adding to forms, 345

Cancel button, trapping button clicks, 347�348, 1028�1029

Color dialog box, 348�350

displaying dialog boxes, 345�346

displaying Windows Help, 368�370

File Open dialog box, 350�357, 544�545

File Save As dialog box, 350�357

Font dialog box, 358�362

methods

ShowColor method, 348�350

ShowFont method, 358

ShowHelp method, 368

ShowOpen method, 350�351

ShowSave method, 350�351

Print dialog box, 363�368

properties

Action property, 346

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (23 of 138) [3/14/2001 2:14:19 AM]

CancelError property, 347�348

Copies property, 364

DefaultExt property, 355

FileName property, 350�351, 354

FileTitle property, 351, 354

Filter property, 356�357

Flags property, 350, 352�353, 358, 360�361, 365�366

FromPage property, 364

hDC property, 364

HelpCommand property, 368

HelpFile property, 368

InitDir property, 355�356

MaxFileSize property, 354

Min, Max properties, 361�362, 366

Orientation property, 367�368

PrinterDefault property, 363

ToPage property, 364

title bar text, 346�347

CommPort property, 408, 423

Communications control, 407�408

adding to forms, 421

buffers, 422

handshaking, 425

modem command strings, sending, 423�424

OnComm event, 409, 422, 424, 426�427

properties

CommEvent property, 409, 422, 424, 426�427

CommPort property, 408, 423

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (24 of 138) [3/14/2001 2:14:19 AM]

EOFEnable property, 409, 422

Handshaking property, 425

InBufferCount property, 409, 424

InBufferSize property, 408, 422

Input property, 409, 422, 423, 424

InputLen property, 409, 422, 424

OutBufferCount property, 409, 425

OutBufferSize property, 408, 422

Output property, 409, 423�424, 425

PortOpen property, 408, 423, 427

RThreshold property, 408, 422

Settings property, 408, 423

SThreshold property, 408, 422

reading data, 409, 424

sending data, 409, 425

serial port, 408, 423, 427

Comparison operators, precedence of, 103

Compiler options

array bounds checking, 64

fast code, optimizing for, 75

listed in VBP files, 15

Pentium FDIV error check, 65

Pentium Pro processor, optimizing for, 76

small code, optimizing for, 75

Compiling Help files, 1060

Components, 58, 176�178. See also ActiveX controls; Code components.

Components dialog box, 67, 77, 664

Compose buffer, MAPIMessages control, 719

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (25 of 138) [3/14/2001 2:14:19 AM]

Compose method, 719, 721

Conditional statements. See also Choose function; Switch function.

If&Else statement, 104

nesting, 37

Select Case statement, 105

Connection object, ADO, 827, 884�885

Connection object, RDO, 854, 877�879, 883

ConnectionEvents, ADO, 828

Connections, serial. See Communications control.

ConnectionString property, 828, 840

Const statement, 85

Constants, 33, 36�37, 85�86, 778�779

Constituent controls, 651, 659�661, 684�689

Container controls, 322, 439�443

Containers, 611�612

Control arrays

buttons, 233�234, 242

controls, loading at runtime, 973�975

multiple OLE objects, 916�924

passing to procedures, 968, 970�971

Ubound property, 973

Control boxes, 122

Control buttons, 146

Control type, 970

Control variable type, 970

ControlBox property, 122

Controls. See also Data-bound controls; Keyboard interface.

active control, determining, 971�972

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (26 of 138) [3/14/2001 2:14:19 AM]

adding code to, 49

adding using toolbox, 48

aligning, 51�52, 53�54, 453

basing ActiveX controls on, 657�658

binding to ADO record sets, 887

clearing drawing area, 585

creating and loading at runtime, 973�975

determining type of, 972�973

device contexts, 780

drag and drop operations, 976�983

events

DragDrop event, 981�982

DragOver event, 982�983

Paint event, 584

grouping, 322, 442�443

lightweight (windowless) controls, 990�991

methods

Cls method, 585

Move method, 131�132

ZOrder method, 976

moving, 131

naming conventions (prefixes), 29�32

passing to procedures, 970

properties

ActiveControl property, 971�972

AutoRedraw property, 584, 610

BackColor property, 585

BorderColor property, 585

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (27 of 138) [3/14/2001 2:14:19 AM]

DataSource property, 887

DragMode property, 976

FillColor property, 585

ForeColor property, 585

hDC property, 780

managing using Properties window, 46�47

OLEDropMode property, 984

Parent property, 136

TabIndex property, 130, 975

TabStop property, 19, 130

Visible property, 132

redrawing graphics, 584

showing and hiding, 132

sizing, 51�52, 131

tab order, 129�130, 236, 975

Z-order position, 976

Controls collection, 993�994

Conventions. See Programming conventions, Microsoft.

Converting data between variable types, 90, 102

Coolbars, 466�467, 493�497

Coordinate systems, 133, 583, 606�607, 790

Copies property, 364

Copy method, 573, 719, 898

Copy Pen pen setting, 605

Copying images, 609, 635�636

Copying OLE objects, 927

Copyright information, adding to projects, 59

Core Windows DLLs, 774

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (28 of 138) [3/14/2001 2:14:19 AM]

Cos function, 113

Cosecant function, 114

Cotangent function, 114

CPP files, in DLLs, 816

Create New Data Source dialog box, 836

CreateBrush Windows API function, 788

CreateCompatibleBitmap Windows API function, 190

CreateCompatibleDC Windows API function, 190

CreateDatabase method, 857�858

CreateDC function, 780�781

CreateEmbed method, 898

CreateField method, 861�863

CreateIndex method, 861�863

CreateLink method, 898

CreateObject function, 940�941

CreatePen Windows API function, 786

CSng function, 90

CStr function, 90

CTL files (ActiveX control class files), 651

Ctrl key, 112, 172�173

CurDir command, 816

Currency variable type, 89, 116

Current directory, 353

Current form, referencing, 128

Current time, displaying, 415

CurrentX, CurrentY properties, 588

Custom colors, 350

Customize dialog box, IDE, 68

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (29 of 138) [3/14/2001 2:14:19 AM]

Customize Toolbar dialog box, Application Wizard, 469

CVar function, 90

CVErr function, 90, 1026�1027

D

DAO (Data Access Objects), 824�825, 853�854. See also ADO (ActiveX Data
Objects); Data control, DAO; RDO (Remote Data Objects).

adding records, 844, 867�868

creating databases, 857�859

creating record sets, 863�865

DAO Object Library, 857

daocode example project, 856�875

data-bound controls, 835, 847�848

deleting records, 844�845, 872

editing records, 868

indexes on tables, creating, 861�863

navigating data, 845�847, 869�872

OpenDatabase method, 865�867

opening databases, 865�867

refreshing data, 845

searching record sets, 873

sorting records, 872

SQL statements, executing, 874�875

tables, 859, 860�861

updating data, 845, 868�869

workspace, 824

DAO Object Library, 857

Daocode example project, 856�875

Darkening images, 641

Dashed lines, drawing using line control, 456

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (30 of 138) [3/14/2001 2:14:19 AM]

Data. See also Databases.

adding to charts, 376�379

dragging and dropping between applications, 983�990

entering in databases, 833

reading from memory, 808, 809

receiving and sending, 424, 425

sensitive data, protecting, 37

storing in memory, 806, 808

Data Access Objects. See DAO (Data Access Objects).

Data-bound controls, 828�829

with ADO data control, 840�841, 848�849

with data control (DAO), 826, 835

list of, 847�848

with remote data control, 826, 838�839

Data control, DAO, 825�826. See also ADO data control; Remote data control.

adding to programs, 834

connecting to bound controls, 835

methods

AddNew method, 844

Delete method, 844�845

MoveFirst method, 846

MoveLast method, 846�847

MoveNext method, 845�846

MovePrevious method, 846

Refresh method, 845

UpdateRecord method, 845

properties

Caption property, 834

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (31 of 138) [3/14/2001 2:14:19 AM]

Database property, 826

DatabaseName property, 835

Recordset property, 826, 844, 845, 846

RecordSource property, 826, 835

Data conversion, 90, 102

Data forms, 841�843

Data property, 377�378

Data series, 379�381

Data Tips, 70, 72

Data types. See Variable types.

Database access, 830, 836�837. See also ADO (ActiveX Data Objects); DAO (Data
Access Objects); Data-bound controls; RDO (Remote Data Objects).

Database object, DAO, 825, 853, 857�859, 863�865, 874�875

Database property, 826

DatabaseName property, 835

Databases. See also ADO (ActiveX Data Objects); DAO (Data Access Objects); RDO
(Remote Data Objects).

adding records, 844, 867�868, 888

adocode example project, 883�894

components of, 823

connecting to flex grid controls, 403�404

creating, 830�833, 857�859

daocode example project, 856�875

deleting records, 844�845, 872, 892�893

moving between records, 845�847

navigating, 845�847, 869�872, 879�883, 890�892

opening, 835, 838, 839�840, 865�867

opening connections to, 876�877, 883�885

rdocode example project, 875�884

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (32 of 138) [3/14/2001 2:14:19 AM]

refreshing data, 845

relational databases, 776

updating, 845, 868�869, 889�890

DataCombo control, properties

BoundColumn property, 849

data properties, 849

DataField property, 849

DataSource property, 849

ListField property, 849

RowSource property, 849

DataField property, 835, 838�839, 840�841, 849

DataGrid control, 849

DataGrid property, 379

DataList control, 849

DataObject object, 984, 987

DataSource property

ADO data control, 840

controls, 887

DataCombo control, 849

DataGrid control, 849

DataList control, 849

flex grid control, 393, 404

remote data control, 838

text boxes, 835, 838�839, 840�841

DataSourceName property, 838

Date& methods, 574

Date function, 115

Date$ function, 413

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (33 of 138) [3/14/2001 2:14:19 AM]

Date values, 114�115, 413�415

Date variable type, 89

DateAdd function, 115

DateClick event, MonthView control, 428�429

DateDiff function, 115

DatePart function, 115

DateSerial function, 90, 115

DateTimePicker control, 410, 429�430

DateValue function, 90, 115

Day function, 90

DBCombo boxes, binding to data controls, 847

DBEngine DAO object, 825

DblClick event

combo boxes, 253, 268

label control, 446

list boxes, 253, 256�257

multiselect list boxes, 261

option buttons, 233

DBList boxes, binding to data controls, 847

DDB function, 116

Deactivating OLE objects, 916

Deallocating memory, 809, 810

Debug menu, IDE, 43

Debug toolbar, IDE, 61, 62

Debugging, 1007, 1029�1030

breakpoints, 1031, 1036

examining expressions and variables, 1033�1036

executing code to cursor, 1036

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (34 of 138) [3/14/2001 2:14:19 AM]

Immediate window, 1035�1036

Quick Watch window, 1033

single-stepping, 1032

skipping statements, 1036

using message boxes, 1030

Watch window, 1034

Decimal variable type, 89

Declaring arrays, 93�95

Declaring constants, 85�86

Declaring DLL procedures, 775�776

Declaring DLLs, 818

Declaring functions, 97�98

Declaring methods in code components, 950

Declaring properties in class modules, 946

Declaring subroutines, 96�97

Declaring variables, 11, 86�87

implicit declaration, 87

Option Explicit statement, 38, 88

Option Private Module statement, 91

variable scope, 90�91

variable types, 88�89

Declaring Windows API functions, 775�776

DEF files, in DLLs, 818

Default property, 234, 236

Default values, optional arguments, 954

DefaultExt property, 355

Defensive programming, 37

DELETE (FTP command), 730

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (35 of 138) [3/14/2001 2:14:19 AM]

Delete method

data controls, 844�845

FileObject, 574

MAPIMessages control, 719, 720

OLE control, 926

OLE objects, 898

Recordset objects, 872, 892�893

DeleteDC function, 782

DeleteFile method, 574

DeleteSetting Windows API function, 999

Deleting OLE objects, 926

Deployment package, 1044�1048

Description property, 1021�1022

Design standards, 155�156, 163�165, 172�173

Design time grid, 53�54, 453

Design time properties, 46

�Designed for Microsoft Windows� logo, 1041�1042

Device contexts

controls, 780

copying bitmaps between, 793�794

deleting, 782

drawing in, 782�788

for entire screen, 781�782

printers, 365

ROP2 (binary raster operation) mode, 788�789

windows, 780

Devices. See Media Control Interface (MCI) devices.

DeviceType property, 744�745

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (36 of 138) [3/14/2001 2:14:19 AM]

DHTML controls, 710

DHTML (Dynamic HTML), 696, 710, 715. See also DHTML Page Designer;
DHTML pages.

DHTML Page Designer

opening, 706

Table Operation drop-down box, 715�716

text, entering, 709�710

toolbar, inserting HTML tags, 710

toolbox, 710�711, 712�713, 716�717

DHTML pages

ActiveX controls, 713�715

HTML controls, 712�713

HTML tags, 710

hyperlinks, 716�717

images, 710�711

tables, 715�716

testing, 717

text, 709�710

Dialog boxes

Cancel buttons, 244�245

creating, 146�147

designing, 122

displaying icons in taskbar, 995

libraries of, 962

modal display of, 147, 962, 996�997

Dim statement, 11, 86, 93�94, 138

DIR (FTP command), 730

Directories

changing, 572, 816

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (37 of 138) [3/14/2001 2:14:19 AM]

creating and deleting, 572

current directory, 353, 816

default directory, 816

downloading from Web pages, 731, 732

Windows installation directory, 814�815

Directory list box control, 568, 569�571

DisabledPicture property, 237

Disabling buttons, 236�237

Disabling forms at runtime, 151

Disabling menu items, 180�181

Disk space available, determining, 813�814

Display screen. See Screen; Screen object.

DisplayType property, 903�904

Distances, changing measurement scale, 17

<DIV> DHTML tag, 710

DLL files, 1043

DLL procedures, 775�776

DLLs (Dynamic Link Libraries)

ActiveX components, 652

ActiveX documents, 684

C++ DLLs, linking to, 816�818

code components (ActiveX DLLs), 935, 936, 945, 951�953, 957, 963

components of, 816�818

core Windows DLLs, 774

declaring, 818

DHTML pages, 706

error handling, 1023

vs. EXE files, 652, 684

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (38 of 138) [3/14/2001 2:14:19 AM]

Do loop, 107

DOB files (ActiveX document files), 651, 686

Dockable toolbars, 44

Document views, 144

DocumentProperties Windows API function, 780

Documents, 141, 144�145. See also ActiveX documents; MDI child forms; MDI
forms.

Done event, 741, 763�764, 768

Dotted lines, drawing, 456

Double-clicking. See DblClick event.

Double variable type, 89

DoVerb method, 898, 913�914

Down picture, adding to buttons, 241

DownClick event, 308�309

DownloadComplete event, 701

Downloading files, 728�736

DownLoadMail property, 721, 725

DownPicture property, 241, 248

Drag and drop operations

columns in flex grid controls, 402�403

controls, 976�983

frames, 440�442

OLE objects, 983�990

Drag method, 440�441, 924�925

DragDrop event, 925, 977, 978�982

DragMode property, 976

DragOver event, 982�983

Drawing area, clearing, 585

Drawing boxes, 593�594

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (39 of 138) [3/14/2001 2:14:19 AM]

Drawing circles, 324�325, 450, 459, 594�595

Drawing freehand lines, 599�600

Drawing images, 622�623

Drawing lines, 325�326, 455�458, 591, 782�783

Drawing mode, setting, 604�606, 788�789

Drawing ovals, 450

Drawing pen, setting, 604�606, 786�788

Drawing points, 326, 604

Drawing position, setting, 782�783

Drawing rectangles, 449

Drawing rounded rectangles, 451

Drawing rounded squares, 451

Drawing scales, setting, 606�607

Drawing squares, 449

Drawing style, setting, 602�603

Drawing width, setting, 602�603

DrawMode property, 604�606

DrawStyle property, 602�603

DrawWidth property, 602�603

Drive list box control, 567�568, 569�571

Drive property, 567�568

Drop-down combo boxes, 265

Drop-down list combo boxes, 265

Dynamic arrays, 94�95

Dynamic HTML. See DHTML (Dynamic HTML).

Dynamic HTML Application item, New Project dialog box, 706

Dynamic Link Libraries. See DLLs (Dynamic Link Libraries).

E

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (40 of 138) [3/14/2001 2:14:19 AM]

Edit menu, 43, 78�79, 164�165

Edit method, 868

Edit toolbar, 61, 62

Editing images, 623

Editing OLE objects, 896, 912

Eject command, multimedia MCI control, 748, 755

Ejecting CDs, 755

Elapsed time, displaying, 417, 752

Ellipse Windows API function, 784

Ellipses, drawing, 460, 596�597, 784

Ellipsis (&) in names of menu items, 155

ElseIf statement, 104

Email functionality. See also MAPIMessages control; MAPISession control.

composing messages, 721�722

MAPI controls, adding to projects, 718

MAPI session, initiating, 721

reading messages, 725�726

sending messages, 722�723

Visual Basic support for, 697

Embedded OLE objects, 897�899, 902, 905�907, 908�911, 929�930

Embedding ActiveX controls in Web pages, 657

Embossing images, 642�644

Enabled property

buttons, 237

combo boxes, 273

forms, 151

menu items, 181

scroll bars, 292

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (41 of 138) [3/14/2001 2:14:19 AM]

text boxes, 202

timer control, 412

Encapsulation, 37

End Function keywords, 99

End statement, 116

End Sub keywords, 97

EndDoc method, 611

Ending programs, 116, 136

Engraving images, 644�645

Enlarging OLE objects, 928

Enterprise Edition, Visual Basic, 2

EOF function, 556

EOF property, 870�871

EOFEnable property, 409, 422

Erase statement, 96

Erasing images, 621

Err object

Description property, 1021�1022

LastDLLError property, 1023

Number property, 1020�1021

Raise method, 1023�1024

Source property, 1022

Error ADO object, 827

Error function, 1021

Error handlers

disabling error trapping, 1015�1016

disregarding errors, 1015

nested error handling, 1024�1025

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (42 of 138) [3/14/2001 2:14:19 AM]

resuming execution, 1016�1020

using labels, 1012�1013

using line numbers, 1014

writing, 1009�1012

Error objects, creating, 1026�1027

Error property, 764�768

Error strings, multimedia MCI control, 765�767

ErrorMessages property, 764�768

Errors

comEvent& errors, 426�427

determining which error occurred, 1020�1021

in DLLs, 1023

error description, 1021�1022

list of trappable errors, 1003�1007

Pentium FDIV error, 65

source of error, 1022

trapping Cancel button in Common Dialogs, 347�348, 1028�1029

user-defined errors, 1023�1024

Errors collection, ADO, 827

Event handlers, 6, 659, 713

Events, 678�680. See also names of specific events.

Events ADO objects, 827

Exclamation point (!) in menu item names, 156, 176

Exclusive OR pen. See Xor Pen pen setting.

EXE files

ActiveX components, 652

ActiveX documents, 684

code components (ActiveX EXEs), 935, 945

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (43 of 138) [3/14/2001 2:14:19 AM]

creating, 943�945

methods, passing arguments to, 951�953

properties, setting, 947

registering, 958

threading models, 936, 963

creating, 44, 1043

vs. DLLs, 652, 684

icon, specifying, 61

name, setting, 61

Execute method, 697, 698, 727, 729�730, 735

Exit Function keywords, 98

Exit item, File menu, 164

Exit Sub keywords, 97

Exp function, 113

Expand event, tree views, 517

Expanded property, 518

Expressions

date and time format expressions, 115

examining values of (debugging), 1033�1036

operator precedence, 102�104

values of constants, 85

Extender objects, 666

Extender property, 666

F

F argument, Line method, 602

Fast code, optimizing for, 75

FDIV error, Pentium, 65

Fetch method, 719, 725

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (44 of 138) [3/14/2001 2:14:19 AM]

FetchMsgType property, 719

FetchSorted property, 719, 720

FetchUnreadOnly property, 719

FetchVerbs method, OLE objects, 898

Field ADO object, 827

Field DAO object, 825

Fields, database, 823, 831�832, 860�861

Fields collection, ADO, 827

Figures. See Graphics.

File list box control, 569

File menu, 43, 44, 164

File name extensions, 352, 355

File names

maximum length, setting, 354

retrieving in File Open, File Save As dialog boxes, 350�351, 354, 544�545

temporary, 1066

File Open dialog box, 350�357, 544�545

File Save As dialog box, 350�357

File statistics, 574�575

File Transfer Protocol. See FTP (File Transfer Protocol).

File types, specifying, 356�357

FileLen function, 548

FileName property

Common Dialog controls, 350�351, 354

file list box control, 569

multimedia MCI control, 745

FileObject, 573�574

Files

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (45 of 138) [3/14/2001 2:14:19 AM]

closing, 564

copying, 572. See also Clipboard object.

creating, 352, 546�548

deleting, 574

file numbers, 548

file statistics, 574�575

FileObject, 572�575

FileSystemObject, 543, 572�577

length of, 548�549

moving, 573�574

opening, 549�550, 565, 566, 745. See also File Open dialog box.

saving, 564�565, 566. See also File Save As dialog box.

temporary file names, 1066

TextStream objects, 575�579

transferring. See FTP (File Transfer Protocol).

FileSystemObject, 543, 572�577

FileTitle property, 351, 354

Fill color, 601�602

Fill pattern, 602

FillColor property

controls, 585

forms, 585, 601�602

picture boxes, 601�602

shape control, 453

FillStyle property

forms and picture boxes, 602

shape control, 452

Filters, 356�357

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (46 of 138) [3/14/2001 2:14:19 AM]

Financial functions, 116

Fix function, 90, 113

Fixed-length strings, 101

FixedCols, FixedRows properties, 393, 400

Flags property, 350, 352�353, 358, 360�361, 365�366

Flat scroll bars, 283�284, 294�296. See also Scroll bars.

Flex grid control, 373�374

adding to forms, 392�393

borders, 400

columns, dragging, 402�403

connecting to databases, 393, 403�404, 847

data entry, 394, 395, 397�399

events

KeyPress event, 395

LeaveCell event, 399

MouseDown event, 402

formatting cells, 401

grid lines, 400

labeling rows and columns, 400

properties

BorderStyle property, 400

CellFont& properties, 401

Col, Cols properties, 393

ColPosition property, 402

DataSource property, 393, 404

FixedCols, FixedRows properties, 393, 400

GridLines property, 400

GridLineWidth property, 400

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (47 of 138) [3/14/2001 2:14:20 AM]

MouseCol property, 402

Row, Rows property, 393

Sort property, 401

Text property, 393, 394

TextArray property, 400

resetting focus on specific cells, 396

sorting data, 401

using as spreadsheet, 393�399

Flipping images, 333�334, 630�631

Focus

cells in flex grid control, 396

giving to Windows applications, 112

label controls, 447

resetting after button click, 218, 234

setting when form loads, 234

tab order of controls, 129�130, 975

Font& properties

buttons, 232

Color dialog box, 358�359

label control, 445

picture boxes, 329

Font dialog box, 358�361

Font object, 590

Font property, 231�232

FontCount property, 591, 608

Fonts

customizing in IDE, 50�51

determining fonts available, 590�591

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (48 of 138) [3/14/2001 2:14:20 AM]

setting attributes for buttons, 231�232

setting attributes in RTF boxes, 212�214

Fonts property, 590�591, 608

Footnotes, in Help files, 1065

For Each loop, 108

For loop, 108

ForeColor property

buttons, 231

forms and controls, 585

Foreign keys, 776

Form designers, 48

Form Editor toolbar, IDE, 61, 62�63

Form Layout window, IDE, 47�48

Form-level variables, 7, 8, 91

Form Load event, 8, 588. See also Initialize event.

Format function, 90, 101, 102

Format$ function, 115, 414�415

Format menu, 43, 52�53

Formatting date and time values, 114�115, 413�415, 429

Formatting flex grid control cells, 401

Formatting string expressions, 102

Formatting text, 329�330, 445�446, 589, 710. See also RTF boxes.

Forms, 10. See also MDI forms.

active form, determining, 992�993

adding code to, 49

adding controls, 48

adding menus to, 165�168

arrays of forms, 142�143

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (49 of 138) [3/14/2001 2:14:20 AM]

background color, 617

browser forms, 692

clearing drawing area, 585

components of, 118�119

Controls collection, 993�994

coordinate systems, 133, 606�607

creating at runtime, 138

current form, referencing in code, 128

displaying in Web pages, 682�683. See also ActiveX documents.

drag and drop operations, 924�925, 982�990

drawing in forms, 459, 591�600, 602�607

enabling and disabling at runtime, 151

events

DragDrop event, 925, 977, 978�981

DragOver event, 982�983

MouseDown event, 186

Paint event, 584

Resize event, 608�609

form-level variables, 91

icons in Windows 95 taskbar, 995

keystrokes, intercepting, 995�996

layers, 611�612

loading, 136

LoadPicture function, 617

making immovable, 996

managing using Project Explorer, 45

maximizing and minimizing at runtime, 122, 151

methods

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (50 of 138) [3/14/2001 2:14:20 AM]

Arrange method, 141

Circle method, 459

Cls method, 585, 621

Hide method, 137

Line method, 458

Move method, 978

Point method, 604

PSet method, 604

Show method, 136, 147, 961, 962

moving controls, 131

multiple forms, 134�136

passing to procedures, 150�151, 992

positioning off screen, 69

predefined forms, 57, 58�59

printing graphics, 610�611

properties

AutoRedraw property, 129, 584, 610, 611�612

BackColor property, 585, 617

BorderColor property, 585

BorderStyle property, 123

Caption property, 121

ControlBox property, 122

CurrentX, CurrentY properties, 588

DrawMode property, 604�606

DrawStyle property, 602�603

DrawWidth property, 602�603

Enabled property, 151

FillColor property, 585, 601�602

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (51 of 138) [3/14/2001 2:14:20 AM]

FillStyle property, 602

Font& properties, 589

ForeColor property, 585

Height property, 133

Image property, 648

KeyPreview property, 995�996

Left property, 133

MDIChild property, 139

Moveable property, 996

Picture property, 617, 648

ScaleHeight property, 133

ScaleLeft property, 133

ScaleMode property, 17, 133, 606�607, 636

ScaleTop property, 133

ScaleWidth property, 133

ShowInTaskbar property, 995

StartUpPosition property, 995

Top property, 133

Width property, 133

WindowState property, 151

redrawing, 129, 584

resizing graphics, 608�609

showing and hiding controls, 132

showing and hiding forms, 136, 137

showing from code components, 961

startup forms, 55, 61, 69, 137

startup position, 995

title bar text, 121, 802�803

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (52 of 138) [3/14/2001 2:14:20 AM]

Z-order position, 810�812

Forward button, Web browsers, 704

Forward method, 719

Frame control, 435

adding to forms, 439

aligning controls, 442

dragging and dropping, 440�442

grouping controls, 246, 442�443

location and size, 440

methods

Drag method, 440�441

Move method, 440

properties

Appearance property, 439

Caption property, 439

Height property, 440

Left property, 440

ToolTipText property, 439

Top property, 440

Width property, 440

Frames, 717, 769. See also Frame control.

Frames property, 769

Free disk space, determining, 813�814

FreeFile function, 548

Freehand line drawing, 599�600

Freeing memory, 647�648, 809

Friend keyword, 13, 96, 946, 950

FRM files (form files), 16�22, 26

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (53 of 138) [3/14/2001 2:14:20 AM]

From property, 770

FromPage property, 364

Front layer of forms, 611

FTP (File Transfer Protocol), 697, 727�734, 1066�1068. See also Internet transfer
control.

Functions

calling, 98

declaring, 97�98

DLL functions, 775�776

variable values, preserving, 99�100

FV function, 116

G

Gdi32.dll, 774

GET (FTP command), 730

GET (HTTP command), 735

Get/Let properties, code components, 947�949

Get procedure, 667�668, 669, 947�949

Get statement, 558�564

GetAllSettings Windows API function, 999

GetCapture Windows API function, 790�793, 800�802

GetChunk method, 729

GetData method, 332, 610, 984, 987

GetDC method, 780

GetDiskFreeSpace Windows API function, 813�814

GetFile method, 573

GetNumTicks method, 299

GetObject function, 941�942

GetSetting Windows API function, 192�193, 997�998

GetTempName method, 1066

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (54 of 138) [3/14/2001 2:14:20 AM]

GetText method, 205

GetWindowsDirectory Windows API function, 814�815

GetWindowText Windows API function, 802�803

Global items, 10

Global object, Visual Basic, 994

Global objects, 935, 959�960

Global variables, 10, 37, 91

GlobalAlloc Windows API function, 805, 807

GlobalFree Windows API function, 809, 810

GlobalLock Windows API function, 805, 806, 807

GlobalMultiUse value, 937, 960

GlobalSingleUse value, 937, 960

GlobaUnlock Windows API function, 808�809

GoBack method, 704

GoForward method, 704

GoHome method, 701, 705

GoSearch method, 705

GotFocus event, 235

Graphical buttons, 248

GraphicCell array, 629

Graphics

adding to ActiveX controls, 655, 657

bitmaps, 190�192, 793�794

copying to Clipboard, 609

drawing

boxes, 593�594

circles, 324�325, 450, 459, 594�595

clearing drawing area, 585

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (55 of 138) [3/14/2001 2:14:20 AM]

freehand lines, 599�600

images, 622�623

lines, 591�592, 782�783

in picture boxes, 323�326

points, 604

setting drawing mode, 604�606, 788�789

setting drawing pen, 604�606, 786�788

setting drawing position, 782�783

setting drawing scales, 606�607

setting drawing style, 602�603

setting drawing width, 602�603

text, 588�589

fill color and patterns, 601�602

freeing memory used by, 647�648

layering, 611�612

manipulating at pixel level, 635�647

pasting from Clipboard, 610

printing, 610�611

redrawing, 584

resizing, 608�609

Graphics controls, vs. graphics methods, 582�583

Graying out menu items, 180�181

Grayscale images, 637�640

Grid controls, 373�374. See also Flex grid control.

Grid lines, 53, 453

GridLines property, 400

GridLineWidth property, 400

Grippers, 467

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (56 of 138) [3/14/2001 2:14:20 AM]

Grouping buttons in toolbars, 478

Grouping controls in frame controls, 442�443

Grouping controls in picture boxes, 322

Grouping option buttons, 246

H

Handle property, 336

Handles

device context handles, 780

memory handles, 805, 806

picture box handles, 336

window handles, 800�802, 811

Handshaking property, 425

Hayes-type modem commands, 423�424

HDC property, 336, 364, 780

HEAD (HTTP command), 735

Header files, included in DLLs, 816�818

Height property

buttons, 239

forms, 133

frame control, 440

label control, 443

picture boxes, 338, 607

Screen object, 608

shape control, 454

Help button, displaying in Common Dialog controls, 353

Help files, 1040

compiling, 1060

displaying, 368�370, 1061�1062

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (57 of 138) [3/14/2001 2:14:20 AM]

Help projects, 1049�1050

index, 1058

online help, 1063

RTF files, creating, 1051�1060

Help menu, 44, 165

Help Workshop, 369, 1049�1050, 1060

HelpCommand property, 368

HelpFile property, 368

Hex function, 90

HideSelection property, 204

Hiding and showing controls, 132

Hiding and showing menus and menu items, 184

Hiding and showing scroll bars, 292

Hiding and showing shapes, 455

Hiding and showing windows in IDE, 73

Highlighting, turning on and off, 204

Histograms, 387

Home button, Web browsers, 705

Horizontal scroll bars, 286. See also Scroll bars.

Horizontal Spacing item, Format menu, 52�53

Hotspot targets, Help files, 1055�1057

Hotspots, Help files, 1053�1055

Hour function, 90

HPJ files, 1049�1050

HTM files, 707

HTML controls, 712�713

HTML tags, 710

HTTP (Hypertext Transport Protocol), 697�698, 735�737

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (58 of 138) [3/14/2001 2:14:20 AM]

Hungarian prefix notation, 776�777

HWnd property, 336, 759, 761, 991

HWndDisplay property, 759, 761

Hyperbolic trigonometric functions, 114

Hyperlinks, in DHTML pages, 716�717

I

Icon mode, list views, 519

Icon property, 522�523

Icons

adding to list view items, 522�524

for applications, specifying, 1046

custom mouse icon, setting, 608

of forms, in Windows 95 taskbar, 995

of OLE objects, displaying, 903�904

IDE (Integrated Development Environment)

ActiveX Designers, 77

Add-Ins, 65�66

Auto List Members feature, 70, 72

bookmarks, 78�79

code windows, 49

components of, 42�43

customizing, 50�51, 67�69

Data Tips, 70, 72

design time grid, 53�54, 453

form designers, 48

Form Layout window, 47�48

hiding and displaying windows, 73

menu bar, 43�44

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (59 of 138) [3/14/2001 2:14:20 AM]

Object Browser, 79, 938

procedure definitions, viewing, 74

Project Explorer, 45

Project menu, 76�77

Properties window, 46�47

Quick Info feature, 70, 72

Syntax Checking, 71, 72

text, searching files for, 74

toolbars, 44, 61, 67�69

toolbox, 48

variable definitions, viewing, 74

VBW files (project files), 16

If&Else statement, 104

Illusion of motion in images, 645�646

Image combo boxes, 277�279

Image controls, 312, 617�618

adding to forms, 338�339

binding to data controls, 847

events supported by, 618

freeing memory used by graphics, 648

loading images at runtime, 619�620

vs. picture boxes, 614�615

properties

BorderStyle property, 618

Picture property, 339�340, 618, 648

Stretch property, 339�340, 618, 633

stretching images to fit control, 339�340, 633

Image element, DHTML, 710

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (60 of 138) [3/14/2001 2:14:20 AM]

Image list control, 501

adding images to list, 507

adding to forms, 507

animation using timer control, 419�421

image properties

Index property, 507

Key property, 507, 509�510

ListImages collection, 327, 507

size of images, 508

using with image combo boxes, 277�278

using with other controls, 508�509

using with picture boxes, 326�327

using with tab strips, 534

using with toolbar buttons, 475

using with tree views, 515�517

Image maps, 318�319

Image property, 316, 336, 515, 648

ImageList property, 476, 508, 534

Images

adding to ActiveX controls, 655

adding to controls, 616

adding to DHTML pages, 710�711

adding to forms, 617

adding to image list control, 507

adding to toolbar buttons, 475�476

adding to tree views, 515�517

capturing from screen, 794�799

Clipboard, copying and pasting, 609

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (61 of 138) [3/14/2001 2:14:20 AM]

dimensions of in picture boxes, 607

displaying in controls, 616

displaying in status bars, 489

displaying in Windows Common Controls, 616

editing using picture clip controls, 623

erasing, 621

filling, 601�602

flipping, 630�631

freeing memory used by graphics, 647�648

loading at runtime, 619�620

manipulating at pixel level, 635�647

printing, 610�611

saving to disk, 620

selecting in picture clip controls, 625�630

setting drawing mode, 604�606

setting drawing scales, 606�607

setting drawing style, 602�603

storing in memory, 621�622

stretching, 632�633

stretching and flipping in picture boxes, 333�334

 HTML tag, 710

Immediate menus, 175�176. See also Toolbars.

Immediate window, 1035�1036

In-place editing, OLE objects, 896, 912, 931

In-process servers (ActiveX DLLs), 935, 945

methods, passing arguments to, 951�953

registering, 957

threading models, 936, 963

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (62 of 138) [3/14/2001 2:14:20 AM]

Inbox, Microsoft Exchange, 725

InBufferCount property, 409, 424

InBufferSize property, 408, 422

Indenting menu items, 168�169

Indenting program code, 38

Indenting text in RTF boxes, 211�212, 214�215

Index object, DAO, 825, 861�863

Index property, 233�234, 471, 475, 507, 872, 873

Indexes, Help files, 1058

Indices

combo box items, 269, 272, 276�277

database indices, 824, 861�863

list box items, 255�256, 258, 259, 276�277

loop indices, referencing, 108

Information hiding, 37

Initial directory, File Open and File Save As dialog boxes, 355�356

Initialize event, 655, 672, 958. See also Form Load event.

Initializing form-wide variables, 8

Initializing variables, 87

Input, InputLen properties, 409, 422, 423�424

Input # statement, 555

Input boxes, 149�150

Input$ statement, 557

InputBox function, 149�150

Insert Object dialog box, 900, 902, 905�907, 920�924

Insertable objects, 66�67

Insertion point, moving in RTF boxes, 217�219

InsertObjDlg method, OLE control, 898, 905

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (63 of 138) [3/14/2001 2:14:20 AM]

Installation directory (Windows), 814�815

Installation location for applications, 1047

Instancing property, 935�937, 959�960

InStr function, 101

Int function, 90, 113

Integer variable type, 89

Integrated Development Environment. See IDE (Integrated Development
Environment).

Internet Explorer. See Microsoft Internet Explorer.

Internet transfer control, 727�728

adding to programs, 728

FTP operations, 697, 727�734, 1066�1068

HTTP operations, 697�698, 734�736

methods

Execute method, 697, 698, 727, 729�730, 735, 1067

GetChunk method, 729

OpenURL method, 697, 728�729, 730, 732�733, 734�736

properties

Password property, 727

StillExecuting property, 727

URL property, 1066

UserName property, 727

StateChanged event, 727, 729, 1068

Interval property, 412

Inverse trigonometric functions, calculating, 114

Invert pen setting, 604

IPmt function, 116

IRR function, 116

IsArray function, 93, 96

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (64 of 138) [3/14/2001 2:14:20 AM]

IsDate function, 93

IsEmpty function, 93

IsError function, 93, 1027

IsMissing function, 91, 93, 953�954

IsNull function, 93

IsNumeric function, 93

IsObject function, 93

Italic property, 590

Item method, 110

ItemClick event, 529

ItemData array, 275�276

J

Jet database engine, 824�825

Jump tags, Help files, 1054

K

Kernel32.dll, 774

Key property

image list images, 507, 509�510

status bar panels, 490

toolbar buttons, 125, 471

tree view nodes, 512

Keyboard interface, 155

access characters, 168�171, 235, 447

shortcut keys, 171�173

tab order of controls, 129�130, 975

KeyDown event, 204, 207

KeyPress event, 206, 395, 701

KeyPreview property, 995�996

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (65 of 138) [3/14/2001 2:14:20 AM]

Keystrokes

intercepting at form level, 995�996

sending to Windows applications, 110�112

KeyUp event, 207

L

Label control, 425�436

access keys, controls without captions, 447

adding to forms, 443�444

aligning text, 446

binding to data controls, 847

events

Click event, 446

DblClick event, 446

formatting text, 445�446

properties

AutoSize property, 445

Caption property, 443

Font& properties, 445

Height property, 443

Top property, 443

UseMnemonic property, 447

Width property, 443

WordWrap property, 445

text, displaying, 203

vs. text boxes, 444�445

Labels in error handlers, 1012

LargeChange property, 287, 298�299

LastDLLError property, 1023

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (66 of 138) [3/14/2001 2:14:20 AM]

Layers, 611�612, 810�812

LBound function, 96

LCase function, 90, 101

Learning Edition, Visual Basic, 2

LeaveCell event, 399

Left function, 101

Left property

buttons, 239

forms, 133

frame control, 440

label control, 443

shape control, 454

Len function, 101, 204

Let procedure, 667�668, 669, 947�949

Libraries, 940, 941, 962. See also DLLs (Dynamic Link Libraries).

Lightening images, 640�642

Lightweight controls, 990�991

Line charts, 384�385

Line control, 437�438, 455�457, 459

Line Input statement, 556�557

Line method

B argument, 593

drawing boxes, 593�594

drawing freehand lines, 599�600

drawing lines, 591�592

F argument, 602

forms, 458

picture boxes, 325�326

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (67 of 138) [3/14/2001 2:14:20 AM]

Line numbers, in error handling, 1014

Lines. See also Graphics.

automatic alignment, turning off, 456�457

drawing freehand lines, 599�600

drawing in device contexts, 782�783

drawing in forms and picture boxes, 591

drawing in picture boxes, 325�326

drawing using line control, 437�438, 455�458

drawing using Line method, 458, 591�594, 599�600

grid lines, 53

LineTo Windows API function, 782�783

Linking OLE objects, 897�899, 902, 905�907, 908�911

List boxes, 252�253

binding to data controls, 847

checkmarks, 264

clearing list, 264�265

events

Change event, 253

Click event, 253, 256�257, 261

DblClick event, 253, 256�257, 261

indices of items, 255�256, 258, 259, 276�277

ItemData array, 275�276

methods

AddItem method, 254�255

Clear method, 264

RemoveItem method, 257�258

multiselect list boxes, 257, 261�262

number of items, 254, 259

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (68 of 138) [3/14/2001 2:14:20 AM]

numeric data, connecting to items, 275�276

properties

Columns property, 263

List property, 254�256, 257

ListCount property, 254�255, 259

ListIndex property, 255�256

MultiSelect property, 261�262

NewIndex property, 276�277

Selected property, 257

Sorted property, 258

Style property, 264

TopIndex property, 274�275

removing items, 257�258

scrolling horizontally, 263

Selected array, 260

selected items, 255, 256�257, 259�260, 262, 275

sorting items, 258

topmost item, 274�275

List mode, list views, 519

List property, 254�256, 257, 265

List views, 504

adding to forms, 518

columns, 525�526, 527�528, 530

events

ColumnClick event, 529

ItemClick event, 529

items, 520�521, 522�523, 529

ListItem properties

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (69 of 138) [3/14/2001 2:14:20 AM]

Icon property, 522�523

Text property, 527�528

ListItems collection, 520�521

ListSubItems collection, 527�528

view modes, 504, 519, 524�525

View property, 524, 525

ListCount property, 254�255, 259, 273�274

ListField property, 849

ListImages array, 327

ListImages collection, 507

ListIndex property, 255�256, 267�268, 270

ListSubItems collection, 527�528

Literal suffix symbols, numeric values, 88

Load event, 588

Load statement, 136, 188, 242, 973�975

LoadFile method, 223, 565

LoadPicture function

adding down pictures to buttons, 241

controls, 616, 620

forms, 617

image controls, 620

picture boxes, 316, 566, 619, 620

Picture objects, 620, 621

setting Picture property at runtime, 240, 248

LoadResPicture function, 316

Localization, 316

LocationName property, 701, 705

Locked property, 202, 272

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (70 of 138) [3/14/2001 2:14:20 AM]

Locking memory, 805, 806, 807

LOF function, 549, 557

Log function, 113

Logarithm (to base N) function, calculating, 114

Logical operators, precedence of, 103

Long variable type, 89

Loop index, referencing, 108

Loop statements

Do loop, 107

For Each loop, 108

For loop, 108

nesting, 37

With statement, 109

While loop, 109

LostFocus event, 235

LS (FTP command), 730

LSet function, 101

LTrim function, 101

Lz32.dll, 774

M

Magic numbers, 36�37. See also Constants.

Main() procedure, 54, 55, 943

Make ProjectName.exe item, File menu, 44

Make Same Size item, Format menu, 52

MAPI controls, 697, 718. See also MAPIMessages control; MAPISession control.

MAPIMessages control, 697, 719. See also Email functionality.

compose buffer, 719

methods

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (71 of 138) [3/14/2001 2:14:20 AM]

Compose method, 721

Copy method, 719

Fetch method, 719, 725

methods supported, 719

Send method, 722�723

SignOff method, 722�723

properties

FetchMsgType property, 719

FetchSorted property, 719

FetchUnreadOnly property, 719

MsgCount property, 725

MsgIndex property, 719, 721, 726

MsgNoteText property, 719, 726

properties supported, 720

SessionID property, 721, 725

read buffer, 719

MAPISession control, 697, 719. See also Email functionality.

DownLoadMail property, 721, 725

SessionID property, 721, 725

SignOn method, 721, 725

Marshaling, 935, 951

Mask Not Pen pen setting, 604

Mask Pen Not pen setting, 604

Mask Pen pen setting, 605

MaskedEdit control, 847

Math functions, built-in, 113

Max property

Common Dialog controls, 361�362, 366

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (72 of 138) [3/14/2001 2:14:20 AM]

scroll bars, 286�287

slider controls, 298

updown controls, 308

MaxFileSize property, 354

Maximize buttons, on forms, 122

Maximizing forms at runtime, 151

MaxLength property, 201

MCI_& commands, 748�749

MdDir statement, 572

MDI child forms, 120. See also MDI forms.

creating, 139

loading, 137

referenced in FRM files, 26

MDI forms, 119�120. See also MDI child forms.

adding picture boxes, 322�323

arranging child windows, 140�141

arrays of child windows, 142�143

coordinating data between child windows, 144�145

displaying child windows, 139

menus, 181, 182�183

multiple documents, opening, 141�142

MDI (Multiple Document Interface). See MDI child forms; MDI forms.

MDIChild property, 139

Me keyword, 128

Measurement units, 17, 53, 133, 606�607

Media Control Interface (MCI) devices, 740�741, 744. See also Multimedia MCI
control.

Memory

allocating, 805�806, 807

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (73 of 138) [3/14/2001 2:14:20 AM]

deallocating, 809, 810

locking, 805, 806, 807

reading data from, 808, 809

retrieving pointers to, 806, 807

storing data in, 806, 808

unlocking, 808�809

used by code components, freeing, 960�961

used by graphics, freeing, 647�648

Menu bar, 43�44, 68, 119. See also Menu items; Menus.

Menu control prefixes, 33

Menu Editor. See also Menu items; Menus.

access characters, 168�171

checkmarks, 179

creating menus, 165�168

deleting menu items, 168

disabling (graying out) menu items, 180

inserting menu items, 168

menu separators, 168

rearranging menu items, 168�169

submenus, 173�175

Menu items. See also Menu Editor; Menus.

access characters, 155, 168�171

adding and deleting at runtime, 187�189

adding code to, 167�168

checkmarks, 178�179

connecting toolbar buttons to, 473

creating, 166�168

deleting, 168

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (74 of 138) [3/14/2001 2:14:20 AM]

design standards, 163�165

disabling (graying out), 180�181

ellipses in item names, 155

exclamation points in item names, 156, 176

hiding and showing, 184

indenting and outdenting, 168�169

inserting, 168

keyboard shortcuts, 155

moving to menu bar, 68

naming conventions, 155�156

properties

Checked property, 179

Enabled property, 181

Visible property, 184, 188

rearranging, 168�169

shortcut keys, 171�173

Menu separators, adding, 168

Menus

access characters, 155, 168�171

adding bitmaps to, 190�192

�bang� menus, 175�176

components of, 154�155

creating, 166

designing, 155�156, 157, 163�168

hiding and showing, 184

IDE menus, 67�69

immediate menus, 175�176

listing open windows, 182�183

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (75 of 138) [3/14/2001 2:14:21 AM]

in MDI forms, 181

menu control prefixes, 33

menu separators, 168

ModifyMenu Windows API function, 190

naming conventions, 155�156

pop-up menus, 184�185, 186�187

predefined menus, 56�57, 59, 176�178

properties

Caption property, 166

Name property, 166

Visible property, 184

WindowList property, 183

submenus, 173�175

Merge Not Pen pen setting, 605

Merge Pen Not pen setting, 605

Merge Pen pen setting, 605

Message boxes, 148�149, 1030

Messages. See Email functionality.

Metafiles, drawing to, 623

Methods. See also names of specific methods; Procedures.

adding to ActiveX controls, 674�678

in code components, 942, 950, 951�954

viewing in Object Browser, 79

Microsoft DAO Object Library, 857

Microsoft Exchange utility, 697, 718, 721, 723, 725

Microsoft Help Workshop, 369, 1049�1050, 1060

Microsoft Internet Explorer. See also Web browser control.

testing ActiveX controls, 655�656, 661�662

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (76 of 138) [3/14/2001 2:14:21 AM]

testing ActiveX documents, 690

testing DHTML pages, 717

Web browsers, creating, 696

Microsoft Win32 Software Development Kit, 779

Microsoft XML parser, 698

MID files, playing, 757�759

Mid function, 101

Min/max buttons, 122

Min property

Common Dialog controls, 361�362, 366

scroll bars, 286�287

slider controls, 298

updown controls, 308

Minimize buttons, 122

Minimizing forms, 151

Minute function, 90

MIRR function, 116

MiscFlags property, 931

MKDIR (FTP command), 730

Modal display, 147, 996�997

Mode property, 741, 750

Modem command strings, 423�424

ModifyMenu Windows API function, 190

Modular program design, 37

Module-level variables, 91

Modules, 10. See also Class modules.

BAS files (module files), 22

DLL procedures, declaring, 775

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (77 of 138) [3/14/2001 2:14:21 AM]

managing using Project Explorer, 45

module-level variables, 91

Month function, 90

MonthView control, 410, 428�429

Motion, illusion of, adding to images, 645�646

Mouse events

button controls, 244

capturing outside program�s window, 789�793

drawing freehand lines, 599�600

OLE controls, 913

right mouse button events, 186

Mouse location, reporting in pixels, 607

Mouse pointer, 220�221, 608

MouseCol property, 402

MouseDown event

buttons, 244

capturing outside program�s window, 792

drag and drop operations, 977

flex grid control, 402

forms, 186

picture boxes, 318

MouseIcon property, 608

MouseMove event

capturing outside program�s window, 791�792

freehand lines, drawing, 599�600

MousePointer property, 608

MouseUp event

buttons, 244

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (78 of 138) [3/14/2001 2:14:21 AM]

capturing outside program�s window, 793

Move method

buttons, 239

controls, 131�132

FileObject, 573

forms, 978

frame control, 440

shape control, 454�455

Moveable property, 996

MoveFile method, 573

MoveFirst method

data controls, 846

rdoResultset object, 879�880

Recordset object, ADO, 890

Recordset object, DAO, 869�870

MoveLast method

data controls, 846�847

rdoResultset object, 880�881

Recordset object, ADO, 890�891

Recordset object, DAO, 870

MoveMemory Windows API function, 805, 806, 808, 809

MoveNext method

data controls, 845�846

rdoResultset object, 881�882

Recordset object, ADO, 891

Recordset object, DAO, 870�871

MovePrevious method

data controls, 846

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (79 of 138) [3/14/2001 2:14:21 AM]

rdoResultset object, 882�883

Recordset object, ADO, 891�892

Recordset object, DAO, 871�872

MoveToEx Windows API function, 782�783

MPG files, playing, 761�763

Mpr.dll, 774

MSFlexGrid control, 847

MsgBox function, 148�149, 150

MsgConversationID property, 720

MsgCount property, 720, 725

MsgDateReceived property, 720

MsgID property, 720

MsgIndex property, 719, 720, 721, 726

MsgNoteText property, 719, 720, 726

MsgOrigAddress property, 720

MsgRead property, 720

MsgReceiptRequested property, 720

MsgSent property, 720

MsgSubject property, 720

MsgType property, 720

MSWLess.ocx ActiveX control group, 991

Multiline property, 200, 201

Multimedia, 740, 771�772. See also Multimedia MCI control.

Multimedia MCI control, 740�741

adding to forms, 743�744

animation, 769

AVI files, 759�761

CDs, playing from CD-ROM drive, 753�755

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (80 of 138) [3/14/2001 2:14:21 AM]

closing, 753

commands, 747�749

Back command, 769

Close command, 753

Eject command, 755

Open command, 741, 744�745

Pause command, 749�750

Step command, 769

Stop command, 749�750, 753

controlling at runtime, 741, 747�749

current operation, 750�752

device, opening, 744�745

elapsed time, 752

ending point in file, 770

error handling, 764�768

events

Done event, 741, 763�764, 768

StatusUpdate event, 741, 750

files, opening, 745

MID files, 757�759

MPG files, 761�763

notification of command execution, 763�764

overhead, 771

vs. PlaySound Windows API function, 771

properties

CanStep property, 769

Command property, 741, 744�745, 747�749

DeviceType property, 744�745

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (81 of 138) [3/14/2001 2:14:21 AM]

Error property, 764�768

ErrorMessages property, 764�768

FileName property, 745

Frames property, 769

hWndDisplay property, 759, 761

Mode property, 741, 750

Notify property, 741, 763�764

Orientation property, 743

Position property, 752

properties using current time format, 746

From property, 770

To property, 770

TimeFormat property, 746, 770

UpdateInterval property, 750

Visible property, 749

Wait property, 771

recorded data, saving to disk, 753

resuming playback, 749�750

showing and hiding, 749

starting point in file, 770

stopping playback, 749

time formats, 746�747

trappable errors, 767�768

waiting until current operation is complete, 771

WAV files, 755�757

Multiple Document Interface. See MDI child forms; MDI forms.

Multiple documents, opening, 141

Multiple forms, 134�136

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (82 of 138) [3/14/2001 2:14:21 AM]

Multiple OLE objects, 914�924

Multiselect list boxes, 257, 261�262, 264

MultiSelect property, 261�262, 429

MultiUse value, 937, 959

N

Name property, 166, 233�234, 590

Names of variables, misspelling, 38. See also Naming conventions.

Naming conventions. See also Programming conventions, Microsoft.

constant prefixes, 33

control prefixes, 29�32

Data Access Object prefixes, 32

menu control prefixes, 33

menus and menu items, 155�156

variable prefixes, 28�29

variable scope prefixes, 28

Navigate method, 700

Nested conditionals and loops, 37

Nested error handling, 1024�1025

Netapi32.dll, 774

New keyword, 87, 94, 138, 940�941

NewIndex property, 276�277

NewPage method, 611

Next command (multimedia MCI control), 748

NodeClick event, 518

Nodes, tree view, 511�518. See also Tree views.

Nodes collection, tree views, 511�512

NonModalAllowed property, 962

Nop pen setting, 605

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (83 of 138) [3/14/2001 2:14:21 AM]

Not Copy Pen pen setting, 604

Not Mask Pen pen setting, 604

Not Merge Pen pen setting, 604

Not Xor Pen pen setting, 605

Nothing keyword, 958�959, 961

Notification of multimedia control command execution, 763�764

Notify property, 741, 763�764

Now function, 115, 414

NPer function, 116

NPV function, 116

Number property, 1020�1021

Numeric values

connecting data to list box items, 275�276

converting between string and numeric values, 102

date and time values, 114�115

financial functions, 116

math functions, built-in, 113

trigonometric functions, calculated, 114

O

Object Browser, 79, 938

<OBJECT> HTML tag, 657

Object references, 951�953

Object type, 970�971

Object variable type, 89, 970�971

Objects

adding code to, 49

code components, 934�935, 940�942, 960�961

insertable objects, 66�67

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (84 of 138) [3/14/2001 2:14:21 AM]

predefined objects, Visual Basic, 56�59, 176�178

Oct function, 90

OCX files (ActiveX control files), 651, 1043

ODBC data sources, 836�837

ODBCDirect, 853�854

OLE automation servers. See Code components.

OLE container control. See OLE control.

OLE containers, 896

OLE control, 896�897

adding to forms, 900

border, removing, 903

Class property, 904

display options, 903�904

events

OLECompleteDrag event, 989�990

OLEDragDrop event, 984, 986�989

OLEStartDrag event, 983

Updated event, 930�931

loading at runtime, 920�924

methods

Close method, 908

Delete method, 926

Drag method, 924�925

InsertObjDlg method, 905

OLEDrag method, 983�985

Paste method, 927

PasteOK method, 927

PasteSpecialDlg method, 908�911

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (85 of 138) [3/14/2001 2:14:21 AM]

ReadFromFile method, 898, 929�930

SaveToFile method, 898, 929�930

pop-up menu, 904

primary verbs, executing, 914

properties

Action property, 897

ActiveControl property, 915

AppIsRunning property, 908, 916

AutoActivate property, 912

AutoVerbMenu property, 912�913

Border property, 903

DisplayType property, 903�904

MiscFlags property, 931

OLEDropMode property, 986

OLEType property, 898, 906, 914

OLETypeAllowed property, 899, 906

PasteOK property, 908�909

SizeMode property, 903, 905, 928

SourceDoc property, 897, 904

resizing options, 903, 905

OLE DB. See ADO (ActiveX Data Objects).

OLE (Object Linking and Embedding), 896�897, 897�899. See also OLE control; OLE
objects.

OLE objects

activating, 912�914

clipboard, copying and pasting, 927

deactivating, 907�908, 916

deleting, 926

determining if object has been updated, 930�931

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (86 of 138) [3/14/2001 2:14:21 AM]

determining whether linked or embedded, 914

displaying content or icons, 903�904

DoVerb method, 913�914

drag and drop operations, 924�925, 983�990

editing in place, 896, 912, 931

embedded objects, 897�899, 929�930

enlarging, 928

existing files, linking or embedding, 902, 904, 905�907, 908�911

linking, 897�899

methods supported, 898

multiple objects, 914�924

new objects, creating and embedding, 900, 905�907

opening, 896, 912

shrinking, 928

verifying insertion in OLE control, 905�906

OLE servers, 896

OLE verbs, 897, 912�914

OLECompleteDrag event, 989�990

OLEDrag method, 983�985

OLEDragDrop event, 984, 986�989

OLEDropMode property, 984, 986

OLEStartDrag event, 983

OLEType property, 898, 906, 914

OLETypeAllowed property, 899, 906

On Error GoTo 0 statement, 1015�1016

On Error GoTo Label statement, 1012�1013

On Error GoTo line# statement, 1013

On Error Resume Next statement, 1015

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (87 of 138) [3/14/2001 2:14:21 AM]

OnComm event, 409, 422, 424, 426�427

Online help system, 1063�1064. See also Help files.

Online user registration, 1040, 1065�1068

Open command, 741, 748

Open method, 742, 884�887, 893�894

Open statement, 546, 549�550

OpenConnection method, 876�877

OpenDatabase method, 865�867

Opening OLE objects, 896, 912

OpenRecordset method, 863�865, 866�867

OpenResultset method, 877�879

OpenTextFile method, 576�577

OpenURL method, 697, 728�729, 730, 732�733, 734�736

Operator precedence, 102�104

Optimization, 64�65, 75�76

Option Base statement, 94, 96

Option buttons, 227

adding and removing at runtime, 242

background color, 229�230

button releases, 244

combining with checkboxes, 249�250

in control arrays, 233�234, 242

disabling, 236�237

displaying images in, 237, 239�240, 241, 616

events

Click event, 232�233

DblClick event, 233

GotFocus event, 235

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (88 of 138) [3/14/2001 2:14:21 AM]

Key& events, 244

LostFocus event, 235

Mouse& events, 244

focus, 234, 236

graphical option buttons, 248

grouping, 246

keyboard access, 235

methods

Move method, 239

SetFocus method, 234

moving, 239

passing to procedures, 243

properties

BackColor property, 230

Caption property, 229, 235

Default property, 234, 236

DisabledPicture property, 237

DownPicture property, 241, 248

Enabled property, 237

Font property, 231�232

ForeColor property, 231

Height property, 239

Index property, 233�234

Left property, 239

Name property, 233�234

Picture property, 239�240, 248

Style property, 230, 237, 239�240, 241, 616

TabIndex property, 236

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (89 of 138) [3/14/2001 2:14:21 AM]

TabStop property, 236

ToolTipText property, 238

Top property, 239

Value property, 247�248

Visible property, 237�238

Width property, 239

resizing, 239

responding to button clicks, 232�233

setting caption, 229

showing and hiding, 237�238

state of buttons, 247�248

tab order, 236

text color, 230�231

tool tips, 238

Option Compare statement, 101

Option Explicit statement, 38, 88

Option Private Module statement, 91

Optional arguments, 97, 98, 953�954

Optional keyword, 97, 98, 953�954

Orientation property, 295, 297, 367�368, 743

Origin of coordinate systems, 583

Out-of-process servers (ActiveX EXEs), 935, 945

creating, 943�945

methods, passing arguments to, 951�953

properties, setting, 947

registering, 958

threading models, 936, 963

Outbox, Microsoft Exchange, 723

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (90 of 138) [3/14/2001 2:14:21 AM]

OutBufferCount, OutBufferSize properties, 409, 425

Outdenting menu items, 169

Output property, 409, 423�424, 425

Ovals, drawing, 450

Overhead

image storage, 508

lightweight controls, 990�991

memory used by graphics, freeing, 647�648

multimedia MCI control, 771

optimizing, 75�76

picture boxes vs. image controls, 615

Variant variable type, 38, 89

P

Package And Deployment Wizard, 1039, 1043�1048

Page Designer, DHTML. See DHTML Page Designer.

Page orientation, setting, 367�368

Paint event, 584, 611�612, 657

PaintPicture method. See also Render method.

flipping images, 630�631

picture boxes, 333�334, 335, 619

printing graphics using Printer object, 610�611

stretching images, 632�633

Pairs of scroll bars, coordinating, 293

PanelClick, PanelDblClick events, 490

Panels, status bars, 127, 485�490

Paragraphs, indenting, 211�212

ParamArray keyword, 97, 98, 968

Parameter ADO object, 827

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (91 of 138) [3/14/2001 2:14:21 AM]

Parent property, 136

Parentheses, 104

Parsers, 698

Password control, 205�206

Password property, 727

PasswordChar property, 205�206

Passwords, 858

Paste method, OLE control, 898, 927

Paste Special menu item, OLE objects, 908�911

PasteOK property, 908�909, 927

PasteSpecialDlg method, OLE control, 898, 908�911

Pasting OLE objects from Clipboard, 927

Pasting pictures from Clipboard, 610

Path property, 568, 569

Patterns (fill patterns), 602

Pause command, multimedia MCI control, 748, 749

PDL (program design language), 35�36

Pens, 604�606, 786�788

Pentium FDIV error, disabling checks for, 65

Pentium Pro processor, optimizing for, 76

Performance

DLLs vs. EXE files, 684

optimizing, 64�65, 75�76

properties for out-of-process servers, setting, 947

Variant variable type, 89

Persistent properties, 671�674, 693�694

Picture boxes, 313�314, 618�619. See also Picture objects.

accessing images, 316

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (92 of 138) [3/14/2001 2:14:21 AM]

adjusting size to fit image, 317

aligning, 317

animation, 320�321

AVI files, displaying, 759�761

binding to data controls, 847

clearing images, 330

Clipboard, copying and pasting, 332, 609, 610

dimensions of images, 607

drawing in, 324�326, 450, 459, 588�589, 591�600

events

Click event, 318

mouse events, 318�319

Resize event, 608�609

filling images, 601�602

flipping images, 333, 630�631

freeing memory used by graphics, 647�648

grouping controls, 322

vs. image controls, 614�615

image lists, 326�327

image maps, 318�319

loading images at runtime, 619�620

methods

Circle method, 324

Cls method, 330, 621

Line method, 325�326

LoadPicture function, 619, 620

PaintPicture method, 333�334, 335, 619

Point method, 331, 604

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (93 of 138) [3/14/2001 2:14:21 AM]

Print method, 327, 588�589

PSet method, 326, 604

SavePicture method, 620

MPG files, displaying, 761�763

opening files, 566

pixel-level image manipulation, 331, 635�647

printing images, 335�336

properties

Align property, 317

AutoRedraw property, 328

AutoSize property, 317, 619

BorderStyle property, 619

CurrentX, CurrentY properties, 327�328, 588

DrawMode property, 604�606

DrawStyle property, 602�603

DrawWidth property, 602�603

FillColor property, 601�602

FillStyle property, 602

Font& properties, 329, 589

Handle property, 336

hDC property, 336

Height property, 338, 607

hWnd property, 336, 759, 761

Image property, 316, 336, 648

Picture property, 316, 320, 619, 648

ScaleHeight, ScaleWidth properties, 338, 607

ScaleMode property, 337�338, 606�607, 636

Width property, 338, 607

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (94 of 138) [3/14/2001 2:14:21 AM]

resizing graphics, 608�609

resizing to fit image, 619

saving files, 338, 566, 620

setting drawing mode, 604�606

setting drawing scales, 606�607

setting drawing style, 602�603

stretching images, 333, 632�633

text, 327, 329�330

units of measurement, 337�338

Windows handles, 336

Picture clip controls

adding to forms, 623�624

GraphicCell array, 629

properties

Clip property, 626

ClipHeight property, 626

ClipWidth property, 626

ClipX, ClipY properties, 626

Columns property, 629

Rows property, 629

selecting images in, 625�628, 629�630

Picture control, 190

Picture objects. See also Picture boxes.

arrays of, for animation sequences, 623, 634�635

drawing images using, 622�623

images

loading into, 620, 621

storing in memory, 621�622

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (95 of 138) [3/14/2001 2:14:21 AM]

LoadPicture function, 620, 621

Render method, 622�623

Picture property

buttons, 239�240, 248

forms, 617

freeing memory used by graphics, 648

image controls, 339�340, 618

picture boxes, 316, 320, 619

status bar panels, 489

Pictures, adding to buttons, 239�240, 241

Pie charts, 382�383

Pixels

accessing in picture boxes, 331

binary raster operation mode (ROP2), 788�789

drawing, 604

mouse location, reporting, 607

pixel-level image manipulation, 635�647

retrieving color of, 604

Play command (multimedia MCI control), 748

Play method, 742

PlaySound Windows API function, 770�805, 771, 776

Pmt function, 116

Point method, 331, 604

Pointers to memory, retrieving, 806, 807

Points, 326, 604

Pop-up links, Help files, 1058�1060

Pop-up menus, 184�185, 186�187, 904, 912�913

PortOpen property, 408, 423, 427�428

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (96 of 138) [3/14/2001 2:14:21 AM]

Position attribute, 710, 715

Position property, 752

Positioning startup forms, 69

Positioning windows in Z-order, 810�812

POST (HTTP command), 735

PPmt function, 116

Precedence (operator precedence), 102�104

Predefined dialog boxes, 146�147

Predefined elements, Visual Basic, 58, 176�178. See also Visual Component Manager.

Predefined forms, 57

Predefined menus, 59, 176�178

Prefixes

constant prefixes, 33

control prefixes, 29�32

Data Access Object prefixes, 32

Hungarian prefix notation, 776�777

menu control prefixes, 33, 156

variable prefixes, 28�29

variable scope prefixes, 28

Preserve keyword, 95

Prev command (multimedia MCI control), 748

Primary keys, 776

Primary verbs, executing for OLE objects, 914

Print # statement, 550�551

Print dialog box, 363�368

Print method, 588�589, 610�611

Print Setup dialog box, 365

Printer object

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (97 of 138) [3/14/2001 2:14:21 AM]

flipping images, 630�631

fonts available, 590�591

printing from Print dialog box, 363

printing graphics, 610�611

stretching images, 632�633

PrinterDefault property, 363

Printers, 365

Printers collection, 611

PrintForm method, 364, 610

Printing images, 335�336

Printing text, 223�224

Private keyword

declaring constants, 85

declaring DLL procedures, 775

declaring methods in code components, 950

declaring properties in class modules, 946

declaring subroutines, 96

declaring variables, 86

defined, 11

scope of procedures, restricting, 13

Private value, 937, 959

Private variables, 91

Procedure-level variables, 91

Procedure scope, 13

Procedures. See also Methods.

arguments, passing by value or reference, 776, 951�953

arrays, passing as arguments, 967�968

buttons, passing as arguments, 243

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (98 of 138) [3/14/2001 2:14:21 AM]

commenting conventions, 33�34

control arrays, passing as arguments, 968, 970�971

declared as Static, 13

design of, 37

DLL procedures, 775�776

forms, passing as arguments, 150�151, 992

functions, 97�98

global variables, passing as arguments, 37

procedure-level variables, 91

procedure scope, 13

subroutines, 96�97

variable values, preserving, 99�100

viewing definition in IDE, 74

in Windows API, 778�779

Product information, adding to projects, 59

Professional Edition, Visual Basic, 2

Profiles, Application Wizard, 23

Program design language (PDL), 35�36

Programming conventions, Microsoft

best coding practices, 36�38

commenting conventions, 33�34

constant prefixes, 33

control prefixes, 29�32

Data Access Object prefixes, 32

indentation of code, 38

menu control prefixes, 33

program design language (PDL), 35�36

software design process, 34�35

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (99 of 138) [3/14/2001 2:14:21 AM]

variable prefixes, 28�29

variable scope prefixes, 28

Programming defensively, 37

Programs, Visual Basic

entering break state, 116

linking to Visual C++ code, 816�818

online user registration, 1065�1068

terminating, 116, 136

using custom ActiveX controls, 664

windows, hiding, 136

Progress bars, 466�467, 491�493

Project Explorer window, 45, 77

Project groups, Visual Basic, 662�664

Project menu, IDE, 43, 76�77

Project Properties dialog box, 54, 55, 61, 137, 655�656, 683

Project types supported by Visual Basic, 2�3

Projects, Visual Basic. See also IDE (Integrated Development Environment).

adding ActiveX controls, 66�67

adding ActiveX Designers, 77

adding OLE controls, 900

adding Web browsers, 696

BAS files (module files), 22

components of, 9�10

converting to ActiveX documents, 683

creating using Application Wizard, 22�28

custom ActiveX controls, 664

FRM files (form files), 16�22

GlobalMultiUse objects, 959�960

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (100 of 138) [3/14/2001 2:14:21 AM]

insertable objects, adding to projects, 66�67

integrating Web browsers into, 691�692

optimizing, 75�76

saving to disk, 13�14

scope, 11�13

software design process, 35�36

splash screens, 24

startup forms, 55, 61, 69, 137

startup procedure, 54

VBP files (project files), 15

VBW files (project files), 16

version information, 59

Prompts in message boxes, 148

Properties. See also names of specific properties.

ActiveX controls, 666�674

ActiveX documents, 693�694

code components, 942, 946, 947�949

design-time vs. runtime, 46

managing using Properties window, 46�47

out-of-process servers, 947

viewing in Object Browser, 79

Properties collection, ADO, 828

Properties window, IDE, 46�47

Property Page Wizard, 680�681

Property pages, 680�681

PropertyBag objects, ActiveX controls, 671, 693�694

PropertyChanged method, 671�672, 693�694

Provider property, 828, 840

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (101 of 138) [3/14/2001 2:14:21 AM]

PSet method, 326, 604, 610�611

Public keyword

declaring arrays, 93

declaring constants, 85

declaring global items, 10

declaring methods in code components, 950

declaring properties in class modules, 946

declaring subroutines, 96

declaring variables, 86

defined, 11

PublicNotCreatable value, 937, 959

PUT (FTP command), 730

PUT (HTTP command), 735

Put statement, 552�553, 554, 564

PV function, 116

PWD (FTP command), 730

Q

QBColor function, 586

QueryDef DAO object, 825

Quick Info feature, 70, 72

Quick Watch window, 1033

QUIT (FTP command), 730

R

Radio buttons. See Option buttons.

Raise method, 1023�1024

RaiseEvent method, 679

Random access files, 542, 552�553, 558�561, 563�564

Randomize statement, 454

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (102 of 138) [3/14/2001 2:14:21 AM]

Raster operations, 788�789, 794

Rate function, 116

RDO (Remote Data Objects), 826, 854. See also Remote data control.

adding records, 844

creating result sets, 877�879

data-bound controls, 838�839, 847�848

data environment, 824

deleting records, 844�845

navigating databases, 845�847

navigating result set, 879�883

opening database connections, 876�877

opening databases, 838

rdocode example project, 875�884

refreshing data, 845

SQL statements, executing, 883

updating databases, 845

Rdocode example project, 875�884

RdoConnection object, 854, 877�879, 883

RdoEnvironment object, 876�877

RdoResultset object, 879�883

RdoTables collection, 827

Read buffer, MAPIMessages control, 719

Read method, 578

Read-only text boxes, 202

ReadFromFile method, OLE control, 898, 929�930

Reading from binary files, 561�563

Reading from random access files, 558�561

Reading from sequential files, 555�557

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (103 of 138) [3/14/2001 2:14:22 AM]

Reading RTF files into RTF boxes, 223

ReadLine method, 578

ReadProperties event, 671�672, 693�694

Record command, multimedia MCI control, 748

Record sets, ADO

adding records to, 888

binding controls to, 887

creating, 885�887

deleting records, 892�893

navigating, 890�892

refreshing, 888�889

updating records, 889�890

Record sets, DAO

adding records, 867�868

creating, 863�865

deleting records, 872

editing records, 868

navigating, 869�872

searching, 873

sorting records, 872

updating records, 868�869

Records

database records, 823�824

adding, 844, 867�868, 888

deleting, 844�845, 872, 892�893

editing, 868

entering data using Visual Data Manager, 833

navigating, 845�847, 869�872, 879�883, 890�892

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (104 of 138) [3/14/2001 2:14:22 AM]

refreshing and updating data, 845

searching, 873

sorting, 872

updating, 868�869, 889�890

random access files, 563�564

Recordset object, ADO, 827

methods

AddNew method, 888

Delete method, 892�893

MoveFirst method, 890

MoveLast method, 890�891

MoveNext method, 891

MovePrevious method, 891�892

Open method, 885�887, 893�894

Refresh method, 888�889

Update method, 889�890

Recordset object, DAO

creating record set, 863�865

methods

AddNew method, 867�868

Delete method, 872

Edit method, 868

MoveFirst method, 869�870

MoveLast method, 870

MoveNext method, 870�871

MovePrevious method, 871�872

OpenRecordset method, 866�867

Update method, 868�869

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (105 of 138) [3/14/2001 2:14:22 AM]

properties

BOF property, 871�872

EOF property, 870�871

Index property, 872, 873

Seek property, 873

Recordset property, 826, 844, 845, 846

RecordsetEvents, ADO, 828

RecordSource property, 826, 828, 835

Rectangle Windows API function, 785�786

Rectangles, drawing, 449, 785�786

RECV (FTP command), 730

ReDim statement, 11, 86, 94, 96

Redrawing form contents, 129

Redrawing graphics, 584

Reference, passing arguments by, 776

References to code components, adding, 938

Refresh button, Web browsers, 705

Refresh method, 705, 845

Refreshing record sets, 888�889

Refreshing screen. See Redrawing graphics.

Registering ActiveX controls with Windows, 656, 664

Registering in-process servers, 957

Registering ODBC data sources, 836�837

Registering out-of-process servers, 958

Registering programs online, 1040, 1065�1068

Registry, Windows. See Windows Registry.

Regsvr32.exe utility, 664

Relation DAO object, 825

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (106 of 138) [3/14/2001 2:14:22 AM]

Remote data control, 826�827. See also ADO data control; Data control; RDO
(Remote Data Objects).

data-bound controls, 838�839

methods

AddNew method, 844

Delete method, 844�845

MoveFirst method, 846

MoveLast method, 846�847

MoveNext method, 845�846

MovePrevious method, 846

Refresh method, 845

UpdateRecord method, 845

properties

DataSource property, 838

DataSourceName property, 838

Resultset property, 844, 845, 846

SQL property, 827, 838

rdoTables collection, 827

Remote Data Objects. See RDO (Remote Data Objects).

Remote Data Service (RDS), 828

Remove method, 110

RemoveItem method, 257�258, 269

RENAME (FTP command), 730

Render method, 622�623. See also PaintPicture method.

Replacing text in RTF boxes, 221

ReplayAll method, 719

Reply method, 719

Report mode, list views, 519

Resize event, 608�609

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (107 of 138) [3/14/2001 2:14:22 AM]

Resizing buttons, 239

Resizing graphics, 608�609

ResolveName method, 720

Resource files, 316

RestoreToolbar method, 482

Result set (RDO), 877�883

Resultset property, 844, 845, 846

Resume Label statement, 1017�1018

Resume line# statement, 1018�1019

Resume Next statement, 1019�1020

Resume statement, 1016�1017

Return values, 98, 150, 775

RGB function, 216�217, 586

Rich text. See RTF boxes.

Right function, 101

Right mouse events, 186, 793

RightMargin property, 212

RMDIR (FTP command), 730

RmDir statement, 572

Rnd function, 113

ROP2 (binary raster operation) mode, 788�789

Rounded rectangles and squares, 451

Row property, 377�378, 393

RowCount property, 377�378

RowLabel property, 378

Rows property, 393, 629

RowSource property, 849

RSet function, 101

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (108 of 138) [3/14/2001 2:14:22 AM]

RTF boxes

binding to data controls, 847

creating, 198

inappropriate use of, 198�199

methods

Find method, 221

LoadFile method, 223, 565

SaveFile method, 222, 564�565

SelPrint method, 223�224

Span method, 208

moving insertion point, 217�219

opening files, 223, 565

printing text, 223�224

properties

BulletIndent property, 214�215

RightMargin property, 212

SelAlignment property, 216�217

SelBold property, 209�211

SelBullet property, 214�215

SelCharOffset property, 219�220

SelColor property, 216�217

SelFontName property, 213

SelFontSize property, 213

SelHangingIndent property, 211�212

SelIndent property, 211�212

SelItalic property, 209�211

SelRightIndent property, 211�212

SelRTF property, 208

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (109 of 138) [3/14/2001 2:14:22 AM]

SelStrikethru property, 209�211

SelUnderline property, 209�211

Text property, 208�209

TextRTF property, 208�209

replacing text, 221

saving files, 222, 564�565

searching for text, 221

selecting text, 208�209

setting text attributes, 209�215, 216�217, 219�220

RTF files, 222, 223, 1051�1052

RTF text, 198

RThreshold property, 408, 422

RTrim function, 101

Run menu, IDE, 43

S

Save command (multimedia MCI control), 748

Save method, 719

SaveFile method, 222, 564�565

SavePicture function, 566, 620

SavePicture statement, 338

SaveSetting Windows API function, 193�195, 997

SaveToFile method, 898, 929�930

SaveToolbar method, 482

SaveToOle1File method, 898

Saving pictures to disk, 338

Saving RTF files, 222

ScaleHeight property, 133, 338, 607

ScaleLeft property, 133

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (110 of 138) [3/14/2001 2:14:22 AM]

ScaleMode property

forms, 17, 133, 606�607

picture boxes, 337�338, 606�607

pixel-level manipulation of images, 636

ScaleTop property, 133

ScaleWidth property, 133, 338, 607

Scope, 11, 13, 28, 37, 90�91

Screen

capturing images, 794�799

capturing mouse events outside program window, 789�793

coordinates, translating to window coordinates, 790

device context for entire screen, 781�782

refreshing, 584

Screen object, 590�591, 608, 971�972, 992�993

Scroll bars, 283�284. See also Flat scroll bars.

adding to forms, 286

adding to text boxes, 201�202, 293�294

current value, 289

events

Change event, 289�290

Scroll event, 291�292

large changes, 287

pairs, coordinating, 293

properties

Enabled property, 292

LargeChange property, 287

Min, Max properties, 286�287

SmallChange property, 288

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (111 of 138) [3/14/2001 2:14:22 AM]

Value property, 289

Visible property, 292

range of values, 286

showing and hiding, 292

small changes, 288

Scroll event, 291�292, 302�303

ScrollBars property, 201, 293�294

Scrolling list boxes horizontally, 263

Search and replace, in RTF boxes, 221

Search button, Web browsers, 705

Secant function, calculating, 114

Second function, 90

Security: password controls, 206

Seek command (multimedia MCI control), 748

Seek property, 873

SelAlignment property, 216�217

SelBold property, 209�211

SelBullet property, 214�215

SelCharOffset property, 219�220

SelColor property, 216�217

Select Case Is keyword, 105

Select Case statement, 105

Selected array, 260

Selected property, 257

SelectObject Windows API function, 190, 786�787

SelectRange property, 303

Self drops, handling, 981�982

SelFontName property, 213

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (112 of 138) [3/14/2001 2:14:22 AM]

SelFontSize property, 213

SelHangingIndent property, 211�212

SelIndent property, 211�212

SelLength property, 204, 303

SelPrint method, 223�224

SelRightIndent property, 211�212

SelRTF property, 208

SelStart property, 204, 303

SelStrikethru property, 209�211

SelText property, 204

SelUnderline property, 209�211

SEND (FTP command), 730

Send method, 719, 722�723

SendKeys function, 111�112

Sensitive data, protecting, 37

Sequential files, 541�542, 550�552, 554�558

Serial port access, 408, 423, 427

Serialized thread operations, 936

SessionID property, 721, 725

Set procedures, 948

Set statement, 940�942

SetCapture Windows API function, 790�793, 800�802

SetData method, 332, 379, 609, 984

SetFocus method, 234

SetROP2 Windows API function, 789

SetText method, 205

Settings, Windows Registry. See Windows Registry.

Settings property, 408, 423

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (113 of 138) [3/14/2001 2:14:22 AM]

SetWindowPos Windows API function, 810�812

Sgn function, 113

Shape control, 436�437

adding to forms, 448�449

automatic alignment, turning off, 453

borders, 452

drawing shapes, 449�451

filling shapes, 452�453

hiding and showing shapes, 455

Move method, 454�455

moving shapes at runtime, 454

properties

BorderStyle property, 452

BorderWidth property, 452

FillColor property, 453

FillStyle property, 452

Height property, 454

Left property, 454

Shape property, 449, 450, 451

Top property, 454

Width property, 454

Shape property, 449, 450, 451

Shared files, specifying, 1048

Shell32.dll, 774

Shift key, 112, 303�306, 304

Shortcut keys, 155, 171, 172�173

Show method

dialog box display, 962

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (114 of 138) [3/14/2001 2:14:22 AM]

forms, 136, 961

MAPIMessages control, 720

modal dialog box display, 147, 996�997

ShowHelp method, 368

Showing and hiding buttons, 237�238

Showing and hiding controls, 132

Showing and hiding IDE windows, 73

Showing and hiding menus and menu items, 184

Showing and hiding multimedia MCI control, 749

Showing and hiding scroll bars, 292

Showing and hiding shapes, 455

ShowInTaskbar property, 995

ShowOpen, ShowSave methods, 350�351

Shrinking OLE objects, 928

SignOff method, 722�723

SignOn method, 721, 725

Simple combo boxes, 265

SimpleText property, 491

Sin function, 113

Single-stepping, 1032

Single-threaded objects, 936

Single variable type, 89

SingleUse value, Instancing property, 937, 960

SIZE (FTP command), 730

Size property, 590

SizeMode property, 903, 905, 928

Sizing controls, 51�52, 131

Sizing handles on controls, 51

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (115 of 138) [3/14/2001 2:14:22 AM]

Slider control, 284

adding to forms, 296�297

clearing selection, 306

current value, 301�303

events

Change events, 301

handling, 301�303

KeyDown event, 204

Scroll event, 302�303

groove clicks, 298�299

methods

ClearSel method, 306

GetNumTicks method, 299

Move method, 297

orientation, 297

properties

LargeChange property, 298�299

Min, Max properties, 298

Orientation property, 297

SelectRange property, 303

SelLength property, 303

SelStart property, 303

SmallChange property, 299

TickFrequency property, 299�300

TickStyle property, 300

Value property, 301, 302

range of values, 298, 303�306

tick marks, 299�300

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (116 of 138) [3/14/2001 2:14:22 AM]

tick style, 300

SLN function, 116

Small changes, 288

Small code, optimizing for, 75

Small icons, adding to list views, 522�524

SmallChange property, 288, 299

SmallIcon mode, list views, 519

SMPTE (Society of Motion Picture and Television Engineers) time formats, 746

Software design process, 35�38

Sort property, 401

Sorted property, 258

Sorting combo boxes, 271�272

Sorting flex grid control, 401

Sorting list boxes, 258

Sound command, multimedia MCI control, 748

Source property, 1022

SourceDoc property, 897, 904

Space function, 101

Spacing controls, 51�53

 DHTML tag, 710

Span method, 208

Splash screens, 24

Spreadsheet, creating, 393�399

SQL property, 827, 838

SQL statements, executing, 874�875, 883, 893�894

Sqr function, 113

Squares, drawing, 449�450

Src attribute, 710

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (117 of 138) [3/14/2001 2:14:22 AM]

Src property, 710

Standard arrays, 93�94

Startup forms, 55, 61, 69

Startup objects, 943

Startup position of forms, specifying, 995

Startup procedure, 54

StateChanged event, 727�728, 729

Static keyword

declaring arrays, 93

declaring procedures, 13

declaring subroutines, 96

declaring variables, 86

defined, 11

preserving variable values, 99�100

Status bars, 465�466

adding panels, 485, 490

adding to forms, 126�127, 484

aligning, 485

appearance, customizing, 488

click events, 490

creating using picture boxes, 322

displaying images, 489

displaying status information, 487

displaying text, 486

panel properties

Alignment property, 488

AutoSize property, 488

Bevel property, 488

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (118 of 138) [3/14/2001 2:14:22 AM]

Key property, 490

Picture property, 489

SimpleText property, 491

Style property, 487

Text property, 486

PanelClick, PanelDblClick events, 490

Panels collection, 485

properties

Align property, 485

Style property, 491

without panels, 491

StatusUpdate event, 741, 750

Step charts, 2D and 3D, 388�390

Step command, multimedia MCI control, 748, 769

Step keyword, 591, 594, 604

SThreshold property, 408, 422

StillExecuting property, 727

Stop button, Web browsers, 705

Stop command, multimedia MCI control, 748, 749, 753

Stop method, 705

Stop statement, 116

Stopwatch example program, 416�417

Str function, 90, 102

StrComp function, 101

StrConv function, 101

Stretch property, 339�340, 618, 633

Stretching images, 333�334, 632�633

StrikeThrough property, 590

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (119 of 138) [3/14/2001 2:14:22 AM]

Strikethru text in RTF boxes, 209�211

String function, 101

String variable type, 89, 101

Strings

converting between string and numeric values, 102

formatting date and time values, 115

passing as arguments to code components, 951�953

string-handling functions, 101�102

variable-length vs. fixed-length, 101

Style property

buttons, 230, 237, 239�240, 241

combo boxes, 265, 273

images, displaying in controls, 616

list boxes, 264

status bar panels, 487

status bars, 491

toolbar buttons, 474�475, 477, 479

tree views, 511

Sub Main procedure, 54, 943

Sub procedures, 674�678

Submenus, 173�175

Submit button, 712�713

Subnodes, adding to tree views, 513�515

Subroutines, 96�97, 99�100, 775�776

Subscript characters, RTF boxes, 219�220

Suffix symbols, numeric values, 88

Superscript characters, RTF boxes, 219�220

Switch function, 106

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (120 of 138) [3/14/2001 2:14:22 AM]

SYD function, 116

SyncBuddy property, 307

Syntax Checking, IDE, 71, 72

T

Tab order in text-entry forms, 236

Tab order of controls, 129�130, 236, 975

Tab strips, 504�505

adding tabs, 532�533

adding to forms, 531�532

Click events, 536

connecting images to tabs, 534

displaying correct tab, 536

displaying other controls, 535�536

properties

Caption property, 533

ImageList property, 534

tab captions, 533

Tabs collection, 533

TabIndex property, 130, 236, 975

Table Operation drop-down box, DHTML Page Designer, 715�716

Table Structure window, Visual Data Manager, 831�832

TableDef object, DAO, 859, 860�863

Tables, DHTML pages, 715�716

Tables (database tables). See also Fields.

adding fields to, 860�861

creating, 859

creating using Visual Data Manager, 830

defined, 823

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (121 of 138) [3/14/2001 2:14:22 AM]

indexes, 861�863

opening, 866�867

TabStop property, 19, 130, 236

Tan function, 113

Target URL, setting, 716�717

Taskbar, Windows 95, 995

Templates folder, Visual Component Manager, 56�57, 176�178

Temporary file names, 1066

Terminate event, 672, 958�959

Terminating programs, 116

Testing ActiveX controls, 655�656, 661�662, 662�664

Testing ActiveX documents, 683, 690�691

Testing code components, 954�956

Testing DHTML pages, 717

Testing programs, 1007�1008

Text

adding to DHTML pages, 709�710

aligning, 200�201, 216�217, 446

customizing IDE, 50�51

determining fonts available, 590�591

displaying in status bars, 486

drawing using Print method, 588�589

entering in flex grid control, 394

Font object, 590

font properties, 589

formatting, 329�330, 445�446, 589, 710

highlighting, turning off, 204

printing, from RTF boxes, 223�224

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (122 of 138) [3/14/2001 2:14:22 AM]

replacing in text boxes, 204

in RTF boxes, 208�209

searching for in IDE, 74

selecting, 204, 208�209

setting attributes, 209�211

setting color, 216�217

superscripts and subscripts, in RTF boxes, 219�220

in text boxes, 203

title bar text, 121, 802�803

Text boxes. See also Combo boxes.

adding scroll bars, 201�202, 293�294

adding to forms, 198

aligning text, 200�201

binding to data controls, 835, 838�839, 840�841, 847

clipboard, copying and pasting, 204�205

data entry in flex grid control, 397�399

events

Change event, 145, 207

KeyDown event, 207

KeyPress event, 206

KeyUpevent, 207

highlighting, turning on and off, 204

inappropriate use of, 198�199

vs. label controls, 444�445

limiting number of characters, 201

multiline text boxes, 200

password control, 205�206

properties

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (123 of 138) [3/14/2001 2:14:22 AM]

Alignment property, 200�201

DataField, DataSource properties, 835, 838�839, 840�841

Enabled property, 202

HideSelection property, 204

Locked property, 202

MaxLength property, 201

Multiline property, 200, 201

PasswordChar property, 205�206

ScrollBars property, 201, 293�294

SelLength property, 204

SelStart property, 204

SelText property, 204

Text property, 203

read-only text boxes, 202

replacing text, 204

restricting input characters, 206�207

selecting text, 204

setting text, 203

word wrap, 200

Text data, sending, 425

Text property

combo boxes, 265, 267, 270�271

flex grid control, 393, 394

RTF boxes, 208�209

status bar panels, 486

text boxes, 203

TextArray property, 400

TextHeight method, 589

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (124 of 138) [3/14/2001 2:14:22 AM]

TextRTF property, 208�209

TextStream objects, 542, 575�579

TextWidth method, 589

Thread-per-object model, 936

Thread pooling, 936

Threading models, 936, 963

Thumb of scroll bars, 283

Tic-tac-toe game (ActiveX document example), 684�689

Tick marks, slider controls, 299�300, 300

TickFrequency property, 299�300

TickStyle property, 300

Time formats, 114�115, 413�415, 746�747

Time function, 115

Time$ function, 413

TimeFormat property, 746, 770

Timer control, 406�407

accuracy of, 413

adding to forms, 412

animation using image list control, 419�421

current time, displaying, 415

elapsed time, displaying, 417

example programs, 415�419

formatting date and time values, 413�415

initializing, 412

properties

Enabled property, 412

Interval property, 412

Timer event, 412, 413

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (125 of 138) [3/14/2001 2:14:22 AM]

using with progress bar, 492�493

Timer event, 412, 413

TimeSerial function, 90, 115

TimeValue function, 90, 115

Title bar text, 121, 346�347, 802�803

Title bars, 118

Titles for Help pages, 1057�1058

To property, 770

Toggle buttons in toolbars, 477

Tool tips, 45, 238, 1058�1060

Toolbars, 465

adding buttons, 471, 482�484

adding combo boxes, 479�481

adding images to buttons, 475�476

adding to forms, 469

aligning, 470

button groups, 478

button properties

Index property, 471, 475

Key property, 125, 471

Style property, 474�475, 477, 479

ToolTipText property, 481

ButtonClick event, 471�472

Buttons collection, 482�484

check buttons, 477

connecting buttons to menu items, 473

creating using picture boxes, 322

in forms, 119, 123�125�126

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (126 of 138) [3/14/2001 2:14:22 AM]

handling button clicks, 472

in IDE, 44, 61, 67�69

methods

RestoreToolbar method, 482

SaveToolbar method, 482

properties

Align property, 470

AllowCustomize property, 482

ImageList property, 476

separators, 474�475

tool tips, 481

user customization, 482

Toolbox, DHTML Page Designer, 710�711, 712�713, 716�717

Toolbox, Visual Basic, 48, 664

Tools menu, IDE, 43

ToolTipText property, 238, 439, 481

Top property

buttons, 239

forms, 133

frame control, 440

label control, 443

shape control, 454

ToPage property, 364

TopIndex property, 274�275

Total disk space, determining, 813�814

Trademark information, adding to projects, 59

Transactions, ADO, 854

Transferring files. See FTP (File Transfer Protocol).

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (127 of 138) [3/14/2001 2:14:22 AM]

Trappable errors

Cancel button, Common Dialogs, 1028�1029

creating error objects, 1026�1027

determining source of error, 1022

determining which error occurred, 1020�1021

disabling error trapping, 1015�1016

disregarding errors, 1015

in DLLs, 1023

list of, 1003�1007

multimedia MCI control, 767�768

nested error handling, 1024�1025

resuming execution, 1016�1020

retrieving error description, 1021�1022

user-defined errors, 1023�1024

using labels, 1012�1013

using line numbers, 1014

writing error handlers, 1009�1012

Tree views, 502

adding images, 515�517

adding to forms, 510�511

events

Collapse event, 517

Expand event, 517

NodeClick event, 518

expanding and collapsing nodes, 517�518

node properties

Expanded property, 518

Image property, 515

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (128 of 138) [3/14/2001 2:14:22 AM]

Key property, 512

nodes, 511�512

properties, Style property, 511

style, selecting, 511

subnodes, 513�515

Trigonometric functions, 114

Trim function, 101

TwipsPerPixelX property, 608

TwipsPerPixelY property, 608

Type casting. See Converting data between variable types.

Type keyword, 11, 86, 93

Type libraries, code components, 940, 941

Type of control, determining at runtime, 972�973

TypeOf keyword, 972�973

Types. See Variable types.

U

UBound function, 96

Ubound property, 973

UCase function, 90, 101

Underline property, 590

Underlining text in RTF boxes, 209�211

Units of measurement, 17, 53, 133, 328, 337�338, 606�607

Unload statement, 137, 189, 242

Unlocking memory, 808�809

UpClick event, 308�309

Update method, 868�869

Update method, OLE objects, 898

Updated event, 930�931

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (129 of 138) [3/14/2001 2:14:22 AM]

UpdateInterval property, 750

UpdateRecord method, 845

Updown controls, 284, 307�309

UpDown property, 410, 430

URL property, 1066

URLs, 700�703, 716�717

UseMnemonic property, 447

User controls. See ActiveX controls.

User-defined coordinate systems, 133, 607

User-defined data types, 89

User-defined errors, 1023�1024

User registration, online, 1065�1068

User32.dll, 774

UserName property, 727

V

Val function, 90, 102

Value, passing arguments by, 776

Value property

checkboxes, 245�246

DateTimePicker control, 430

MonthView control, 429

option buttons, 247�248

progress bars, 492

scroll bars, 289

slider controls, 301, 302

Variable-length arrays, 968

Variable-length strings, 101

Variable scope, 11, 37

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (130 of 138) [3/14/2001 2:14:23 AM]

Variable scope prefixes, 28

Variable type prefixes, 28�29

Variable types, 88�89

C/C++ data type correspondences, 776�778

converting between types, 90, 102

default type, 88

field types, DAO TableDef object, 860

Hungarian prefix notation, 776�777

list of, 7�8

specifying using As keyword, 11

used in Windows API, 778�779

variable prefixes, 28�29

verifying type, 91, 93

Windows-defined data types, 777�778

Variables

commenting conventions, 33�34

declaring, 11, 86�87

implicit declaration, 87

Option Explicit statement, 38, 88

Option Private Module statement, 91

variable scope, 90�91

variable types, 88�89

default initialization, 87

examining values of (debugging), 1033�1036

form-level variables, 91

form-wide variables, 7, 8

global variables, 10, 91

literal suffix symbols, 88

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (131 of 138) [3/14/2001 2:14:23 AM]

module-level variables, 91

names, misspelling, 38

preserving values, 99�100

procedure-level variables, 91

variable scope, 11, 37, 90�91

variable scope prefixes, 28

variable type, verifying, 91, 93

variable type prefixes, 28�29

variable types, 7�8

viewing definition in IDE, 74

Variant arrays, 951�953

Variant variable type, 38, 88�89, 89

VBD files (ActiveX document specification files), 651, 686, 690�691

VbOLEInPlaceActivate verb, 897

VbOLEOpen verb, 897

VBP files (project files), 15, 25

VBW files (project files), 16

Version control, 39

Version information, 59

Version.dll, 774

Vertical scroll bars, 286. See also Scroll bars.

Vertical Spacing item, Format menu, 52�53

View menu, 43, 73, 165

View modes, list views, 504, 519, 524�525

View property, 524, 525

Visible property

buttons, 237�238

combo boxes, 273

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (132 of 138) [3/14/2001 2:14:23 AM]

controls, 132

menu items, 184, 188

menus, 184

multimedia MCI control, 749

pop-up menus, 184

scroll bars, 292

Visual Basic

best coding practices, 36�38

commenting conventions, 33�34

editions of, 2

naming conventions, 28�33

project types supported by, 2�3

Visual Basic API Viewer, 779

Visual Basic Application Wizard

adding status bars to forms, 484

adding toolbars to forms, 123�125, 469

designing menus, 157

integrating Web browsers into projects, 691�692

online help system, 1063�1064

profiles, 23

projects, creating, 22�28

Visual Basic color constants, 586�587

Visual Basic Global object, 994

Visual Basic Integrated Development Environment. See IDE (Integrated Development
Environment).

Visual Basic Menu Editor. See Menu Editor.

Visual Basic project groups, 662�664

Visual C++ code, 816�818

Visual Component Manager, 56�57, 58, 65�66, 176�178

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (133 of 138) [3/14/2001 2:14:23 AM]

Visual Data Manager, 830�833

W

Wait property, 771

Watch window, 1034

WAV files, playing, 755�757

Web browser control, 696. See also Web browsers.

events, DownloadComplete event, 701

methods

GoBack method, 704

GoForward method, 704

GoHome method, 701, 705

GoSearch method, 705

Navigate method, 700

Refresh method, 705

Stop method, 705

online help system, 1063�1064

properties, LocationName property, 701, 705

Web browsers. See also Web browser control.

allowing navigation to URLs, 700�703

creating, 696, 699�700

integrating into Visual Basic programs, 691�692

specifying home page, 701

standard buttons, 705

URLs, specifying, 700�703

Web pages. See also ActiveX documents.

DHTML pages, testing, 707, 717

directories, downloading, 731, 732

embedding ActiveX controls in, 657

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (134 of 138) [3/14/2001 2:14:23 AM]

including Visual Basic code in, 706

Weekday function, 90

Weight property, 590

While loop, 109

Whiteness pen setting, 605

Width property

buttons, 239

forms, 133

frame control, 440

label control, 443

picture boxes, 338, 607

Screen object, 608

shape control, 454

Win32 Software Development Kit (Microsoft), 779

Win32api.txt, 778�779

Window coordinates, translating to screen coordinates, 790

Window handles, 800�802, 811

Window list, adding to menus, 182�183

Window menu, 44, 165, 182�183

WindowFromPoint Windows API function, 800�802

Windowless controls, 990�991

WindowList property, 183

Windows

capturing mouse events outside of, 789�793

device contexts, retrieving, 780

forcing to topmost position, 810�812

hiding, 136

specifying Z-order position, 810�812

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (135 of 138) [3/14/2001 2:14:23 AM]

title bar text, 121, 802�803

window handles, retrieving, 800�802

Windows, IDE, 73

Windows 95 taskbar, 995

Windows API

core Windows DLLs, 774

sounds, playing, 804�805

Visual Basic API Viewer add-in tool, 779

window handles, retrieving, 800�802

Windows API functions. See also names of specific functions.

calling, 775

correspondences between data types and Visual Basic variable types, 776�778

declarations, adding to Visual Basic programs, 779

declaring, 775�776

Windows applications. See also headings beginning with OLE.

�Designed for Microsoft Windows� logo, 1041�1042

dragging data between applications, 983�990

giving focus to, 112

sending keystrokes to, 110�112

Windows character set, limiting fonts to, 360

Windows Common Controls

coolbars, 466�467, 493�497

displaying images, 616

ImageList property, 508

progress bars, 466�467, 491�493

status bars, 126�127, 465�466, 484�491

toolbars, 125, 322, 465, 469�484

Windows Help, displaying from Common Dialog controls, 368�370. See also Help
files.

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (136 of 138) [3/14/2001 2:14:23 AM]

Windows installation directory, 814�815

Windows Registry

deleting settings, 999

Most Recently Used (MRU) files list, 192�195

registering ActiveX controls, 664

retrieving settings, 192�193, 997�998, 999

storing settings, 193�195, 997

WindowState property, 151

WinHelp Windows API function, 1061�1062

Winmm.dll, 774

With statement, 109

WithEvents keyword, 86, 94

Wizards. See also Visual Basic Application Wizard.

ActiveX Control Interface Wizard, 669, 675, 680

ActiveX Document Migration Wizard, 683

Data Form Wizard, 840, 841�843

Package and Deployment Wizard, 1039, 1043�1048

Property Page Wizard, 680�681

Word wrap in text boxes, 200

WordWrap property, 445

Workspace object, DAO, 825, 857�858

Write # statement, 550�551

Write method, 577

WriteLine method, 577

WriteProperties event, 671�672, 693�694

Writing to binary files, 554

Writing to random access files, 552�553

Writing to sequential files, 550�551

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (137 of 138) [3/14/2001 2:14:23 AM]

X

X1, X2 properties, 455, 457

XML (Extended Markup Language), 697, 698

Xor Pen pen setting, 604, 605

Y

Y1, Y2 properties, 455, 457

Year function, 90

Z

Z-order position, 810�812, 976

Zooming OLE objects, 928

ZOrder method, 976

Visual Basic 6 Black Book:Index

http://24.19.55.56:8080/temp/book-index.html (138 of 138) [3/14/2001 2:14:23 AM]

	Visual Basic 6 Black Book
	Table of Contents
	Introduction
	Whats on the CD-Rom
	About the Author
	Chapter 1 - Visual Basic Overview
	Chapter 1 - Continued
	Chapter 1 - Continued
	Chapter 1 - Continued
	Chapter 1 - Continued
	Chapter 1 - Continued
	Chapter 1 - Continued
	Chapter 1 - Continued

	Chapter 2 - The Visual Basic Development Environment
	Chapter 2 - Continued
	Chapter 2 - Continued
	Chapter 2 - Continued
	Chapter 2 - Continued
	Chapter 2 - Continued
	Chapter 2 - Continued
	Chapter 2 - Continued

	Chapter 3 - The Visual Basic Language
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued
	Chapter 3 - Continued

	Chapter 4 - Managing Forms in Visual Basic
	Chapter 4 - Continued
	Chapter 4 - Continued
	Chapter 4 - Continued
	Chapter 4 - Continued
	Chapter 4 - Continued
	Chapter 4 - Continued
	Chapter 4 - Continued
	Chapter 4 - Continued

	Chapter 5 - Visual Basic Menus
	Chapter 5 - Continued
	Chapter 5 - Continued
	Chapter 5 - Continued
	Chapter 5 - Continued
	Chapter 5 - Continued
	Visual Basic 6 Black Book:Visual Basic Menus

	Chapter 6 - Text Boxes and Rich Text Boxs
	Chapter 6 - Continued
	Chapter 6 - Continued
	Chapter 6 - Continued
	Chapter 6 - Continued
	Chapter 6 - Continued
	Chapter 6 - Continued

	Chapter 7 - Command Buttons, Checkboxes, and Option Buttons
	Chapter 7 - Continued
	Chapter 7 - Continued
	Chapter 7 - Continued
	Chapter 7 - Continued
	Chapter 7 - Continued

	Chapter 8 - List Boxes and Combo Boxes
	Chapter 8 - Continued
	Chapter 8 - Continued
	Chapter 8 - Continued
	Chapter 8 - Continued
	Chapter 8 - Continued
	Chapter 8 - Continued
	Chapter 8 - Continued
	Chapter 8 - Continued

	Chapter 9 - Scroll Bars and Sliders
	Chapter 9 - Continued
	Chapter 9 - Continued
	Chapter 9 - Continued
	Chapter 9 - Continued
	Chapter 9 - Continued
	Chapter 9 - Continued
	Chapter 9 - Continued

	Chapter 10 - Picture Boxes and Image Controls
	Chapter 10 - Continued
	Chapter 10 - Continued
	Chapter 10 - Continued
	Chapter 10 - Continued
	Chapter 10 - Continued
	Chapter 10 - Continued
	Chapter 10 - Continued

	Chapter 11 - Windows Common Dialogs
	Chapter 11 - Continued
	Chapter 11 - Continued
	Chapter 11 - Continued
	Chapter 11 - Continued
	Chapter 11 - Continued
	Chapter 11 - Continued
	Chapter 11 - Continued

	Chapter 12 - The Chart and Grid Controls
	Chapter 12 - Continued
	Chapter 12 - Continued
	Chapter 12 - Continued
	Chapter 12 - Continued
	Chapter 12 - Continued
	Chapter 12 - Continued
	Chapter 12 - Continued

	Chapter 13 - The Timer and Serial Communications Controls
	Chapter 13 - Continued
	Chapter 13 - Continued
	Chapter 13 - Continued
	Chapter 13 - Continued
	Chapter 13 - Continued
	Chapter 13 - Continued

	Chapter 14 - The Frame, Label, Shape, and Line Controls
	Chapter 14 - Continued
	Chapter 14 - Continued
	Chapter 14 - Continued
	Chapter 14 - Continued
	Chapter 14 - Continued
	Chapter 14 - Continued

	Chapter 15 - Toolbars, Status Bars, Progress Bars, and Coolbars
	Chapter 15 - Continued
	Chapter 15 - Continued
	Chapter 15 - Continued
	Chapter 15 - Continued
	Chapter 15 - Continued
	Chapter 15 - Continued

	Chapter 16 - Image Lists, Tree Views, List Views, and Tab Strips
	Chapter 16 - Continued
	Chapter 16 - Continued
	Chapter 16 - Continued
	Chapter 16 - Continued
	Chapter 16 - Continued
	Chapter 16 - Continued
	Chapter 16 - Continued

	Chapter 17 - File Handling and File Controls
	Chapter 17 - Continued
	Chapter 17 - Continued
	Chapter 17 - Continued
	Chapter 17 - Continued
	Chapter 17 - Continued
	Chapter 17 - Continued
	Chapter 17 - Continued
	Chapter 17 - Continued

	Chapter 18 - Working with Graphics
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued
	Chapter 18 - Continued

	Chapter 19 - Working with Images
	Chapter 19 - Continued
	Chapter 19 - Continued
	Chapter 19 - Continued
	Chapter 19 - Continued
	Chapter 19 - Continued
	Chapter 19 - Continued
	Chapter 19 - Continued
	Chapter 19 - Continued

	Chapter 20 - Creating ActiveX Controls and Documents
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued
	Chapter 20 - Continued

	Chapter 21 - Visual Basic and the Internet: Web Browsing, Email, HTTP, FTP, and DHTML
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued
	Chapter 21 - Continued

	Chapter 22 - Multimedia
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued
	Chapter 22 - Continued

	Chapter 23 - Connecting to the Windows API and Visual C++
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued
	Chapter 23 - Continued

	Chapter 24 - Databases: Using DAO, RDO, and ADO
	Chapter 24 - Continued
	Chapter 24 - Continued
	Chapter 24 - Continued
	Chapter 24 - Continued
	Chapter 24 - Continued
	Chapter 24 - Continued
	Chapter 24 - Continued
	Chapter 24 - Continued

	Chapter 25 - Working with Database Objects in Code
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued
	Chapter 25 - Continued

	Chapter 26 - OLE
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued
	Chapter 26 - Continued

	Chapter 27 - Creating Code Components (OLE Automation)
	Chapter 27 - Continued
	Chapter 27 - Continued
	Chapter 27 - Continued
	Chapter 27 - Continued
	Chapter 27 - Continued
	Chapter 27 - Continued
	Chapter 27 - Continued
	Chapter 27 - Continued

	Chapter 28 - Advanced Form, Control, And Windows Registry Handling
	Chapter 28 - Continued
	Chapter 28 - Continued
	Chapter 28 - Continued
	Chapter 28 - Continued
	Chapter 28 - Continued
	Chapter 28 - Continued
	Chapter 28 - Continued
	Chapter 28 - Continued

	Chapter 29 - Error Handling And Debugging
	Chapter 29 - Continued
	Chapter 29 - Continued
	Chapter 29 - Continued
	Chapter 29 - Continued
	Chapter 29 - Continued
	Chapter 29 - Continued
	Chapter 29 - Continued

	Chapter 30 - Creating Setup Programs, Help Files, And Online Registration
	Chapter 30 - Continued
	Chapter 30 - Continued
	Chapter 30 - Continued
	Chapter 30 - Continued
	Chapter 30 - Continued
	Chapter 30 - Continued
	Chapter 30 - Continued

	Index

	BKGHJMFMAHGOGKIJDKCIHHGAIHHEKKIHAN:
	form1:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102831/
	f8:
	f9: Go!

	f10:

	FEGFBADAOAFMFMEINBGJEFACOKEJBHGBOF:
	form1:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102831/
	f8:
	f9: Go!

	f10:

